Outline

Sequential Data Greg Mori - CMPT 419/726

Bishop PRML Ch. 13 Russell and Norvig, AIMA Hidden Markov Models

Inference for HMMs

Learning for HMMs

Hidden Markov Models Inference for HMMs Learning for H

Temporal Models

- The world changes over time
 - Explicitly model this change using Bayesian networks
 - Undirected models also exist (will not cover)
- Basic idea: copy state and evidence variables for each time step
- e.g. Diabetes management
- z_t is set of unobservable state variables at time t
 - $bloodSugar_t$, $stomachContents_t$, ...
- x_t is set of observable evidence variables at time t
 - $measuredBloodSugar_t$, $foodEaten_t$, ...
- · Assume discrete time step, fixed
- Notation: $x_{a:b} = x_a, x_{a+1}, \dots, x_{b-1}, x_b$

Hidden Markov Models Inference for HMMs Learning for HMMs

Markov Chain

- Construct Bayesian network from these variables
 - parents? distributions? for state variables z_t :
- Markov assumption: z_t depends on bounded subset of z_{1:t-1}
 - First-order Markov process: $p(z_t|z_{1:t-1}) = p(z_t|z_{t-1})$
 - Second-order Markov process: $p(z_t|z_{1:t-1}) = p(z_t|z_{t-2},z_{t-1})$

• Stationary process: $p(z_t|z_{t-1})$ fixed for all t

Hidden Markov Model (HMM)

- Sensor Markov assumption: $p(x_t|z_{1:t}, x_{1:t-1}) = p(x_t|z_t)$
- Stationary process: transition model p(z_t|z_{t-1}) and sensor model p(x_t|z_t) fixed for all t (separate p(z₁))
- HMM special type of Bayesian network, z_t is a single discrete random variable:

• Joint distribution:

$$p(z_{1:t}, x_{1:t}) = p(z_1) \prod_{i=2:t} p(z_i|z_{i-1}) \prod_{i=1:t} p(x_i|z_i)$$

Hidden Markov Models Inference for HMMs Learning for HMMs

HMM Example

- First-order Markov assumption not true in real world
- · Possible fixes:
 - Increase order of Markov process
 - Augment state, add tempt, pressuret

Hidden Markov Models Inference for HMMs Learning for HMM

Transition Diagram

- z_n takes one of 3 values
- Using one-of-K coding scheme, $z_{nk} = 1$ if in state k at time n
- Transition matrix A where $p(z_{nk} = 1 | z_{n-1,j} = 1) = A_{jk}$

Hidden Markov Models Inference for HIMMs Learning for HIMMs

Lattice / Trellis Representation

• The lattice or trellis representation shows possible paths through the latent state variables z_n

Inference for HMMs

Learning for HMMs

Inference for HMMs

Learning for HMMs

Inference Tasks

- Filtering: $p(z_t|x_{1:t})$
 - Estimate current unobservable state given all observations to date
- Prediction: $p(z_n|x_{1:t})$ for n > t
 - Similar to filtering, without evidence
- Smoothing: $p(z_n|x_{1:t})$ for n < t
 - Better estimate of past states
- Most likely explanation: $\arg \max_{z_{1:t}} p(z_{1:t}|x_{1:t})$
 - · e.g. speech recognition, decoding noisy input sequence

Filtering

• Aim: devise a recursive state estimation algorithm:

$$p(z_{t+1}|x_{1:t+1}) = f(x_{t+1}, p(z_t|x_{1:t}))$$

$$p(z_{t+1}|x_{1:t+1}) = p(z_{t+1}|x_{1:t}, x_{t+1})$$

$$= \alpha p(x_{t+1}|x_{1:t}, z_{t+1})p(z_{t+1}|x_{1:t})$$

$$= \alpha p(x_{t+1}|z_{t+1})p(z_{t+1}|x_{1:t})$$

• I.e. prediction + estimation. Prediction by summing out z_t:

$$p(z_{t+1}|x_{1:t+1}) = \alpha p(x_{t+1}|z_{t+1}) \sum_{z_t} p(z_{t+1}, z_t|x_{1:t})$$

$$= \alpha p(x_{t+1}|z_{t+1}) \sum_{z_t} p(z_{t+1}|z_t, x_{1:t}) p(z_t|x_{1:t})$$

$$= \alpha p(x_{t+1}|z_{t+1}) \sum_{z_t} p(z_{t+1}|z_t) p(z_t|x_{1:t})$$

Hidden Markov Models Inference for HMMs Learning for HMMs

Filtering Example

	R_{t-1}	$P(R_t)$ 0.7 0.3	ı	R_t	$P(U_t)$		
Г	t	0.7		t	0.9		
	f	0.3		f	0.2	$p(rain_1 = true) = 0.5$	
1 ()							
$p(z_{t+1} x_{1:t+1}) = \alpha p(x_{t+1} z_{t+1}) \sum_{z_t} p(z_{t+1} z_t) p(z_t x_{1:t})$							

