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Combining Models Committees

e A combination of models is often called a committee

o Simplest way to combine models is to just average them
together:

o Motivation: let’'s say we have a number of models for a
problem
¢ e.9. Regression with polynomials (different degree) | M
o e.g. Classification with support vector machines (kernel _ 1
type, parameters) yeow (x) M ;ym(x)
e It turns out this simple method is better than (or same as)
the individual models on average (in expectation)
e But how can we combine them together? o And usually slightly better

« Often, improved performance can be obtained by
combining different models

o But there are better methods, which we shall discuss
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Error of Individual Models
o Consider individual models y,,(x), assume they can be
written as true value plus error:
Ym(x) = h(x) + em(x)
o The expected value of the error of an individual model is
then:
Ex[{yn(x) = h(x)}’] = Ex[em(x)’]
e The average error made by an individual model is then:
1 M
Ew = Zl Ex[en(x)?]
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Committee Error vs. Individual Error

¢ So, the committee error is

| M 2 | MM
Ecom = Ex {Mmz_;em(x)} :WZZEX [em(x)en(x)]

m=1 n=1

 If we assume errors are uncorrelated, E; [e;(x)en(x)] =0
when m # n, then:

M

1 1

Ecom = 7 E Ex [em(x)?] = MEAV
m=1

o However, errors are rarely uncorrelated
o For example, if all errors are the same, €, (x) = €,(x), then

Ecom = Eav
o Using Jensen’s inequality (convex functions), can show

Ecom < Eav
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Error of Committee

o The committee

M
ycom(x) = M Z)’m(x)

m=1

has expected error

1 ?
Ecom = Ex [{ (M;Ym(x)> —h(x)} ‘|

g ’
E, [{ (Mmz:lh(x) + 6,,1(x)> - h(x)} ]
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Boosting

» Boosting is a technique for combining classifiers into a
committee
o We describe AdaBoost (adaptive boosting), the most
commonly used variant
e Boosting is a meta-learning technique
» Combines a set of classifiers trained using their own
learning algorithms
o Magic: can work well even if those classifiers only perform
slightly better than random!
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Example - Thresholds

o Let’s consider a simple example where weak learners are
thresholds

e i.e. Each y,,(x) is of the form:
Ym(x) =x; >0

o To allow different directions of threshold, include
pe{-1,+1}:
Ym(¥) = px; > po
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Boosting Model

« We consider two-class classification problems, training
data (x;, 1), with t; € {—1,1}
o In boosting we build a “linear” classifier of the form:

M
y(x) = Z mnym(x)
m=1

o A committee of classifiers, with weights

¢ In boosting terminology:
e Each y,(x) is called a weak learner or base classifier
« Final classifier y(x) is called strong learner

e Learning problem: how do we choose the weak learners
ym(x) and weights a,?
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Choozsing Weak Learners
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e Boosting is a greedy strategy for building the strong learner

y(x) = Z Qmym(¥)
m=1

o Start by choosing the best weak learner, use it as y; (x)
o Best is defined as that which minimizes number of mistakes
made (0-1 classification loss)
e i.e. Search over all p, 0, i to find best

Ym(x) = px; > pb
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Choosing Weak Learners
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e The first weak learner y;(x) made some mistakes

e Choose the second weak learner y,(x) to try to get those
ones correct

o Best is now defined as that which minimizes weighted
number of mistakes made
« Higher weight given to those y, (x) got incorrect

e Strong learner now

y(x) = aryi(x) + azya(x)
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What About Those Weights?

e So exactly how should we choose the weights for the
examples when classified incorrectly?

