Assignment 1: Regression

Due October 5 at 11:59pm

This assignment is to be done individually.

Important Note: The university policy on academic dishonesty (cheating) will be taken very seriously in this course. You may not provide or use any solution, in whole or in part, to or by another student.

You are encouraged to discuss the concepts involved in the questions with other students. If you are in doubt as to what constitutes acceptable discussion, please ask! Further, please take advantage of office hours offered by the instructor and the TA if you are having difficulties with this assignment.

DO NOT:
- Give/receive code or proofs to/from other students
- Use Google to find solutions for assignment

DO:
- Meet with other students to discuss assignment (it is best not to take any notes during such meetings, and to re-work assignment on your own)
- Use online resources (e.g. Wikipedia) to understand the concepts needed to solve the assignment
1 Probabilistic Modeling

In lecture we went over an example of modeling coin tossing – estimating a parameter μ, the probability the coin comes up heads.

Consider instead the problem of modeling the outcome of the BC Provincial election. To simplify matters, assume one party will win a majority (i.e. either the NDP, Liberals, or Green Party wins).

We wish to characterize uncertainty over our belief about the chances of each party winning.

1. What are the parameters μ of this distribution? (See PRML Appendix B.)

2. What would be the value of the parameters μ for an election where the outcome is an equal chance of each party winning?

3. What would be the value of the parameters μ for an election that is completely “rigged”? E.g. the party currently in power is definitely going to win.

4. Specify a prior $P(\mu)$ that encodes a belief that one party has rigged the election, but there is an equal chance that it is any of the 3 parties.

5. Suppose my prior is that the Green Party has completely rigged the election. Assume I see a set of polls where the NDP has the largest share of the vote in each poll. What would be my posterior probability on μ?

6. Suppose if party i is elected, they will set university tuition to be t_i dollars. Write down an equation for the expected amount tuition will be, given a prior $P(\mu)$.

2 Precision Per Datapoint

The log likelihood for regression (Eqn. 3.10 in PRML) assumes an additive Gaussian noise with the same value of variance at every training data point. In some instances, we may wish to have a different value of noise variance at each training data point. This could arise if we have precision estimates at each training data point.

Consider the likelihood function with different precision values corresponding to each data point:

$$p(t|X, w, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n|w^T \phi(x_n), \beta_n^{-1})$$ \hspace{1cm} (1)

with precision estimates β_n for each training data point.

Derive the relation between the log likelihood function $p(t|w, \beta)$ and the sum-of-squares error function in this scenario.
3 Training vs. Test Error

For the questions below, assume that error means RMS (root mean squared error).

1. Suppose we perform unregularized regression on a dataset. Is the validation error always higher than the training error? Explain.

2. Suppose we perform unregularized regression on a dataset. Is the training error with a degree 10 polynomial always lower than or equal to that using a degree 9 polynomial? Explain.

3. Suppose we perform both regularized and unregularized regression on a dataset. Is the testing error with a degree 20 polynomial always lower using regularized regression compared to unregularized regression? Explain.

4 Basis Function Dependent Regularization

In lecture we saw a regularization technique applied to linear regression where all weights in the regression model are regularized in the same fashion (like L_1, or L_2), and with a common value for λ. Consider the case where for each weight w_n, we have a different tradeoff parameter λ_n, and a choice from among one of L_1 or L_2 regularizer. Derive the formula of the gradient for the regularized squared error loss function in this scenario.

$$ \nabla E(w) = ? $$

(Hint: Let J_1 be the set of indices of basis functions whose weights have L_1 regularization, and J_2 be the set of indices of basis functions whose weights have L_2 regularization.)
5 Regression

In this question you will train models for regression and analyze a dataset. Start by downloading the code and dataset from the website.

The dataset is created from data provided by UNICEF’s State of the World’s Children 2013 report: http://www.unicef.org/sowc2013/statistics.html

Child mortality rates (number of children who die before age 5, per 1000 live births) for 195 countries, and a set of other indicators are included.

5.1 Getting started

Run the provided script `polynomial_regression.py` to load the dataset and names of countries/ features.

Answer the following questions about the data. Include these answers in your report.

1. Which country had the highest child mortality rate in 1990? What was the rate?
2. Which country had the highest child mortality rate in 2011? What was the rate?
3. Some countries are missing some features (see original .xlsx/.csv spreadsheet). How is this handled in the function `assignment1.load_unicef_data()`?

