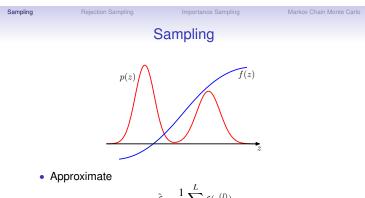
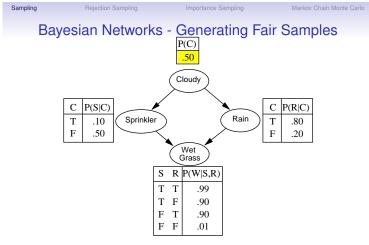


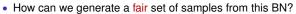
Sampling	Rejection Sampling	Importance Sampling	Markov Chain Monte Carlo	Samp	ling	Rejection Sampling	Importance Sampling	Markov Chain Monte C	
Outline					Sampling				
Sampling					 The fundamental problem we address in this lecture is how to obtain samples from a probability distribution p(z) This could be a conditional distribution p(z e) 				
Samping				 We often wish to evaluate expectations such as 					
Rejection Sampling					$\mathbb{E}[f] = \int f(z) p(z) dz$				
Importance Sampling					• e.g. mean when $f(z) = z$				
Markov Chain Monte Carlo					• For complicated $p(z),$ this is difficult to do exactly, approximate as $\hat{f} = \frac{1}{L}\sum_{l=1}^{L} f(z^{(l)})$				
					w	here $\{z^{(l)} l=1,,l\}$	L} are independent sa	imples from $p(z)$	



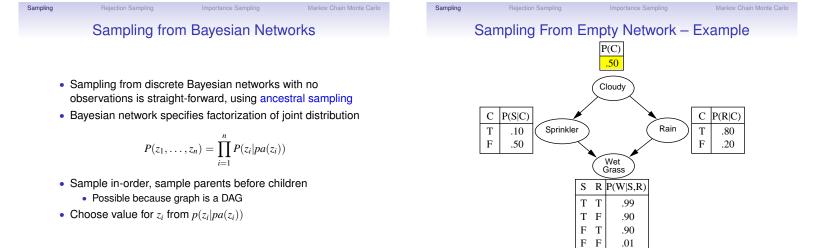
$$\hat{f} = \frac{1}{L} \sum_{l=1}^{L} f(\boldsymbol{z}^{(l)})$$

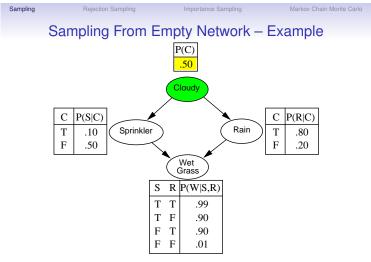
where $\{z^{(l)}|l=1,\ldots,L\}$ are independent samples from p(z)

