Desigion Trace

Mixture of Experts

Outline

Combining Models Greg Mori - CMPT 419/726

Bishop PRML Ch. 14

Boosting

Decision Trees

Mixture of Experts

Boosting Decision Trees Mixture of Expe

Combining Models

- Motivation: let's say we have a number of models for a problem
 - e.g. Regression with polynomials (different degree)
 - e.g. Classification with support vector machines (kernel type, parameters)
- Often, improved performance can be obtained by combining different models
- But how can we combine them together?

osting Decision Trees

Mixture of Experts

Committees

- A combination of models is often called a committee
- Simplest way to combine models is to just average them together:

$$y_{COM}(\mathbf{x}) = \frac{1}{M} \sum_{m=1}^{M} y_m(\mathbf{x})$$

- It turns out this simple method is better than (or same as) the individual models on average (in expectation)
 - And usually slightly better
- But there are better methods, which we shall discuss

Error of Individual Models

 Consider individual models y_m(x), assume they can be written as true value plus error:

$$y_m(\mathbf{x}) = h(\mathbf{x}) + \epsilon_m(\mathbf{x})$$

 The expected value of the error of an individual model is then:

$$\mathbb{E}_{\mathbf{x}}[\{y_m(\mathbf{x}) - h(\mathbf{x})\}^2] = \mathbb{E}_{\mathbf{x}}[\epsilon_m(\mathbf{x})^2]$$

• The average error made by an individual model is then:

$$E_{AV} = \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}_{\boldsymbol{x}}[\epsilon_m(\boldsymbol{x})^2]$$

Error of Committee

· The committee

$$y_{COM}(\mathbf{x}) = \frac{1}{M} \sum_{m=1}^{M} y_m(\mathbf{x})$$

has expected error

$$E_{COM} = \mathbb{E}_{\mathbf{x}} \left[\left\{ \left(\frac{1}{M} \sum_{m=1}^{M} y_m(\mathbf{x}) \right) - h(\mathbf{x}) \right\}^2 \right]$$

$$= \mathbb{E}_{\mathbf{x}} \left[\left\{ \left(\frac{1}{M} \sum_{m=1}^{M} h(\mathbf{x}) + \epsilon_m(\mathbf{x}) \right) - h(\mathbf{x}) \right\}^2 \right]$$

$$= \mathbb{E}_{\mathbf{x}} \left[\left\{ \left(\frac{1}{M} \sum_{m=1}^{M} \epsilon_m(\mathbf{x}) \right) + h(\mathbf{x}) - h(\mathbf{x}) \right\}^2 \right] = \mathbb{E}_{\mathbf{x}} \left[\left\{ \frac{1}{M} \sum_{m=1}^{M} \epsilon_m(\mathbf{x}) \right\}^2 \right]$$

ng Decision Trees Mixture of Expr

Committee Error vs. Individual Error

. So, the committee error is

$$E_{COM} = \mathbb{E}_{\mathbf{x}} \left[\left\{ \frac{1}{M} \sum_{m=1}^{M} \epsilon_m(\mathbf{x}) \right\}^2 \right] = \frac{1}{M^2} \sum_{m=1}^{M} \sum_{n=1}^{M} \mathbb{E}_{\mathbf{x}} \left[\epsilon_m(\mathbf{x}) \epsilon_n(\mathbf{x}) \right]$$

• If we assume errors are uncorrelated, $\mathbb{E}_{\pmb{x}}\left[\epsilon_m(\pmb{x})\epsilon_n(\pmb{x})\right]=0$ when $m\neq n$, then:

$$E_{COM} = \frac{1}{M^2} \sum_{m=1}^{M} \mathbb{E}_{\mathbf{x}} \left[\epsilon_m(\mathbf{x})^2 \right] = \frac{1}{M} E_{AV}$$

- · However, errors are rarely uncorrelated
 - For example, if all errors are the same, $\epsilon_m(\mathbf{x}) = \epsilon_n(\mathbf{x})$, then $E_{COM} = E_{AV}$
 - Using Jensen's inequality (convex functions), can show $E_{COM} \leq E_{AV}$

Boosting Decision Trees Mixture of Experts

Outline

Boosting

Decision Trees

Mixture of Experts

Boosting

- Boosting is a technique for combining classifiers into a committee
 - We describe AdaBoost (adaptive boosting), the most commonly used variant
- Boosting is a meta-learning technique
 - Combines a set of classifiers trained using their own learning algorithms
 - Magic: can work well even if those classifiers only perform slightly better than random!