¢ And what should the «,, be for combining the weak
learners y,,(x)?

e As usual, we define a loss function, and choose these
parameters to minimize it
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Choosing Weak Learners
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o Repeat: reweight examples and choose new weak learner
based on weights

o Green line shows decision boundary of strong learner
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Exponential Loss

e Boosting attempts to minimize the exponential
loss
Ey = exp{—ty(xn)}
error on n training example

o Exponential loss is differentiable R
approximation to 0/1 loss

 Better for optimization o b

45 o w5 6 05 1 1s

o Total error

figure from G. Shakhnarovich

N
E = Z exp{—t.y(xn)}
n=1
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Minimizing Exponential Loss
e Let's assume we've already chosen weak learners
y1(x),...,ym—1(x) and their weights a1, ..., am—1
o Define f,—1(x) = apy1(x) + ... + W—1Ym—1(x)
e Just focus on choosing y,,(x) and a;,
o Greedy optimization strategy
o Total error using exponential loss is:

E

N N
> exp{—tay(xa)} = > exp{—tulfun—1 () + cmym(x,)]}

n=1 n=1

N
= Zexp{ftnfm—l (xn) - fn”rmym(xn)}

N
=3 expl—tafu 1 ()} exP{ ()}
n=1

weight w{™
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Minimization wrt y,,
o Consider the weighted loss

N
ZW’(:") o nomym(¥n) _ p—am Z Wi 4 om Z wi"
n=1

n€Tm neMy

where T, is the set of points correctly classified by the
choice of y,(x), and A, those that are not

E = an Ym xn # tn ZW 1 _I )’m(xn) # tn))

N
— P —q § e § (m)
- " — m Wn ym xn 7£ tn) " Wn
n=1

e Since the second term is a constant wrt y,, and
e — e > 0 if o, > 0, best y,, minimizes weighted 0-1
loss
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Weighted Loss

o On the m" iteration of boosting, we are choosing y,, and a,,
to minimize the weighted loss:

N
E = Zw,(,m) exp{—tnumym(xn)}

n=1

where w™ = exp{—tufu_1(xa)}
o Can define these as weights since they are constant wrt y,,
and a,,

o We'll see they’re the right weights to use
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Choosing a,,

e So best y,, minimizes weighted 0-1 loss regardless of a;,
o How should we set «,, given this best y,,?
e Recall from above:

E = an men #tn an

= ea"‘em+e (1 — €m)

Ym(xn) 7& tn))

where we define ¢, to be the weighted error of y,,
e Calculus: o, = %10gm

€m
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AdaBoost Summary

« Initialize weights w( = 1/N
e Form=1,...,M (and while ¢,, < 1/2)
o Find weak learner y,,(x) with minimum weighted error

N
€m = Z WSI’")I(ym(xn) # 1)

n=1

I1—ep
€m

e Seta, = %log

o Update weights wimt) = m exp{ —mtuym(%,)}
o Normalize weights to sum to one

e Final classifier is

M
y(x) = sign (Z amym(x)>

m=1
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Boosting the Margin

o Define the margin of an example:

) = t[al)’l(xi) + oot Qmym(¥:)
o+ ..o+ ay

e Margin is 1 iff all y; classify correctly, -1 if none do

o lterations of AdaBoost increase the margin of training
examples (even after training error is zero)
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AdaBoost Behaviour
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« Typical behaviour:
o Test error decreases even after training error is flat (even
zero!)
e Tends not to overfit

from G. Shakhnarovich
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Loss Functions for Classification

E(z)
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o We revisit a graph from earlier: 0-1 loss, SVM hinge loss,
logistic regression cross-entropy loss, and AdaBoost
exponential loss are shown

o All are approximations (upper bounds) to 0-1 loss

e Exponential loss leads to simple greedy optimization
scheme

o But it has problems with outliers: note behaviour compared
to logistic regression cross-entropy loss for badly
mis-classified examples
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Carving Up Input Space Tree-based Models

e The boosting method for building a committee builds a
model:

y(x) = Zamym(x) 0

m=1

o Note that the committee is built over all input space
e Though it can of course behave differently in different
regions A
o Instead, we could explicitly carve up input space into 0 0 Tt
different regions R,, and have different committee
members act in different regions:

o A common method for carving up input space is to use
axis-aligned cuboid-shaped regions