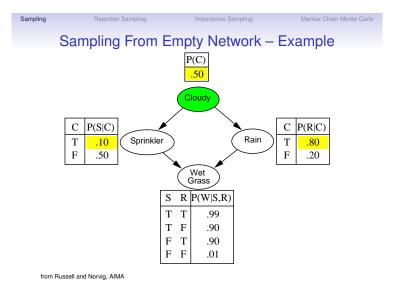




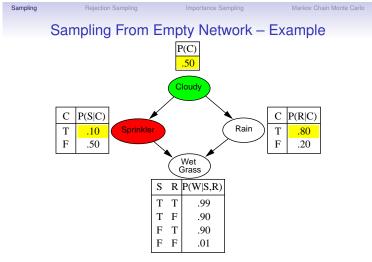
from Russell and Norvig, AIMA

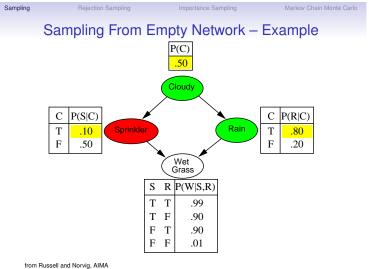


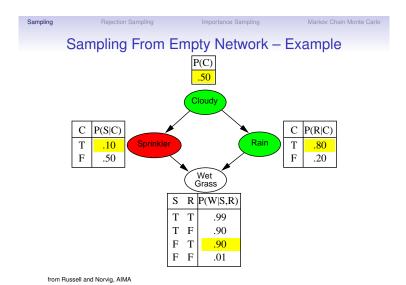


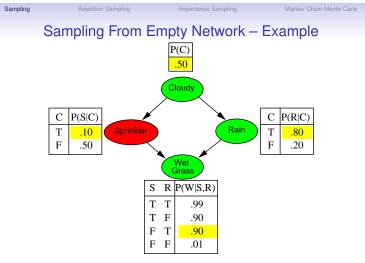


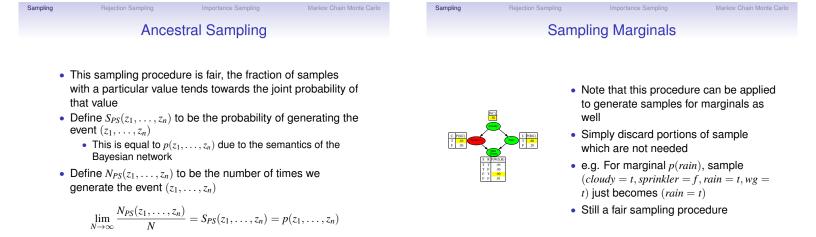
from Russell and Norvig, AIMA









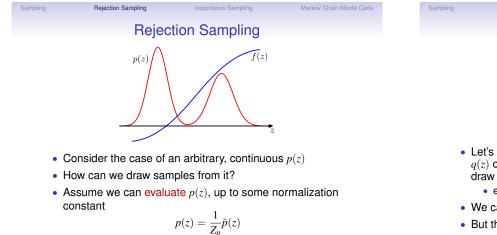


Rejection Sampling Markov Chain Monte Carlo Sampling Importance Sampling Markov Chain Monte Carlo Sampling Rejection Sampling Importance Sampling Sampling with Evidence **Other Problems** · What if we observe some values and want samples from p(z|e)? • Naive method, logic sampling: Continuous variables? • Generate N samples from p(z) using ancestral sampling · Gaussian okay, Box-Muller and other methods • Discard those samples that do not have correct evidence • More complex distributions? values

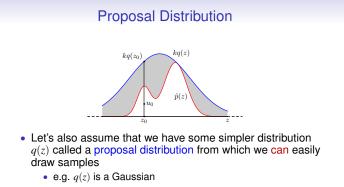
- e.g. For p(rain|cloudy = t, spr = t, wg = t), sample (cloudy = t, spr = f, rain = t, wg = t) discarded
- Generates fair samples, but wastes time
 - Many samples will be discarded for low p(e)

• Undirected graphs (MRFs)?

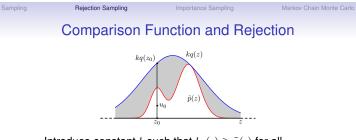
Rejection Sampling



where $\tilde{p}(z)$ can be efficiently evaluated (e.g. MRF)



- We can then draw samples from q(z) and use these
- But these wouldn't be fair samples from p(z)?!



- Introduce constant k such that $kq(z) \geq \tilde{p}(z)$ for all z
- Rejection sampling procedure:
 - Generate z_0 from q(z)
 - Generate u_0 from $[0, kq(z_0)]$ uniformly • If $u_0 > \tilde{p}(z)$ reject sample z_0 , otherwise keep it
- Original samples are uniform in grey region
- Kept samples uniform in white region hence samples from p(z)

Rejection Sampling Analysis

Markov Chain Monte Carlo

Markov Chain Monte Carlo

• How likely are we to keep samples?

