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Hidden Markov Models

Temporal Models

The world changes over time

o Explicitly model this change using Bayesian networks
e Undirected models also exist (will not cover)

Basic idea: copy state and evidence variables for each
time step
e.g. Diabetes management
z; is set of unobservable state variables at time ¢
e bloodSugar,, stomachContentsy, ...
x; is set of observable evidence variables at time ¢
o measuredBloodSugar,, foodEaten,, ...

Assume discrete time step, fixed

Notation: x,., = Xa, Xgi1y--3Xp—1,Xp
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Markov Chain

e Construct Bayesian network from these variables
e parents? distributions? for state variables z;:
e Markov assumption: z, depends on bounded subset of
Z1:1—1
o First-order Markov process: p(z/|z1.4—1) = p(z/|zi—1)
e Second-order Markov process: p(z:|z1.:—1) = p(z:|zr—2,2:—1)

xll X2l X3l X4'

X1 X2 X3 X4

« Stationary process: p(z|z—1) fixed for all z
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Hidden Markov Model (HMM)

Sensor Markov assumption: p(x;|z1.,X14—1) = p(x:|z;)
Stationary process: transition model p(z;|z,—1) and sensor
model p(x,|z,) fixed for all 7 (separate p(z;))

HMM special type of Bayesian network, z; is a single
discrete random variable:

Zp—1 Znp Zpy1

X1 X2

Joint distribution:
P(len xl:t) —
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Hidden Markov Model (HMM)

Sensor Markov assumption: p(x;|z1.,X14—1) = p(x:|z;)
Stationary process: transition model p(z;|z,—1) and sensor
model p(x,|z,) fixed for all 7 (separate p(z;))

HMM special type of Bayesian network, z; is a single
discrete random variable:

Zp—1 Znp Zpy1

X1 X2

Joint distribution:
Pz, x14) = p(z21) [1imp, P(@ilzie1) Tzt P (xil2i)
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HMM Example

P(R,)

0.7

t .

@ Umbrella,
e First-order Markov assumption not true in real world
¢ Possible fixes:

e Increase order of Markov process
e Augment state, add temp,, pressure,
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Transition Diagram

Ay Azz '__k/‘/]DDAu
@

ASS

e 7, takes one of 3 values
e Using one-of-K coding scheme, z,, = 1 if in state k attime n
e Transition matrix A where p(zu = 1|zp—1; = 1) = A4;
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Lattice / Trellis Representation

e The lattice or trellis representation shows possible paths
through the latent state variables z,
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Inference for HMMs

Inference Tasks

Filtering: p(z:|x1.)
o Estimate current unobservable state given all observations
to date

Prediction: p(z,|x;.,) forn >t
e Similar to filtering, without evidence
Smoothing: p(z,|x1.) forn < ¢
o Better estimate of past states
Most likely explanation: arg max,, p(z1.|x1.)
e e.g. speech recognition, decoding noisy input sequence



Hidden Markov Models Inference for HMMs Learning for HMMs
Filtering
e Aim: devise a recursive state estimation algorithm:

P(zertlxrir1) = f (e, p(2efx10))
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Filtering
e Aim: devise a recursive state estimation algorithm:

P(zi1lxtg1) = f(x1, p(2e|x120))

P(Zz+1 \x1;z+1) = P(Zt+1 !X1:z7xt+1)
= Oép(xz+1\xlzt,Zz+1)p(Zt+1\X1:z)
= op(Xep1|z41)P(2eg1|X1:0)
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Filtering

e Aim: devise a recursive state estimation algorithm:

P(Zt+1 |x1:t+l) :f(xt+1 7P(Zt|x1:t))

P(Zz+1 \x1:z+1) = P(Zt+1 !x1;z7xt+1)
= op(Xep1 X1, Ze41)P(2e41|X1:1)
= op(Xep1|z41)P(2eg1|X1:0)

e |.e. prediction + estimation. Prediction by summing out z;:

Pzt X1041) = ap(xt+1lzz+1)ZP(Z;H,Z;!M;;)

2t

= ap(amlan) Y Pzl xu)p(ala)

2t

= ap(x,H |Zz+1) ZP(ZtJrl |Zt)P(Zt|x1:t)

ra
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Ry [ P(R) | [ R ] P(U)
t | 07 t | 09
03 0.2

Inference for HMMs

Filtering Example

0.500
0.500

0.618
0.182

0.627
0.373

0.483

0117

p(rain; = true) = 0.5

Pz lxr1) = ap(xeet|zi) 32, (2 |z)p(zelxi)

Learning for HMMs
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Filtering - Lattice

a(zn—l,l) a(zn,l)

¢ Using notation in PRML, forward message is a(z,)

o Compute a(z,,;) using sum over k of a(z,—1 x) multiplied by
Ay, then multiplying in evidence p(x;|z,;)

 Each step, computing a(z,) takes O(K?) time, with K
values for z,
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Smoothing