M e Each model y,,(x) would only be responsible for one
Ya) =Y Ir, (*)ym(x) subregion
m=1

where 1%, (+) is the indicator function (0 or 1)
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Decision Trees Building Decision Trees

o Given a dataset, the learning problem is to decide which is
the best tree

o There are (exponentially-exponentially) many different
trees to choose from

C D . .
b2 » Brute force impossible, so use a greedy strategy
A o Start with an empty tree
o i h A 5 c b £ e Choose a dimension i and value ¢ on which to split
) ] ] o Make recursive calls
* These splits are commonly chosen in a top-down fashion e Some training examples X; go down left branch, recursive
to form a binary tree call with those
e These are known as decision trees e Other training examples Xz go down right branch, a second

recursive call with those
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Example - Waiting for Table

Attributes Target

Example
Alt| Bar Fri Hun Pat Price Rain|Res Type | Est | WillWait
Xy T| F F T Some $%% F T French| 0-10 T
Xo T| F F T  Full $ F F  Thai |30-60 F
X3 F| T F F Some § F F Burger| 0-10 T
X T\ F T T Ful $ F F Thai | 10-30 T
X5 T| F T F Full 3$%% F T French| >60 F
Xo F| T F T Some $$ T T ltalian | 0-10 T
X7 F| T F F None § T F Burger| 0-10 F
Xz F| F F T Some $$ T T  Thai | 0-10 T
Xy Fl T T F o Full $ T F Burger| >60 F
X1 T| T T T Ful $$% F T ltalian | 10-30 F
X1 F F F F None $ F F Thai | 0-10 F
X2 T| T T T Ful $ F F Burger| 30-60 T

from Russell and Norvig AIMA

Boosting

o Classification problem - #, is whether or not one should
wait for a table at a restaurant

o In this example attributes (components of x,,) are discrete;
can be continuous too
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Information

o Information answers questions

e The more clueless | am about the answer initially, the more
information is in the answer

e Scale: 1 bit = answer to Boolean question with prior
p(x = true) = 0.5

o For a K-class classification problem, we have a prior
plx=k)=m

o Information in answer is

K
H(x) = 7Z7rk10g27Tk
k=1

known as entropy of prior
e A good dimension produces a split that reduces entropy
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Choosing a Dimension

None Some Full French Italian Thai Burger

o Of all the dimensions one could choose to put at root of
decision tree, which is best?
o Compare using Patrons? versus Type?

e Patrons? looks better — more information about
classification
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Entropy

00 0.2 0.4 o 0.6 0.8 1

o Entropy for binary classification (boolean prior)
e H(x) = —mlog, ™ — (1 — 1) logy(1 — mp)
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Choosing a Dimension
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o Compare using Patrons? versus Type?
e Patrons? has average entropy of 0.459 bits
o Type? has average entropy of 1 bit
e Put Patrons? at root of tree
o Make recursive calls using training examples that fall down
each path
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Mixture of Experts

e The mixture of experts model takes the idea of splitting up
regions of space in a probabilistic direction
e The decision on which model to use is probabilistic:

M
pltlx) = Z T ()P (1)

m=1

* Note that all models p,,(7|x) are used
e But contributions ,,(x) depend on input variable x
» These coefficients ,,(x) are known as gating functions
e Each p,(x) is an expert in a region of input space, the
gating functions determine when to use each expert
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Learnt Tree

Burger

o At each leaf have an expert
o In this case, just report what type of examples are in this
region of input space
o More generally, could stop earlier, build classifier in each
region
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Conclusion

o Readings: Ch. 14.3, 14.4
o Methods for combining models
« Simple averaging into a committee
o Greedy selection of models to minimize exponential loss
(AdaBoost)
o Select models which are good at particular regions of input
space (decision trees, mixture of experts)
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