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Recall – Inference For General Graphs

• Junction tree algorithm is an exact inference method for
arbitrary graphs

• A particular tree structure defined over cliques of variables
• Inference ends up being exponential in maximum clique

size
• Therefore slow in many cases

• Sampling methods: represent desired distribution with a
set of samples, as more samples are used, obtain more
accurate representation
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Sampling

• The fundamental problem we address in this lecture is how
to obtain samples from a probability distribution p(z)

• This could be a conditional distribution p(z|e)
• We often wish to evaluate expectations such as

E[f ] =
∫

f (z)p(z)dz

• e.g. mean when f (z) = z
• For complicated p(z), this is difficult to do exactly,

approximate as

f̂ =
1
L

L∑
l=1

f (z(l))

where {z(l)|l = 1, . . . ,L} are independent samples from p(z)
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Sampling

p(z) f(z)

z

• Approximate

f̂ =
1
L

L∑
l=1

f (z(l))

where {z(l)|l = 1, . . . ,L} are independent samples from p(z)
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Bayesian Networks - Generating Fair Samples
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• How can we generate a fair set of samples from this BN?

from Russell and Norvig, AIMA
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Sampling from Bayesian Networks

• Sampling from discrete Bayesian networks with no
observations is straight-forward, using ancestral sampling

• Bayesian network specifies factorization of joint distribution

P(z1, . . . , zn) =

n∏
i=1

P(zi|pa(zi))

• Sample in-order, sample parents before children
• Possible because graph is a DAG

• Choose value for zi from p(zi|pa(zi))
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Sampling From Empty Network – Example
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Ancestral Sampling

• This sampling procedure is fair, the fraction of samples
with a particular value tends towards the joint probability of
that value

• Define SPS(z1, . . . , zn) to be the probability of generating the
event (z1, . . . , zn)

• This is equal to p(z1, . . . , zn) due to the semantics of the
Bayesian network

• Define NPS(z1, . . . , zn) to be the number of times we
generate the event (z1, . . . , zn)

lim
N→∞

NPS(z1, . . . , zn)

N
= SPS(z1, . . . , zn) = p(z1, . . . , zn)
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Sampling Marginals
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• Note that this procedure can be applied
to generate samples for marginals as
well

• Simply discard portions of sample
which are not needed

• e.g. For marginal p(rain), sample
(cloudy = t, sprinkler = f , rain = t,wg =
t) just becomes (rain = t)

• Still a fair sampling procedure
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Sampling with Evidence

• What if we observe some values and want samples from
p(z|e)?

• Naive method, logic sampling:
• Generate N samples from p(z) using ancestral sampling
• Discard those samples that do not have correct evidence

values

• e.g. For p(rain|cloudy = t, spr = t,wg = t), sample
(cloudy = t, spr = f , rain = t,wg = t) discarded

• Generates fair samples, but wastes time
• Many samples will be discarded for low p(e)
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Other Problems

• Continuous variables?
• Gaussian okay, Box-Muller and other methods
• More complex distributions?

• Undirected graphs (MRFs)?
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Rejection Sampling

p(z) f(z)

z

• Consider the case of an arbitrary, continuous p(z)
• How can we draw samples from it?
• Assume we can evaluate p(z), up to some normalization

constant
p(z) =

1
Zp

p̃(z)

where p̃(z) can be efficiently evaluated (e.g. MRF)



Sampling Rejection Sampling Importance Sampling Markov Chain Monte Carlo

Proposal Distribution

z0 z

u0

kq(z0) kq(z)

p̃(z)

• Let’s also assume that we have some simpler distribution
q(z) called a proposal distribution from which we can easily
draw samples

• e.g. q(z) is a Gaussian

• We can then draw samples from q(z) and use these
• But these wouldn’t be fair samples from p(z)?!
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Comparison Function and Rejection

z0 z

u0

kq(z0) kq(z)

p̃(z)

• Introduce constant k such that kq(z) ≥ p̃(z) for all z
• Rejection sampling procedure:

• Generate z0 from q(z)
• Generate u0 from [0, kq(z0)] uniformly
• If u0 > p̃(z) reject sample z0, otherwise keep it

• Original samples are uniform in grey region
• Kept samples uniform in white region – hence samples

from p(z)



Sampling Rejection Sampling Importance Sampling Markov Chain Monte Carlo

Rejection Sampling Analysis

• How likely are we to keep samples?
• Probability a sample is accepted is:

p(accept) =

∫
{p̃(z)/kq(z)}q(z)dz

=
1
k

∫
p̃(z)dz

• Smaller k is better subject to kq(z) ≥ p̃(z) for all z
• If q(z) is similar to p̃(z), this is easier

• In high-dim spaces, acceptance ratio falls off exponentially
• Finding a suitable k challenging
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Discretization
• Importance sampling is a sampling technique for

computing expectations:

E[f ] =
∫

f (z)p(z)dz

• Could approximate using discretization over a uniform grid:

E[f ] ≈
L∑

l=1

f (z(l))p(z(l))

• c.f. Riemannian sum

• Much wasted computation, exponential scaling in
dimension

• Instead, again use a proposal distribution instead of a
uniform grid
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Importance sampling
p(z) f(z)

z

q(z)

• Approximate expectation

E[f ] =

∫
f (z)p(z)dz =

∫
f (z)

p(z)
q(z)

q(z)dz

≈ 1
L

L∑
l=1

f (z(l))
p(z(l))
q(z(l))