Z1 Z2 Zn—1 Zn Zn+1

X1 X2

e Divide evidence xi., into x1.,, Xy+1:

p(zn|x1:z‘) = p(Zn|x1:na xn—l—l:t)
ap(zn|x1:n)p(xn+1:t|zna xl:n)
ap(zn|x1:n)p(xn+1:t|zn)

= aa(zn)B(z)
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Smoothing

Z1 Z2 Zn—1 Zn Zn+1

X1 X2

e Divide evidence xi., into x1.,, Xy+1:

p(zn|x1:z‘) = p(Zn|xl:n7 xn+1:t)
ap(zn|x1:n)p(xn+1:t|zm xl:n)
ap(zn‘xlzn)p(xn—&—l:tkn)

= aa(zn)B(z)

o Backwards message ((z,) another recursion:
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Inference for HMMs Learning for HMMs

Smoothing

Zp, Zp+1

e Divide evidence xi.; into x1.4, Xpt1:0, P(2n|x14) = acx(z0)5(2n)
e Backwards message another recursion:

p(xn+1:t|zn)

Zp(anrl:t, In+1 |Zn)

Zn+1

Zp(xn+1:t|zn+l7 Zn)p(ZnJrl |Zn)

Zn+1

Zp(xn+l:t|zn+l)p(2n+l |Zn)

Zn+1

> pConrlznr )P Fat 2| 2041)P (2041 ]22)

Zn+1
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Smoothing Example

0.500 0.627
0.500 0.373
0.1!18 O.;&B orerard
0.182 0117 orwar
0.!%3 o.stas
0117 0447 smoothed
0.690 1.000

el —
0.410 1,000 backward

Raing Rain,
¥ i

@ Umbrella
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Smoothing - Lattice
5(Zn¢1) Bzn+1,1)

\p(xn‘2n+1,1)
5(2n+1,2)

\p(xn‘2n+1,2)
B(zn11,3)

-0
n

 Using notation in PRML, backward message is 5(z,)

o Compute ((z,,;) using sum over k of 5(z,+1 ) multiplied by
Aj, and evidence p(x,+1|zn+1k)

 Each step, computing 3(z,) takes O(K?) time, with K
values for z,

n+ 1\ p(xn‘2n+1,3)
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Forward-Backward Algorithm

Z1 Zy Zn—1 Zp Zn+1

X1 X2

e Filter from time 1 to N, and cache forward messages «/(z,)
e Smooth from time N to 1, and cache backward messages

B(zn)

e Can now compute p(z,|x;,x2,...,xy) for all n
o Total complexity O(NK?)
e a.k.a Baum-Welch algorithm
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HMM Parameters

e The parameters of an HMM are:
e Transition matrix A where p(zu = 1|z,—1; = 1) = 4;
e Sensor model ¢, parameters to each p(x,|zx = 1, ¢x) (€.0.
¢r could be mean and variance of Gaussian)
e Prior for initial state z;, model as multinomial
p(zix = 1) = m, parameters =

e Call these parameters 6 = (A, 7, @)

e Learning problem: given one sequence x, find best

o Extension to multiple sequences straight-forward (assume
independent, log of product is sum)
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Maximum Likelihood for HMMs

¢ We can use maximum likelihood to choose the best
parameters:
0y = argmax p(x|0)

o Unfortunately this is hard to do: we can get p(x|0) by
summing out from the joint distribution:

pxlO) = 3 Y > pEaa,. . a6)
S p(x.210)

¢ But this sum has K" terms in it
e And, as in the mixture distribution case, no simple
closed-form solution

¢ Instead, use expectation-maximization (EM)
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EM for HMMs

Start with initial guess for parameters 0° = (A, x, ¢)

E-step: Calculate posterior on latent variables p(z|x, 8°)
M-step: Maximize Q(6,0°') = 3~ p(z|x, 6°) Inp(x,z|0) wrt
0

Let’s look at the M-step, and see how the HMM structure
helps us
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HMM M-step

o M-step: Maximize Q(8,0°¢) = 3~ p(z|x, 6°) Inp(x,z|0) wrt
0.
e The complete data log-likelihood factors nicely:

Inp(x,z|f) = In {P(Zl\ﬂ') 11 rGila1.4) 11 p(xz'\zmﬁ)}

i=2:N i=1:N
= Inp(zi|m) + Z Inp(zi|zi-1,A) + Z Inp(x;|zi, @)
i=2:N i=1:N

e To maximize Q we now have 3 separate problems, one for
each parameter

e Let’s consider each in turn
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Prior o

e Maximize Q wrt prior on initial state =:

O(m,0°%) = > plzlx,60”") Inp(z|m)

z

K K
:ZP(Z’X',QOM)IHHTF;”‘ = Zp(z|x,0"ld)211kln7rk

4 k=1 z k=1
K
= > Inm Yy plalx,07)z
k=1 z
K
= Zp(zlk = 1\x, 901[1) In Tk
k=1

¢ |l.e. smoothed value for z; being in state k&
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K

O(m,07%) = > plzi = 1|x,6°") In 7y
k=1

Can solve for best
Use Lagrange multiplier to enforce constraint °, m =1

pzix = 1]x,0)
S p(zij = 1)x,0°7)

Intuitively sensible result: new 7 is smoothed probability of
being in state k at time 1 using old parameters

Tk —

E-step needs to calculate smoothed p(zix = 1|x, 8°'¢) — this
is fast O(NK?)