Boosting Model

- We consider two-class classification problems, training data (x_i, t_i) , with $t_i \in \{-1, 1\}$
- In boosting we build a "linear" classifier of the form:

$$y(\mathbf{x}) = \sum_{m=1}^{M} \alpha_m y_m(\mathbf{x})$$

- · A committee of classifiers, with weights
- In boosting terminology:
 - Each $y_m(x)$ is called a weak learner or base classifier
 - Final classifier y(x) is called strong learner
- Learning problem: how do we choose the weak learners $y_m(x)$ and weights α_m ?

Boosting Decision Trees Mixture of Expr

Example - Thresholds

- Let's consider a simple example where weak learners are thresholds
- i.e. Each $y_m(x)$ is of the form:

$$y_m(\mathbf{x}) = x_i > \theta$$

$$y_m(\mathbf{x}) = px_i > p\theta$$

Boosting Decision Trees Mixture of Experts

Choosing Weak Learners

Boosting is a greedy strategy for building the strong learner

$$y(x) = \sum_{m=1}^{M} \alpha_m y_m(x)$$

- Start by choosing the best weak learner, use it as $y_1(x)$
 - Best is defined as that which minimizes number of mistakes made (0-1 classification loss)
- i.e. Search over all p, θ , i to find best

$$y_m(\mathbf{x}) = px_i > p\theta$$

- The first weak learner $y_1(x)$ made some mistakes
- Choose the second weak learner $y_2(\mathbf{x})$ to try to get those ones correct
 - Best is now defined as that which minimizes weighted number of mistakes made
 - Higher weight given to those $y_1(x)$ got incorrect
- Strong learner now

$$y(\mathbf{x}) = \alpha_1 y_1(\mathbf{x}) + \alpha_2 y_2(\mathbf{x})$$

Boosting Decision Trees Mixture of Expe

What About Those Weights?

So exactly how should we choose the weights for the examples when classified incorrectly?

- And what should the α_m be for combining the weak learners $y_m(x)$?
- As usual, we define a loss function, and choose these parameters to minimize it

Boosting Decision Trees Mixture of Experts

Choosing Weak Learners

- Repeat: reweight examples and choose new weak learner based on weights
- Green line shows decision boundary of strong learner

Boosting Decision Trees Mixture of Experts

Exponential Loss

Boosting attempts to minimize the exponential loss

$$E_n = \exp\{-t_n y(\boldsymbol{x}_n)\}\$$

error on n^{th} training example

- Exponential loss is differentiable approximation to 0/1 loss
 - · Better for optimization
- Total error

 $E = \sum_{n=1}^{N} \exp\{-t_n y(\boldsymbol{x}_n)\}\$

figure from G. Shakhnarovich

Minimizing Exponential Loss

- Let's assume we've already chosen weak learners $y_1(x), \ldots, y_{m-1}(x)$ and their weights $\alpha_1, \ldots, \alpha_{m-1}$
 - Define $f_{m-1}(x) = \alpha_1 y_1(x) + \ldots + \alpha_{m-1} y_{m-1}(x)$
- Just focus on choosing $y_m(x)$ and α_m
 - Greedy optimization strategy
- Total error using exponential loss is:

$$E = \sum_{n=1}^{N} \exp\{-t_{n}y(\mathbf{x}_{n})\} = \sum_{n=1}^{N} \exp\{-t_{n}[f_{m-1}(\mathbf{x}_{n}) + \alpha_{m}y_{m}(\mathbf{x}_{n})]\}$$

$$= \sum_{n=1}^{N} \exp\{-t_{n}f_{m-1}(\mathbf{x}_{n}) - t_{n}\alpha_{m}y_{m}(\mathbf{x}_{n})\}$$

$$= \sum_{n=1}^{N} \underbrace{\exp\{-t_{n}f_{m-1}(\mathbf{x}_{n})\}}_{\text{weight } w_{n}^{(m)}} \exp\{-t_{n}\alpha_{m}y_{m}(\mathbf{x}_{n})\}$$