Hidden Markov Models Inference for HMMs Learning for HMMs

Filtering - Lattice $\alpha(z_{n-1,1}) \quad \alpha(z_{n,1})$ $k = 1 \quad A_{21} \quad p(\mathbf{x}_n|z_{n,1})$ $A_{21} \quad p(\mathbf{x}_n|z_{n,1})$ $k = 2 \quad A_{31} \quad k = 3$

- Using notation in PRML, forward message is $\alpha(z_n)$
- Compute $\alpha(z_{n,i})$ using sum over k of $\alpha(z_{n-1,k})$ multiplied by A_{ki} , then multiplying in evidence $p(x_t|z_{ni})$
- Each step, computing $\alpha(z_n)$ takes $O(K^2)$ time, with K values for z_n

Hidden Markov Models Inference for HMMs Learning for HMMs

Smoothing

• Divide evidence $x_{1:t}$ into $x_{1:n}$, $x_{n+1:t}$

$$p(z_{n}|x_{1:t}) = p(z_{n}|x_{1:n}, x_{n+1:t})$$

$$= \alpha p(z_{n}|x_{1:n})p(x_{n+1:t}|z_{n}, x_{1:n})$$

$$= \alpha p(z_{n}|x_{1:n})p(x_{n+1:t}|z_{n})$$

$$= \alpha \alpha(z_{n})\beta(z_{n})$$

• Backwards message $\beta(z_n)$ another recursion:

Hidden Markov Models Inference for HMMs Learning for HMMs

- Divide evidence $x_{1:t}$ into $x_{1:n}$, $x_{n+1:t}$, $p(z_n|x_{1:t}) = \alpha\alpha(z_n)\beta(z_n)$
- · Backwards message another recursion:

$$p(x_{n+1:t}|z_n) = \sum_{z_{n+1}} p(x_{n+1:t}, z_{n+1}|z_n)$$

$$= \sum_{z_{n+1}} p(x_{n+1:t}|z_{n+1}, z_n) p(z_{n+1}|z_n)$$

$$= \sum_{z_{n+1}} p(x_{n+1:t}|z_{n+1}) p(z_{n+1}|z_n)$$

$$= \sum_{z_{n+1}} p(x_{n+1}|z_{n+1}) p(x_{n+2:t}|z_{n+1}) p(z_{n+1}|z_n)$$

Hidden Markov Models Inference for HMMs Learning for HMMs

Smoothing Example

Hidden Markov Models Inference for HMMs Learning for HMMs

- Using notation in PRML, backward message is $\beta(z_n)$
- Compute $\beta(z_{n,i})$ using sum over k of $\beta(z_{n+1,k})$ multiplied by A_{ik} and evidence $p(x_{n+1}|z_{n+1,k})$
- Each step, computing β(z_n) takes O(K²) time, with K values for z_n

Hidden Markov Models Inference for HMMs Learning for HMMs

Forward-Backward Algorithm

- Filter from time 1 to N, and cache forward messages $\alpha(z_n)$
- Smooth from time N to 1, and cache backward messages $\beta(z_n)$
- Can now compute $p(z_n|x_1, x_2, ..., x_N)$ for all n
- Total complexity $O(NK^2)$
- a.k.a Baum-Welch algorithm

Hidden Markov Models Inference for HMMs Learning for HMMs

Maximum Likelihood for HMMs

 We can use maximum likelihood to choose the best parameters:

$$\theta_{ML} = \arg \max p(\mathbf{x}|\boldsymbol{\theta})$$

• Unfortunately this is hard to do: we can get $p(x|\theta)$ by summing out from the joint distribution:

$$p(\mathbf{x}|\boldsymbol{\theta}) = \sum_{z_1} \sum_{z_2} \cdots \sum_{z_N} p(\mathbf{x}, z_1, z_2, \dots, z_N | \boldsymbol{\theta})$$
$$\equiv \sum_{z} p(\mathbf{x}, z|\boldsymbol{\theta})$$