• Quantities p(z(l))/q(z(l)) are known as importance weights
• Correct for use of wrong distribution q(z) in sampling



Sampling Rejection Sampling Importance Sampling Markov Chain Monte Carlo

Likelihood Weighted Sampling
• Consider the case where we have evidence e and again

desire an expectation over p(x|e)
• If we have a Bayesian network, we can use a particular

type of importance sampling called likelihood weighted
sampling:

• Perform ancestral sampling
• If a variable zi is in the evidence set, set its value rather

than sampling
• Importance weights are: ??

p(z(l))
q(z(l))

= ?

p(z(l))
q(z(l))

=
p(x, e)
p(e)

1∏
zi 6∈e p(zi|pai)

∝
∏
zi∈e

p(zi|pai)
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Likelihood Weighted Sampling Example
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w = 1.0
from Russell and Norvig, AIMA
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Likelihood Weighted Sampling Example
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w = 1.0× 0.1× 0.99 = 0.099
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Sampling Importance Resampling

• Note that importance sampling, e.g. likelihood weighted
sampling, gives approximation to expectation, not samples

• But samples can be obtained using these ideas
• Sampling-importance-resampling uses a proposal

distribution q(z) to generate samples
• Unlike rejection sampling, no parameter k is needed
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SIR - Algorithm

• Sampling-importance-resampling algorithm has two stages
• Sampling:

• Draw samples z(1), . . . , z(L) from proposal distribution q(z)
• Importance resampling:

• Put weights on samples

wl =
p̃(z(l))/q(z(l))∑
m p̃(z(m))/q(z(m))

• Draw samples from the discrete set z(1), . . . , z(L) according
to weights wl (uniform distribution)

• This two stage process is correct in the limit as L→∞
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Markov Chain Monte Carlo

• Markov chain Monte Carlo (MCMC) methods also use a
proposal distribution to generate samples from another
distribution

• Unlike the previous methods, we keep track of the samples
generated z(1), . . . , z(τ)

• The proposal distribution depends on the current state:
q(z|z(τ))

• Intuitively, walking around in state space, each step
depends only on the current state
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Metropolis Algorithm

• Simple algorithm for walking around in state space:
• Draw sample z∗ ∼ q(z|z(τ))
• Accept sample with probability

A(z∗, z(τ)) = min
(

1,
p̃(z∗)

p̃(z(τ))

)
• If accepted z(τ+1) = z∗, else z(τ+1) = z(τ)

• Note that if z∗ is better than z(τ), it is always accepted
• Every iteration produces a sample

• Though sometimes it’s the same as previous
• Contrast with rejection sampling

• The basic Metropolis algorithm assumes the proposal
distribution is symmetric q(zA|zB) = q(zB|zA)
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Metropolis Example
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• p(z) is anisotropic Gaussian, proposal distribution q(z) is
isotropic Gaussian

• Red lines show rejected moves, green lines show accepted
moves

• As τ →∞, distribution of z(τ) tends to p(z)
• True if q(zA|zB) > 0
• In practice, burn-in the chain, collect samples after some

iterations
• Only keep every Mth sample
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Metropolis Example - Graphical Model
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• Consider running Metropolis algorithm to draw samples
from p(cloudy, rain|spr = t,wg = t)

• Define q(z|zτ ) to be uniformly pick from cloudy, rain,
uniformly reset its value
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Metropolis Example
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• Walk around in this state space, keep track of how many
times each state occurs
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Metropolis-Hastings Algorithm

• A generalization of the previous algorithm for asymmetric
proposal distributions known as the Metropolis-Hastings
algorithm

• Accept a step with probability

A(z∗, z(τ)) = min

(
1,

p̃(z∗)q(z(τ)|z∗)
p̃(z(τ))q(z∗|z(τ))

)

• A sufficient condition for this algorithm to produce the
correct distribution is detailed balance
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Gibbs Sampling

• A simple coordinate-wise MCMC method
• Given distribution p(z) = p(z1, . . . , zM), sample each

variable (either in pre-defined or random order)
• Sample z(τ+1)

1 ∼ p(z1|z(τ)2 , z(τ)3 , . . . , z(τ)M )

• Sample z(τ+1)
2 ∼ p(z2|z(τ+1)

1 , z(τ)3 , . . . , z(τ)M )
• . . .
• Sample z(τ+1)

M ∼ p(zM|z(τ+1)
1 , z(τ+1)

2 , . . . , z(τ+1)
M−1 )

• These are easy if Markov blanket is small, e.g. in MRF with
small cliques, and forms amenable to sampling
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Gibbs Sampling - Example
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Gibbs Sampling Example - Graphical Model

Cloudy

RainSprinkler

 Wet
Grass

C

T
F

.80

.20

P(R|C)C

T
F

.10

.50

P(S|C)

S R

T T
T F
F T
F F

.90

.90

.99

P(W|S,R)

P(C)
.50

.01

• Consider running Gibbs sampling on
p(cloudy, rain|spr = t,wg = t)

• q(z|zτ ): pick from cloudy, rain, reset its value according to
p(cloudy|rain, spr,wg) (or p(rain|cloudy, spr,wg))

• This is often easy – only need to look at Markov blanket
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Conclusion

• Readings: Ch. 11.1-11.3 (we skipped much of it)
• Sampling methods use proposal distributions to obtain

samples from complicated distributions
• Different methods, different methods of correcting for

proposal distribution not matching desired distribution
• In practice, effectiveness relies on having good proposal

distribution, which matches desired distribution well
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