Boosting Decision Trees Mixture of Experiments

Minimization wrt y_m

· Consider the weighted loss

$$E = \sum_{n=1}^{N} w_n^{(m)} e^{-t_n \alpha_m y_m(\mathbf{x}_n)} = e^{-\alpha_m} \sum_{n \in \mathcal{T}_m} w_n^{(m)} + e^{\alpha_m} \sum_{n \in \mathcal{M}_m} w_n^{(m)}$$

where \mathcal{T}_m is the set of points correctly classified by the choice of $y_m(x)$, and \mathcal{N}_m those that are not

$$E = e^{\alpha_m} \sum_{n=1}^{N} w_n^{(m)} I(y_m(\mathbf{x}_n) \neq t_n) + e^{-\alpha_m} \sum_{n=1}^{N} w_n^{(m)} (1 - I(y_m(\mathbf{x}_n) \neq t_n))$$

$$= (e^{\alpha_m} - e^{-\alpha_m}) \sum_{n=1}^{N} w_n^{(m)} I(y_m(\mathbf{x}_n) \neq t_n) + e^{-\alpha_m} \sum_{n=1}^{N} w_n^{(m)}$$

• Since the second term is a constant wrt y_m and $e^{\alpha_m}-e^{-\alpha_m}>0$ if $\alpha_m>0$, best y_m minimizes weighted 0-1 loss

Boosting Decision Trees Mixture of Experts

Weighted Loss

On the mth iteration of boosting, we are choosing y_m and α_m to minimize the weighted loss:

$$E = \sum_{n=1}^{N} w_n^{(m)} \exp\{-t_n \alpha_m y_m(\mathbf{x}_n)\}$$

where $w_n^{(m)} = \exp\{-t_n f_{m-1}(x_n)\}$

- Can define these as weights since they are constant wrt y_m and α_m
 - · We'll see they're the right weights to use

Boosting Decision Trees Mixture of Experts

Choosing α_m

- So best y_m minimizes weighted 0-1 loss regardless of α_m
- How should we set α_m given this best y_m ?
- Recall from above:

$$E = e^{\alpha_m} \sum_{n=1}^{N} w_n^{(m)} I(y_m(\mathbf{x}_n) \neq t_n) + e^{-\alpha_m} \sum_{n=1}^{N} w_n^{(m)} (1 - I(y_m(\mathbf{x}_n) \neq t_n))$$

= $e^{\alpha_m} \epsilon_m + e^{-\alpha_m} (1 - \epsilon_m)$

where we define ϵ_m to be the weighted error of y_m

• Calculus: $\alpha_m = \frac{1}{2} \log \frac{1 - \epsilon_m}{\epsilon}$

AdaBoost Summary

- Initialize weights $w_n^{(1)} = 1/N$
- For m = 1, ..., M (and while $\epsilon_m < 1/2$)
 - Find weak learner $y_m(x)$ with minimum weighted error

$$\epsilon_m = \sum_{n=1}^N w_n^{(m)} I(y_m(\boldsymbol{x}_n) \neq t_n)$$

- Set $\alpha_m = \frac{1}{2}\log\frac{1-\epsilon_m}{\epsilon_m}$ Update weights $w_n^{(m+1)} = w_n^{(m)}\exp\{-\alpha_m t_n y_m(\mathbf{x}_n)\}$ Normalize weights to sum to one
- · Final classifier is

$$y(\mathbf{x}) = sign\left(\sum_{m=1}^{M} \alpha_m y_m(\mathbf{x})\right)$$

Boosting the Margin

• Define the margin of an example:

$$\gamma(\mathbf{x}_i) = t_i \frac{\alpha_1 y_1(\mathbf{x}_i) + \ldots + \alpha_m y_m(\mathbf{x}_i)}{\alpha_1 + \ldots + \alpha_m}$$

- Margin is 1 iff all y_i classify correctly, -1 if none do
- Iterations of AdaBoost increase the margin of training examples (even after training error is zero)

Mixture of Experts

AdaBoost Behaviour

- Typical behaviour:
 - Test error decreases even after training error is flat (even
 - Tends not to overfit

from G. Shakhnarovich

Mixture of Experts

Loss Functions for Classification

- We revisit a graph from earlier: 0-1 loss, SVM hinge loss, logistic regression cross-entropy loss, and AdaBoost exponential loss are shown
- All are approximations (upper bounds) to 0-1 loss
- · Exponential loss leads to simple greedy optimization scheme
- · But it has problems with outliers: note behaviour compared to logistic regression cross-entropy loss for badly mis-classified examples

