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Temporal Models

• The world changes over time
• Explicitly model this change using Bayesian networks
• Undirected models also exist (will not cover)

• Basic idea: copy state and evidence variables for each
time step

• e.g. Diabetes management
• zt is set of unobservable state variables at time t

• bloodSugart, stomachContentst, ...
• xt is set of observable evidence variables at time t

• measuredBloodSugart, foodEatent, ...

• Assume discrete time step, fixed
• Notation: xa:b = xa, xa+1, . . . , xb−1, xb
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Markov Chain

• Construct Bayesian network from these variables
• parents? distributions? for state variables zt:

• Markov assumption: zt depends on bounded subset of
z1:t−1

• First-order Markov process: p(zt|z1:t−1) = p(zt|zt−1)
• Second-order Markov process: p(zt|z1:t−1) = p(zt|zt−2, zt−1)

x1 x2 x3 x4

x1 x2 x3 x4

• Stationary process: p(zt|zt−1) fixed for all t
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Hidden Markov Model (HMM)

• Sensor Markov assumption: p(xt|z1:t, x1:t−1) = p(xt|zt)

• Stationary process: transition model p(zt|zt−1) and sensor
model p(xt|zt) fixed for all t (separate p(z1))

• HMM special type of Bayesian network, zt is a single
discrete random variable:

zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2

• Joint distribution:
p(z1:t, x1:t) =

p(z1)
∏

i=2:t p(zi|zi−1)
∏

i=1:t p(xi|zi)
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HMM Example

Example

tRain

tUmbrella

Raint !1

Umbrellat !1

Raint +1

Umbrellat +1

Rt !1 tP(R  )

0.3f
0.7t

tR tP(U  )

0.9t
0.2f

First-order Markov assumption not exactly true in real world!

Possible fixes:
1. Increase order of Markov process
2. Augment state, e.g., add Tempt, Pressuret

Example: robot motion.
Augment position and velocity with Batteryt

Chapter 15, Sections 1–5 8

• First-order Markov assumption not true in real world
• Possible fixes:

• Increase order of Markov process
• Augment state, add tempt, pressuret
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Transition Diagram

A12

A23

A31

A21

A32

A13

A11

A22

A33

k = 1

k = 2

k = 3

• zn takes one of 3 values
• Using one-of-K coding scheme, znk = 1 if in state k at time n
• Transition matrix A where p(znk = 1|zn−1,j = 1) = Ajk
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Lattice / Trellis Representation

k = 1

k = 2

k = 3

n− 2 n− 1 n n + 1

A11 A11 A11

A33 A33 A33

• The lattice or trellis representation shows possible paths
through the latent state variables zn
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Inference Tasks

• Filtering: p(zt|x1:t)
• Estimate current unobservable state given all observations

to date
• Prediction: p(zn|x1:t) for n > t

• Similar to filtering, without evidence
• Smoothing: p(zn|x1:t) for n < t

• Better estimate of past states
• Most likely explanation: arg maxz1:t p(z1:t|x1:t)

• e.g. speech recognition, decoding noisy input sequence
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Filtering
• Aim: devise a recursive state estimation algorithm:

p(zt+1|x1:t+1) = f (xt+1, p(zt|x1:t))

p(zt+1|x1:t+1) = p(zt+1|x1:t, xt+1)

= αp(xt+1|x1:t, zt+1)p(zt+1|x1:t)

= αp(xt+1|zt+1)p(zt+1|x1:t)

• I.e. prediction + estimation. Prediction by summing out zt:

p(zt+1|x1:t+1) = αp(xt+1|zt+1)
∑

zt

p(zt+1, zt|x1:t)

= αp(xt+1|zt+1)
∑

zt

p(zt+1|zt, x1:t)p(zt|x1:t)

= αp(xt+1|zt+1)
∑

zt

p(zt+1|zt)p(zt|x1:t)
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Filtering Example

Filtering example

Rain
1

Umbrella
1

Rain
2

Umbrella
2

Rain
0

0.818

0.182

0.627

0.373

0.883

0.117

True

False

0.500

0.500

0.500

0.500

P(Xt+1|e1:t+1) = αP(et+1|Xt+1)ΣxtP(Xt+1|xt)P (xt|e1:t)