Rejection Sampling

• Probability a sample is accepted is:

$$p(accept) = \int \{\tilde{p}(z)/kq(z)\}q(z)dz$$
$$= \frac{1}{k}\int \tilde{p}(z)dz$$

- Smaller k is better subject to kq(z) ≥ p̃(z) for all z
 If q(z) is similar to p̃(z), this is easier
- · In high-dim spaces, acceptance ratio falls off exponentially
- Finding a suitable k challenging

Discretization

Importance Sampling

Markov Chain Monte Carlo

Importance sampling is a sampling technique for computing expectations:

$$\mathbb{E}[f] = \int f(z)p(z)dz$$

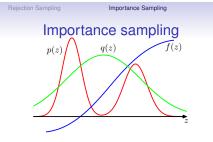
· Could approximate using discretization over a uniform grid:

$$\mathbb{E}[f] \approx \sum_{l=1}^{L} f(z^{(l)}) p(z^{(l)})$$

• c.f. Riemannian sum

Rejection Sampling

- Much wasted computation, exponential scaling in dimension
- Instead, again use a proposal distribution instead of a uniform grid



Approximate expectation

$$\begin{split} \mathbb{E}[f] &= \int f(z)p(z)dz = \int f(z)\frac{p(z)}{q(z)}q(z)dz \\ &\approx \frac{1}{L}\sum_{l=1}^{L}f(z^{(l)})\frac{p(z^{(l)})}{q(z^{(l)})} \end{split}$$

Quantities p(z^(l))/q(z^(l)) are known as importance weights
 Correct for use of wrong distribution q(z) in sampling

Likelihood Weighted Sampling

Importance Sampling

Markov Chain Monte Carlo

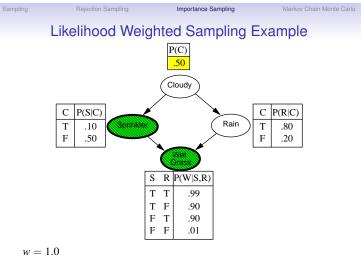
- Consider the case where we have evidence *e* and again desire an expectation over *p*(*x*|*e*)
- If we have a Bayesian network, we can use a particular type of importance sampling called likelihood weighted sampling:
 - Perform ancestral sampling
 - If a variable z_i is in the evidence set, set its value rather than sampling
- Importance weights are: ??

Rejection Sampling

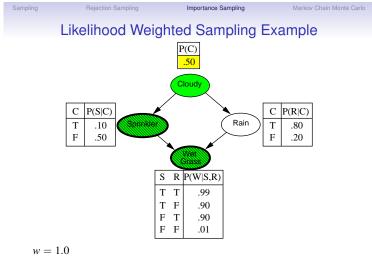
Sampling

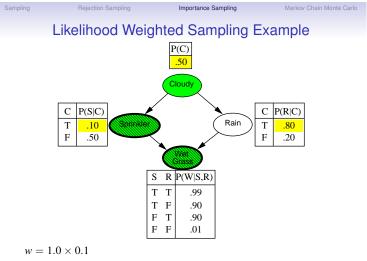
$$\frac{p(z^{(l)})}{q(z^{(l)})} = ?$$

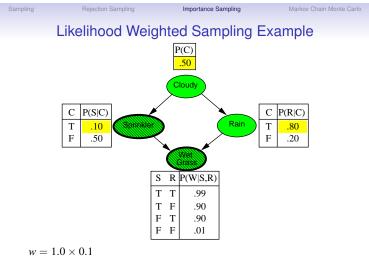
$$\frac{p(\boldsymbol{z}^{(l)})}{q(\boldsymbol{z}^{(l)})} = \frac{p(\boldsymbol{x}, \boldsymbol{e})}{p(\boldsymbol{e})} \frac{1}{\prod_{z_i \notin \boldsymbol{e}} p(z_i | pa_i)} \propto \prod_{z_i \in \boldsymbol{e}} p(z_i | pa_i)$$

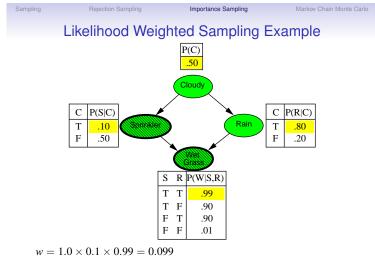


from Russell and Norvig, AIMA









- to weights w_l (uniform distribution)
- This two stage process is correct in the limit as $L
 ightarrow \infty$