Carving Up Input Space

 The boosting method for building a committee builds a model:

$$y(\mathbf{x}) = \sum_{m=1}^{M} \alpha_m y_m(\mathbf{x})$$

- Note that the committee is built over all input space
 - Though it can of course behave differently in different regions
- Instead, we could explicitly carve up input space into different regions R_m and have different committee members act in different regions:

$$y(\mathbf{x}) = \sum_{m=1}^{M} 1_{\mathcal{R}_m}(\mathbf{x}) y_m(\mathbf{x})$$

where $\mathbf{1}_{\mathcal{R}_{\textit{m}}}(\cdot)$ is the indicator function (0 or 1)

Tree-based Models

- A common method for carving up input space is to use axis-aligned cuboid-shaped regions
- Each model $y_m(x)$ would only be responsible for one subregion

Boosting Decision Trees Mixture of Expe

- These splits are commonly chosen in a top-down fashion to form a binary tree
 - These are known as decision trees

oosting Decision Trees Mixture of Experts

Building Decision Trees

- Given a dataset, the learning problem is to decide which is the best tree
- There are (exponentially-exponentially) many different trees to choose from
- Brute force impossible, so use a greedy strategy
 - Start with an empty tree
 - Choose a dimension i and value θ on which to split
 - Make recursive calls
 - Some training examples X_L go down left branch, recursive call with those
 - Other training examples X_R go down right branch, a second recursive call with those

Example - Waiting for Table

Example	Attributes										Target
Litempie	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0-10	T
X_2	T	F	F	T	Full	\$	F	F	Thai	30-60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0-10	T
X_4	T	F	Т	T	Full	\$	F	F	Thai	10-30	T
X_5	T	F	Т	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	T	Some	\$\$	T	Τ	Italian	0-10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0-10	F
X_8	F	F	F	T	Some	\$\$	T	T	Thai	0-10	T
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	Т	T	Full	\$\$\$	F	T	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	T	T	Т	T	Full	\$	F	F	Burger	30-60	T

from Russell and Norvig AIMA

- Classification problem t_n is whether or not one should wait for a table at a restaurant
- In this example attributes (components of x_n) are discrete; can be continuous too

Boosting Decision Trees Mixture of Experts

Choosing a Dimension

- Of all the dimensions one could choose to put at root of decision tree, which is best?
- Compare using Patrons? versus Type?
 - Patrons? looks better more information about classification

Boosting Decision Trees Mixture of Experts

Information

- · Information answers questions
- The more clueless I am about the answer initially, the more information is in the answer
- Scale: 1 bit = answer to Boolean question with prior p(x=true)=0.5
- For a K-class classification problem, we have a prior $p(x=k)=\pi_k$
- Information in answer is

$$H(x) = -\sum_{k=1}^{K} \pi_k \log_2 \pi_k$$

known as entropy of prior

A good dimension produces a split that reduces entropy

Boosting Decision Trees Mixture of Experts

Entropy

1
0.8

- Entropy for binary classification (boolean prior)
- $H(x) = -\pi_1 \log_2 \pi_1 (1 \pi_1) \log_2 (1 \pi_1)$

Boosting Decision Trees Mixture of Experts

Choosing a Dimension

- · Compare using Patrons? versus Type?
 - Patrons? has average entropy of 0.459 bits
 - Type? has average entropy of 1 bit
- Put Patrons? at root of tree
 - Make recursive calls using training examples that fall down each path

Boosting Decision Trees Mixture of Experts

Learnt Tree

- At each leaf have an expert
- In this case, just report what type of examples are in this region of input space
 - More generally, could stop earlier, build classifier in each region

Boosting Decision Trees Mixture of Experts

Mixture of Experts

- The mixture of experts model takes the idea of splitting up regions of space in a probabilistic direction
- The decision on which model to use is probabilistic:

$$p(t|\mathbf{x}) = \sum_{m=1}^{M} \pi_m(\mathbf{x}) p_m(t|\mathbf{x})$$

- Note that all models $p_m(t|x)$ are used
- But contributions $\pi_m(x)$ depend on input variable x
 - These coefficients $\pi_m(x)$ are known as gating functions
 - Each p_m(t|x) is an expert in a region of input space, the gating functions determine when to use each expert

Boosting Decision Trees Mixture of Experts

Conclusion

- Readings: Ch. 14.3, 14.4
- Methods for combining models
 - Simple averaging into a committee
 - Greedy selection of models to minimize exponential loss (AdaBoost)
 - Select models which are good at particular regions of input space (decision trees, mixture of experts)