Rt−1 P (Rt)
t 0.7

f 0.3

Rt P (Ut)
t 0.9

f 0.2

Chapter 15, Sections 1–5 14

p(rain1 = true) = 0.5
p(zt+1|x1:t+1) = αp(xt+1|zt+1)

∑
zt

p(zt+1|zt)p(zt|x1:t)
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Filtering - Lattice

k = 1

k = 2

k = 3

n − 1 n

α(zn−1,1)

α(zn−1,2)

α(zn−1,3)

α(zn,1)
A11

A21

A31

p(xn|zn,1)

• Using notation in PRML, forward message is α(zn)

• Compute α(zn,i) using sum over k of α(zn−1,k) multiplied by
Aki, then multiplying in evidence p(xt|zni)

• Each step, computing α(zn) takes O(K2) time, with K
values for zn
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Smoothing
zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2

• Divide evidence x1:t into x1:n, xn+1:t

p(zn|x1:t) = p(zn|x1:n, xn+1:t)

= αp(zn|x1:n)p(xn+1:t|zn, x1:n)

= αp(zn|x1:n)p(xn+1:t|zn)

= αα(zn)β(zn)

• Backwards message β(zn) another recursion:
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z1 z2

x1 x2
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Smoothing
zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2

• Divide evidence x1:t into x1:n, xn+1:t, p(zn|x1:t) = αα(zn)β(zn)

• Backwards message another recursion:

p(xn+1:t|zn) =
∑
zn+1

p(xn+1:t, zn+1|zn)

=
∑
zn+1

p(xn+1:t|zn+1, zn)p(zn+1|zn)

=
∑
zn+1

p(xn+1:t|zn+1)p(zn+1|zn)

=
∑
zn+1

p(xn+1|zn+1)p(xn+2:t|zn+1)p(zn+1|zn)
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Smoothing Example
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Smoothing - Lattice

k = 1

k = 2

k = 3

n n + 1

β(zn,1) β(zn+1,1)

β(zn+1,2)

β(zn+1,3)

A11

A12

A13

p(xn|zn+1,1)

p(xn|zn+1,2)

p(xn|zn+1,3)

• Using notation in PRML, backward message is β(zn)

• Compute β(zn,i) using sum over k of β(zn+1,k) multiplied by
Aik and evidence p(xn+1|zn+1,k)

• Each step, computing β(zn) takes O(K2) time, with K
values for zn
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Forward-Backward Algorithm

zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2

• Filter from time 1 to N, and cache forward messages α(zn)

• Smooth from time N to 1, and cache backward messages
β(zn)

• Can now compute p(zn|x1, x2, . . . , xN) for all n
• Total complexity O(NK2)

• a.k.a Baum-Welch algorithm
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HMM Parameters

• The parameters of an HMM are:
• Transition matrix A where p(znk = 1|zn−1,j = 1) = Ajk
• Sensor model φk parameters to each p(xn|znk = 1, φk) (e.g.
φk could be mean and variance of Gaussian)

• Prior for initial state z1, model as multinomial
p(z1k = 1) = πk, parameters π

• Call these parameters θ = (A,π,φ)
• Learning problem: given one sequence x, find best θ

• Extension to multiple sequences straight-forward (assume
independent, log of product is sum)
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Maximum Likelihood for HMMs

• We can use maximum likelihood to choose the best
parameters:

θML = arg max p(x|θ)

• Unfortunately this is hard to do: we can get p(x|θ) by
summing out from the joint distribution:

p(x|θ) =
∑

z1

∑
z2

· · ·
∑
zN

p(x, z1, z2, . . . , zN |θ)

≡
∑

z
p(x, z|θ)

• But this sum has KN terms in it
• And, as in the mixture distribution case, no simple

closed-form solution

• Instead, use expectation-maximization (EM)



Hidden Markov Models Inference for HMMs Learning for HMMs

EM for HMMs

• Start with initial guess for parameters θold = (A,π,φ)
• E-step: Calculate posterior on latent variables p(z|x,θold)

• M-step: Maximize Q(θ,θold) =
∑

z p(z|x,θold) ln p(x, z|θ) wrt
θ

• Let’s look at the M-step, and see how the HMM structure
helps us
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HMM M-step

• M-step: Maximize Q(θ,θold) =
∑

z p(z|x,θold) ln p(x, z|θ) wrt
θ:

• The complete data log-likelihood factors nicely:

ln p(x, z|θ) = ln

{
p(z1|π)

∏
i=2:N

p(zi|zi−1,A)
∏

i=1:N

p(xi|zi,φ)

}
= ln p(z1|π) +

∑
i=2:N

ln p(zi|zi−1,A) +
∑

i=1:N

ln p(xi|zi,φ)

• To maximize Q we now have 3 separate problems, one for
each parameter

• Let’s consider each in turn



Hidden Markov Models Inference for HMMs Learning for HMMs

Prior π

• Maximize Q wrt prior on initial state π:

Q(π,θold) =
∑

z
p(z|x,θold) ln p(z1|π)

=
∑

z
p(z|x,θold) ln

K∏
k=1

πz1k
k =

∑
z

p(z|x,θold)

K∑
k=1

z1k lnπk

=

K∑
k=1

lnπk

∑
z

p(z|x,θold)z1k

=

K∑
k=1

p(z1k = 1|x,θold) lnπk

• I.e. smoothed value for z1 being in state k
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Q(π,θold) =

K∑
k=1

p(z1k = 1|x,θold) lnπk

• Can solve for best π
• Use Lagrange multiplier to enforce constraint

∑
k πk = 1

πk =
p(z1k = 1|x,θold)∑K
j=1 p(z1j = 1|x,θold)

• Intuitively sensible result: new πk is smoothed probability of
being in state k at time 1 using old parameters

• E-step needs to calculate smoothed p(z1k = 1|x,θold) – this
is fast O(NK2)
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Transition Matrix A
• Maximize Q wrt transition matrix A:

Q(A,θold) =
∑

z
p(z|x,θold)

∑
i=2:N

ln p(zi|zi−1,A)

=
∑

z
p(z|x,θold)

∑
i=2:N

ln
∏

k=1:K

∏
j=1:K

Azi−1,jzi,k
jk

=
∑

z
p(z|x,θold)

∑
i=2:N

∑
k=1:K

∑
j=1:K

zi−1,jzi,k ln Ajk

=
∑

k=1:K

∑
j=1:K

ln Ajk

∑
i=2:N

∑
z

p(z|x,θold)zi−1,jzi,k

=
∑

k=1:K

∑
j=1:K

ln Ajk

∑
i=2:N

p(zi−1 = j, zi = k|x,θold)

• E-step needs to calculate p(zi−1 = j, zi = k|x,θold) – can be
done quickly using forward and backward messages
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Q(A,θold) =
∑

k=1:K

∑
j=1:K

ln Ajk

∑
i=2:N

p(zn−1 = j, zn = k|x,θold)

• Can solve for best A
• Again use Lagrange multipliers to enforce constraint∑

k Ajk = 1

Ajk =

∑
n=2:N p(zn−1 = j, zn = k|x,θold)∑

l=1:K
∑

n=2:N p(zn−1 = j, zn = l|x,θold)

• Again sensible result: Ajk set to expected number of times
we transition from state j to k using the smoothed results
from old parameters
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Sensor Model

• Similar derivation for sensor model parameters φ

• Again end up with weighted parameter estimated based on
expected values of states given smoothed estimates
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HMM EM Summary

• Start with initial guess for parameters θold = (A,π,φ)
• Run forward-backward algorithm to get all messages α(zn),
β(zn) (E-step)

• O(NK2) time complexity
• Can use these to compute any smoothed posterior

p(znk = 1|x,θold)
• Also can compute any p(zn−1,j = 1, zn,k = 1|x,θold)

• Using these, update values for parameters (M-step)
• πk is smoothed probability of being in in state k at time 1
• Ajk is smoothed probability of transitioning from state j to k

averaged over all time steps
• φ is weighted sensor parameters using smoothed

probabilities (e.g. similar to mixture of Gaussians)

• Repeat until convergence
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Conclusion

• Readings: Ch. 13.2, 13.2.1, 13.2.2
• HMM - Probabilistic model of temporal data

• Discrete hidden (unobserved, latent) state variable at each
time

• Continuous (next)
• Observation (can be discrete / continuous) at each time
• Conditional independence assumptions (Markov)
• Assumptions on distributions (stationary)

• Inference
• Filtering
• Smoothing
• Most likely sequence (next)

• Maximum likelihood learning
• EM – efficient computation O(NK2) time using

forward-backward smoothing
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