For the rest of this question use the following data and splits for train/test and cross-validation.

- **Target value**: column 2 (Under-5 mortality rate (U5MR) 2011)\(^1\).
- **Input features**: columns 8-40.
- **Training data**: countries 1-100 (Afghanistan to Luxembourg).
- **Testing data**: countries 101-195 (Madagascar to Zimbabwe).
- **Cross-validation**: subdivide training data into folds with countries 1-10 (Afghanistan to Austria), 11-20 (Azerbaijan to Bhutan), I.e. train on countries 11-100, validate on 1-10; train on 1-10 and 21-100, validate on 11-20, ...

5.2 Polynomial Regression

Implement linear basis function regression with polynomial basis functions. Use only monomials of a single variable \((x_1, x_1^2, x_2^2)\) and no cross-terms \((x_1 \cdot x_2)\).

Perform the following experiments:

1. Create a python script `polynomial_regression.py` for the following.

\(^1\)Zero-indexing, hence `values[:,1]`.
Fit a polynomial basis function regression (unregularized) for degree 1 to degree 6 polynomials. Plot training error and test error (in RMS error) versus polynomial degree.

Put this plot in your report, along with a brief comment about what is “wrong” in your report.

Normalize the input features before using them (not the targets, just the inputs \(x \)). Use assignment1.normalize_data().

Run the code again, and put this new plot in your report.

2. Create a python script `polynomial_regression_1d.py` for the following.

Perform regression using just a single input feature.

Try features 8-15 (Total population - Low birthweight). For each (un-normalized) feature fit a degree 3 polynomial (unregularized).

Plot training error and test error (in RMS error) for each of the 8 features. This should be a bar chart (e.g. use matplotlib.pyplot.bar()).

Put this bar chart in your report.

The testing error for feature 11 (GNI per capita) is very high. To see what happened, produce plots of the training data points, learned polynomial, and test data points. The code `visualize_1d.py` may be useful.

In your report, include plots of the fits for degree 3 polynomials for features 11 (GNI), 12 (Life expectancy), 13 (literacy).

5.3 ReLU Basis Function

1. Create a python script `relu_regression.py` for the following.

Implement regression using a modified version of ReLU basis function for a single input feature. Mathematically, ReLU is defined as \(f(x) = \max(0, x) \). For this part, use the modified ReLU defined as \(f(x) = \max(0, g(x)) \), where \(g(x) = -x + 5000 \). Include a bias term. Use un-normalized features.

Fit this regression model using feature 11 (GNI per capita).

In your report, include a plot of the fit for feature 11 (GNI).

In your report, include the training and testing error for this regression model.

5.4 Regularized Polynomial Regression

1. Create a python script `polynomial_regression_reg.py` for the following.

Implement \(L_2 \)-regularized regression. Fit a degree 2 polynomial using \(\lambda = \{0, .01, .1, 1, 10, 10^2, 10^3, 10^4\} \).

Use normalized features as input. Use 10-fold cross-validation to decide on the best value for \(\lambda \). Produce a plot of average validation set error versus \(\lambda \). Use `matplotlib.pyplot.semilogx` plot, putting \(\lambda \) on a log scale\(^2\).

\(^2\)The unregularized result will not appear on this scale. You can either add it as a separate horizontal line as a baseline, or report this number separately.
Put this plot in your report, and note which λ value you would choose from the cross-validation.
Submitting Your Assignment

The assignment must be submitted online at https://courses.cs.sfu.ca. In order to simplify grading, you must adhere to the following structure.

You must submit two files:

1. You must create an assignment report in **PDF format**, called report.pdf. This report must contain the solutions to questions 1-4 as well as the **figures / explanations requested** for 5.

2. You must submit a .zip file of all your code, called code.zip. This must contain a single directory called code (no sub-directories, no leading path names), in which all of your files must appear. There must be the 4 scripts with the specific names referred to in Question 4, as well as a common codebase you create and name.

 As a check, if one runs

   ```
   unzip code.zip
cd code
./polynomial_regression_1d.py
   ```

 the script produces the plots in your report from the relevant question.

3 This includes the data files and others which are provided as part of the assignment.