Outline

Sequential Data - Part 2 Greg Mori - CMPT 419/726

Bishop PRML Ch. 13 Russell and Norvig, AIMA Hidden Markov Models - Most Likely Sequence

Continuous State Variables

Hidden Markov Models - Most Likely Sequence

Continuous State Variables

Inference Tasks

- Filtering: $p(z_t|x_{1:t})$
 - Estimate current unobservable state given all observations to date
- Prediction: $p(z_k|x_{1:t})$ for k > t
 - Similar to filtering, without evidence
- Smoothing: $p(z_k|x_{1:t})$ for k < t
 - Better estimate of past states
- Most likely explanation: $\arg\max_{z_{1:N}} p(z_{1:N}|x_{1:N})$
 - e.g. speech recognition, decoding noisy input sequence

Hidden Markov Models - Most Likely Sequence

Continuous State Variables

Sequence of Most Likely States

 Most likely sequence is not same as sequence of most likely states:

$$\arg\max_{z_{1:N}}p(z_{1:N}|x_{1:N})$$

versus

$$\left(\arg\max_{z_1} p(z_1|x_{1:N}), \dots, \arg\max_{z_N} p(z_N|x_{1:N})\right)$$

Paths Through HMM

• There are K^N paths to consider through the HMM for computing

$$\arg \max_{z_{1:N}} p(z_{1:N}|x_{1:N})$$

· Need a faster method

Viterbi Algorithm

- Insight: for any value k for z_n , the best path $(z_1, z_2, \ldots, z_n = k)$ ending in $z_n = k$ consists of the best path $(z_1, z_2, \ldots, z_{n-1} = j)$ for some j, plus one more step
 - Don't need to consider exponentially many paths, just K at each time step
 - Dynamic programming algorithm Viterbi algorithm

Hidden Markov Models - Most Likely Sequence

Continuous State Variables

Viterbi Algorithm - Math

- Define message $w(n,k) = \max_{z_1,\dots,z_{n-1}} p(x_1,\dots,x_n,z_1,\dots,z_n=k)$
- From factorization of joint distribution:

$$w(n,k) = \max_{z_1,\dots,z_{n-1}} p(x_1,\dots,x_{n-1},z_1,\dots,z_{n-1}) p(x_n|z_n = k) p(z_n = k|z_{n-1})$$

$$= \max_{z_{n-1}} \max_{z_1,\dots,z_{n-2}} p(x_{1:n-1},z_{1:n-1}) p(x_n|z_n = k) p(z_n = k|z_{n-1})$$

$$= \max_{j} w(n-1,j) p(x_n|z_n = k) p(z_n = k|z_{n-1} = j)$$

Hidden Markov Models - Most Likely Sequence

Continuous State Variable

Viterbi Algorithm - Example

$$w(n,k) = \max_{\substack{z_1,\dots,z_{n-1} \\ j}} p(x_1,\dots,x_n,z_1,\dots,z_n = k)$$

=
$$\max_{j} w(n-1,j)p(x_n|z_n = k)p(z_n = k|z_{n-1} = j)$$

Continuous State Variables

Viterbi Algorithm - Complexity

- Each step of the algorithm takes $O(K^2)$ work
- With N time steps, $O(NK^2)$ complexity to find most likely sequence
- Much better than naive algorithm evaluating all K^N possible paths

Hidden Markov Models - Most Likely Sequence

Continuous State Variables

Continuous State Variables

- In HMMs, the state variable z_t is assumed discrete
- In many applications, z_t is continuous
 - Object tracking
 - Stock price, gross domestic product (GDP)
 - Amount of rain
- · Can either discretize
 - Large state space
 - Discretization errors
- Or use method that directly handles continuous variables

Hidden Markov Models - Most Likely Sequence

Continuous State Variables

Gaussianity

- As in the HMM, we require model parameters transition model and sensor model
- Unlike HMM, each of these is a conditional probability density given a continuous-valued z_t
- One common assumption is to let both be linear Gaussians:

$$p(z_t|z_{t-1}) = \mathcal{N}(z_t; Az_{t-1}, \Sigma_z)$$

$$p(x_t|z_t) = \mathcal{N}(x_t; Cz_t, \Sigma_x)$$

Hidden Markov Models - Most Likely Sequence

Continuous State Variables

Continuous State Variables - Filtering

- Recall the filtering problem $p(z_t|x_{1:t})$ distribution on current state given all observations to date
- As in discrete case, can formulate a recursive computation:

$$p(z_{t+1}|x_{1:t+1}) = \alpha p(x_{t+1}|z_{t+1}) \int_{z_t} p(z_{t+1}|z_t) p(z_t|x_{1:t})$$

- Now we have an integral instead of a sum
- Can we do this integral exactly?
 - If we use linear Gaussians, yes: Kalman filter
 - In general, no: can use particle filter

Hidden Markov Models - Most Likely Sequence

Continuous State Variables

Particle Filter

• The particle filter is a particular sampling-importance-resampling algorithm for approximating $p(z_t|x_{1:t})$

Recall: SIR - Algorithm

- Sampling-importance-resampling algorithm has two stages
- Sampling:
 - Draw samples $z^{(1)}, \dots, z^{(L)}$ from proposal distribution q(z)
- Importance resampling:
 - Put weights on samples

$$w_l = \frac{\tilde{p}(z^{(l)})/q(z^{(l)})}{\sum_m \tilde{p}(z^{(m)})/q(z^{(m)})}$$

- Draw samples $\hat{z}^{(\ell)}$ from the discrete set $z^{(1)},\dots,z^{(L)}$ according to weights w_l
- Approximate $p(\cdot)$ by:

$$p(z) \approx \frac{1}{L} \sum_{\ell=1}^{L} \delta(z - \hat{z}^{(\ell)})$$

$$p(z) \approx \sum_{\ell=1}^{L} w_{\ell} \delta(z - z^{(\ell)})$$

Hidden Markov Models - Most Likely Sequence

Continuous State Variables

Particle Filter

- The particle filter is a particular samplingimportance-resampling algorithm for approximating p(z_t|x_{1:t})
- What should be the proposal distribution $q(z_t)$?
 - Trick: use prediction given previous observations

$$p(z_t|x_{1:t-1}) \approx \sum_{\ell=1}^{L} w_{t-1}^{\ell} p(z_t|z_{t-1}^{(\ell)})$$

 With this proposal distribution, the weights for importance resampling are:

$$w_t^{\ell} = \frac{\tilde{p}(z^{(\ell)})}{q(z^{(\ell)})} = \frac{p(z_t^{(\ell)}|x_{1:t})}{p(z_t^{(\ell)}|x_{1:t-1})}$$
$$= p(x_t|z_t^{(\ell)})$$

Hidden Markov Models - Most Likely Sequence

Continuous State Variables

Particle Filter Illustration

Hidden Markov Models - Most Likely Sequence

Continuous State Variables

Hidden Markov Models - Most Likely Sequence

Continuous State Variables

Particle Filter Example

Okuma et al. ECCV 2004

Conclusion

- Readings: Ch. 13.2.5, 13.3
- Most likely sequence in HMM
 - • Viterbi algorithm – $O(\mathit{NK}^2)$ time, dynamic programming algorithm
- Continuous state spaces
 - Linear Gaussians closed-form filtering (and smoothing) using Kalman filter
 - General case no closed-form solution, can use particle filter, a sampling method