- But this sum has K^N terms in it
- And, as in the mixture distribution case, no simple closed-form solution
- Instead, use expectation-maximization (EM)

Hidden Markov Models Inference for HMMs Learning for HMMs

HMM Parameters

- The parameters of an HMM are:
 - Transition matrix A where $p(z_{nk} = 1 | z_{n-1,j} = 1) = A_{jk}$
 - Sensor model ϕ_k parameters to each $p(x_n|z_{nk}=1,\phi_k)$ (e.g. ϕ_k could be mean and variance of Gaussian)
 - Prior for initial state z_1 , model as multinomial $p(z_{1k}=1)=\pi_k$, parameters π
- Call these parameters $\theta = (A, \pi, \phi)$
- Learning problem: given one sequence x, find best θ
 - Extension to multiple sequences straight-forward (assume independent, log of product is sum)

Hidden Markov Models Inference for HMMs Learning for HMMs

EM for HMMs

- Start with initial guess for parameters $oldsymbol{ heta}^{old} = (oldsymbol{A}, oldsymbol{\pi}, oldsymbol{\phi})$
- **E-step**: Calculate posterior on latent variables $p(z|x, \theta^{old})$
- M-step: Maximize $Q(\theta, \theta^{old}) = \sum_z p(z|x, \theta^{old}) \ln p(x, z|\theta)$ wrt θ
- Let's look at the M-step, and see how the HMM structure helps us

HMM M-step

- M-step: Maximize $Q(\theta, \theta^{old}) = \sum_{\mathbf{z}} p(\mathbf{z}|\mathbf{x}, \theta^{old}) \ln p(\mathbf{x}, \mathbf{z}|\theta)$ wrt θ .
- The complete data log-likelihood factors nicely:

$$\ln p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) = \ln \left\{ p(z_1|\boldsymbol{\pi}) \prod_{i=2:N} p(z_i|z_{i-1}, \boldsymbol{A}) \prod_{i=1:N} p(x_i|z_i, \boldsymbol{\phi}) \right\}$$
$$= \ln p(z_1|\boldsymbol{\pi}) + \sum_{i=2:N} \ln p(z_i|z_{i-1}, \boldsymbol{A}) + \sum_{i=1:N} \ln p(x_i|z_i, \boldsymbol{\phi})$$

- To maximize Q we now have 3 separate problems, one for each parameter
 - · Let's consider each in turn

Hidden Markov Models Inference for HMMs Learning for HMMs

$$Q(\boldsymbol{\pi}, \boldsymbol{\theta}^{old}) = \sum_{k=1}^{K} p(z_{1k} = 1 | \boldsymbol{x}, \boldsymbol{\theta}^{old}) \ln \pi_k$$

- Can solve for best π
- Use Lagrange multiplier to enforce constraint $\sum_k \pi_k = 1$

$$\pi_k = \frac{p(z_{1k} = 1 | \boldsymbol{x}, \boldsymbol{\theta}^{old})}{\sum_{i=1}^{K} p(z_{1j} = 1 | \boldsymbol{x}, \boldsymbol{\theta}^{old})}$$

- Intuitively sensible result: new π_k is smoothed probability of being in state k at time 1 using old parameters
- E-step needs to calculate smoothed $p(z_{1k}=1|\mathbf{x}, \boldsymbol{\theta}^{old})$ this is fast $O(NK^2)$

Hidden Markov Models Inference for HMMs Learning for HMMs

Prior π

Maximize Q wrt prior on initial state π:

$$Q(\boldsymbol{\pi}, \boldsymbol{\theta}^{old}) = \sum_{z} p(z|\boldsymbol{x}, \boldsymbol{\theta}^{old}) \ln p(z_1|\boldsymbol{\pi})$$

$$= \sum_{z} p(z|\boldsymbol{x}, \boldsymbol{\theta}^{old}) \ln \prod_{k=1}^{K} \pi_k^{z_{1k}} = \sum_{z} p(z|\boldsymbol{x}, \boldsymbol{\theta}^{old}) \sum_{k=1}^{K} z_{1k} \ln \pi_k$$

$$= \sum_{k=1}^{K} \ln \pi_k \sum_{z} p(z|\boldsymbol{x}, \boldsymbol{\theta}^{old}) z_{1k}$$

$$= \sum_{k=1}^{K} p(z_{1k} = 1|\boldsymbol{x}, \boldsymbol{\theta}^{old}) \ln \pi_k$$