Hidden Markov Models Inference for HMMs Learning for HMMs

Transition Matrix A

e Maximize Q wrt transition matrix A:

Q(A,e(]ld) — Z (Z|x eold Z lrlp Zi|Zi 15 )

i=2:N

_ Z z]x aold Zln H HAZ_;:L,‘Z,',k

i=2:N k=1:Kj=1K

= Z Z’x 001[1 Z Z ZZ[ lJszlnA]k

i=2:N k=1:K j=1:K

= Z Z InAj Z Zp (z|x, 0 )Zi—1,j%i k

k=1:K j=1:K i=2:N 2z
= Z Z lnAjk Z p(Zi—l :j’zi = k‘x) aold)
k=1:K j=1:K i=2:N
o E-step needs to calculate p(z; | = j,z = k|x,8°) — can be

done quickly using forward and backward messages
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04,0 = > 3 A Y plan-1 =j.zn = klx, 07

k=1:K j=1:K i=2:N

e Can solve for best A

e Again use Lagrange multipliers to enforce constraint
ZkAjk =1

= anZ:Np(Z"*I = j7 in = k|x7 HOZd)
Zl:l:K Zn:Z:Np(Z"—l :j7 in = l’x7 HOM)

e Again sensible result: Aj; set to expected number of times

we transition from state j to k using the smoothed results
from old parameters
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Sensor Model

e Similar derivation for sensor model parameters ¢

e Again end up with weighted parameter estimated based on
expected values of states given smoothed estimates
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HMM EM Summary

e Start with initial guess for parameters 6°'¢ = (A, 7, ¢)

¢ Run forward-backward algorithm to get all messages «(z,),
B(z,) (E-step)
e O(NK?) time complexity
e Can use these to compute any smoothed posterior
plzw = 1]x,0°)
e Also can compute any p(z,_1,; = 1,z,x = 1]x,0)
e Using these, update values for parameters (M-step)
o 7 is smoothed probability of being in in state k at time 1
e Aj is smoothed probability of transitioning from state j to «
averaged over all time steps
o ¢ is weighted sensor parameters using smoothed
probabilities (e.g. similar to mixture of Gaussians)

e Repeat until convergence



Learning for HMMs

HMM EM Summary

o Start with initial guess for parameters 6/ = (A, 7, ¢)

¢ Run forward-backward algorithm to get all messages «(z,),
B(z,) (E-step)
e O(NK?) time complexity
e Can use these to compute any smoothed posterior
plzw = 1]x,0°)
e Also can compute any p(z,_1,; = 1,z,x = 1]x,0)
e Using these, update values for parameters (M-step)
o 7 is smoothed probability of being in in state k at time 1
e Aj is smoothed probability of transitioning from state j to «
averaged over all time steps
o ¢ is weighted sensor parameters using smoothed
probabilities (e.g. similar to mixture of Gaussians)

e Repeat until convergence



Learning for HMMs

HMM EM Summary

o Start with initial guess for parameters 6/ = (A, 7, ¢)

¢ Run forward-backward algorithm to get all messages «(z,),
B(z,) (E-step)
e O(NK?) time complexity
e Can use these to compute any smoothed posterior
plzw = 1]x,0°)
e Also can compute any p(z,_1,; = 1,z,x = 1]x,0)
e Using these, update values for parameters (M-step)
o 7 is smoothed probability of being in in state k at time 1
e Aj is smoothed probability of transitioning from state j to «
averaged over all time steps
o ¢ is weighted sensor parameters using smoothed
probabilities (e.g. similar to mixture of Gaussians)

e Repeat until convergence



Learning for HMMs

HMM EM Summary
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e O(NK?) time complexity
e Can use these to compute any smoothed posterior
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o 7 is smoothed probability of being in in state k at time 1
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probabilities (e.g. similar to mixture of Gaussians)

e Repeat until convergence
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Conclusion

Readings: Ch. 13.2, 13.2.1, 13.2.2

HMM - Probabilistic model of temporal data
o Discrete hidden (unobserved, latent) state variable at each
time
e Continuous (next)
o Observation (can be discrete / continuous) at each time
¢ Conditional independence assumptions (Markov)
e Assumptions on distributions (stationary)
Inference
o Filtering
e Smoothing
e Most likely sequence (next)
Maximum likelihood learning
o EM - efficient computation O(NK?) time using
forward-backward smoothing
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