Markov Chain Monte Carlo

Rejection Sampling

- Markov chain Monte Carlo (MCMC) methods also use a proposal distribution to generate samples from another distribution
- Unlike the previous methods, we keep track of the samples generated $z^{(1)}, \ldots, z^{(\tau)}$
- The proposal distribution depends on the current state: $q(\mathbf{z}|\mathbf{z}^{(\tau)})$
 - Intuitively, walking around in state space, each step depends only on the current state

• In practice, burn-in the chain, collect samples after some

iterations

• Only keep every Mth sample

Metropolis Algorithm

Markov Chain Monte Carlo

- Simple algorithm for walking around in state space:
 - Draw sample $z^* \sim q(z|z^{(\tau)})$

Rejection Sampling

• Accept sample with probability

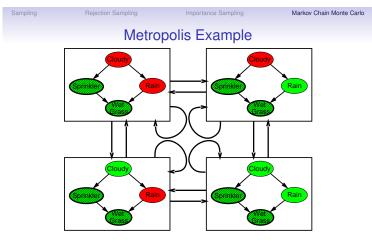
$$A(\boldsymbol{z}^*, \boldsymbol{z}^{(\tau)}) = \min\left(1, \frac{\tilde{p}(\boldsymbol{z}^*)}{\tilde{p}(\boldsymbol{z}^{(\tau)})}\right)$$

• If accepted $z^{(\tau+1)} = z^*$, else $z^{(\tau+1)} = z^{(\tau)}$

- Note that if z^* is better than $z^{(\tau)}$, it is always accepted
- Every iteration produces a sample
 - Though sometimes it's the same as previousContrast with rejection sampling
- The basic Metropolis algorithm assumes the proposal distribution is symmetric $q(z_A|z_B) = q(z_B|z_A)$

Markov Chain Monte Carlo

• Define $q(z|z^{\tau})$ to be uniformly pick from *cloudy*, *rain*, uniformly reset its value



 Walk around in this state space, keep track of how many times each state occurs

Metropolis-Hastings Algorithm

Importance Sampling

Markov Chain Monte Carlo

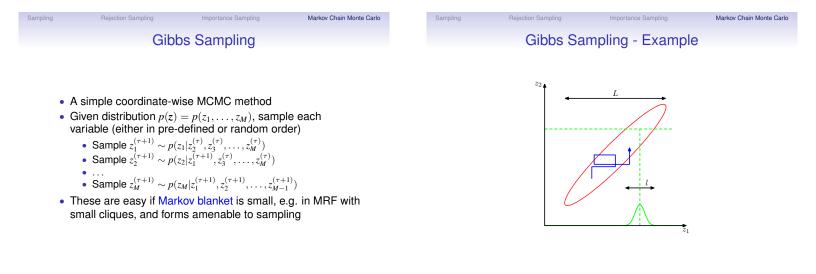
- A generalization of the previous algorithm for asymmetric proposal distributions known as the Metropolis-Hastings algorithm
- · Accept a step with probability

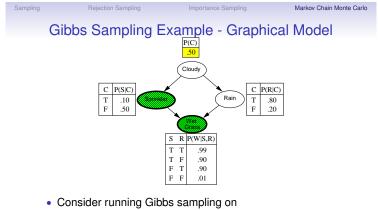
Rejection Sampling

Sampling

$$A(z^*, z^{(\tau)}) = \min\left(1, \frac{\tilde{p}(z^*)q(z^{(\tau)}|z^*)}{\tilde{p}(z^{(\tau)})q(z^*|z^{(\tau)})}\right)$$

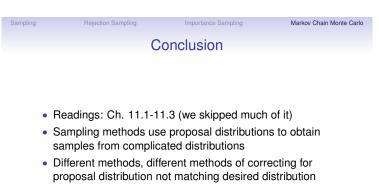
• A sufficient condition for this algorithm to produce the correct distribution is detailed balance





• Consider running Gibbs sampling of p(cloudy, rain|spr = t, wg = t)

- $q(z|z^{\tau})$: pick from *cloudy*, *rain*, reset its value according to p(cloudy|rain, spr, wg) (or p(rain|cloudy, spr, wg))
- This is often easy only need to look at Markov blanket



• In practice, effectiveness relies on having good proposal distribution, which matches desired distribution well