• I.e. smoothed value for z_1 being in state k

Hidden Markov Models Inference for HIMMs Learning for HIMMs

Transition Matrix A

• Maximize Q wrt transition matrix A:

$$\begin{split} Q(\pmb{A}, \pmb{\theta}^{old}) &= \sum_{\pmb{z}} p(\pmb{z}|\pmb{x}, \pmb{\theta}^{old}) \sum_{i=2:N} \ln p(z_i|z_{i-1}, \pmb{A}) \\ &= \sum_{\pmb{z}} p(\pmb{z}|\pmb{x}, \pmb{\theta}^{old}) \sum_{i=2:N} \ln \prod_{k=1:K} \prod_{j=1:K} \pmb{A}_{jk}^{z_{i-1,j}z_{i,k}} \\ &= \sum_{\pmb{z}} p(\pmb{z}|\pmb{x}, \pmb{\theta}^{old}) \sum_{i=2:N} \sum_{k=1:K} \sum_{j=1:K} z_{i-1,j}z_{i,k} \ln \pmb{A}_{jk} \\ &= \sum_{k=1:K} \sum_{j=1:K} \ln \pmb{A}_{jk} \sum_{i=2:N} \sum_{\pmb{z}} p(\pmb{z}|\pmb{x}, \pmb{\theta}^{old}) z_{i-1,j}z_{i,k} \\ &= \sum_{k=1:K} \sum_{j=1:K} \ln \pmb{A}_{jk} \sum_{i=2:N} p(z_{i-1} = j, z_i = k|\pmb{x}, \pmb{\theta}^{old}) \end{split}$$

• E-step needs to calculate $p(z_{i-1} = j, z_i = k | \mathbf{x}, \boldsymbol{\theta}^{old})$ – can be done quickly using forward and backward messages

Hidden Markov Models Inference for HMMs Learning for HMMs

 $Q(\mathbf{A}, \boldsymbol{\theta}^{old}) = \sum_{k=1:K} \sum_{j=1:K} \ln \mathbf{A}_{jk} \sum_{i=2:N} p(z_{n-1} = j, z_n = k | \boldsymbol{x}, \boldsymbol{\theta}^{old})$

- Can solve for best A
- Again use Lagrange multipliers to enforce constraint $\sum_k A_{jk} = 1$

$$A_{jk} = \frac{\sum_{n=2:N} p(z_{n-1} = j, z_n = k | \mathbf{x}, \boldsymbol{\theta}^{old})}{\sum_{l=1:K} \sum_{n=2:N} p(z_{n-1} = j, z_n = l | \mathbf{x}, \boldsymbol{\theta}^{old})}$$

 Again sensible result: A_{jk} set to expected number of times we transition from state j to k using the smoothed results from old parameters Hidden Markov Models Inference for HMMs Learning for HMMs

Sensor Model

- Similar derivation for sensor model parameters ϕ
- Again end up with weighted parameter estimated based on expected values of states given smoothed estimates

iden Markov Models Inference for HMMs Learning for HMMs

HMM EM Summary

- Start with initial guess for parameters $\theta^{old} = (A, \pi, \phi)$
- Run forward-backward algorithm to get all messages $\alpha(z_n)$, $\beta(z_n)$ (E-step)
 - O(NK²) time complexity
 - Can use these to compute any smoothed posterior $p(z_{nk} = 1 | \mathbf{x}, \boldsymbol{\theta}^{old})$
 - Also can compute any $p(z_{n-1,j} = 1, z_{n,k} = 1 | \mathbf{x}, \boldsymbol{\theta}^{old})$
- Using these, update values for parameters (M-step)
 - π_k is smoothed probability of being in in state k at time 1
 - A_{jk} is smoothed probability of transitioning from state j to k averaged over all time steps
 - ϕ is weighted sensor parameters using smoothed probabilities (e.g. similar to mixture of Gaussians)
- · Repeat until convergence

Hidden Markov Models Inference for HMMs Learning for HMMs

Conclusion

- Readings: Ch. 13.2, 13.2.1, 13.2.2
- HMM Probabilistic model of temporal data
 - Discrete hidden (unobserved, latent) state variable at each time
 - Continuous (next)
 - Observation (can be discrete / continuous) at each time
 - · Conditional independence assumptions (Markov)
 - Assumptions on distributions (stationary)
- Inference
 - Filtering
 - Smoothing
 - Most likely sequence (next)
- Maximum likelihood learning
 - EM efficient computation $O(NK^2)$ time using forward-backward smoothing