FINAL REVIEW

CMPT 310

CMPT 310 1

What did we learn this semester?

What did we learn this semester?

Search problems

- methods for solving

What did we learn this semester?

Search problems

- methods for solving

Logic and probability

- logic can generalize, but not good for representing uncertainty

What did we learn this semester?

Search problems

- methods for solving

Logic and probability

- logic can generalize, but not good for representing uncertainty

Learning

- how to build agents that learn from experience

What to do next?

- ♦ 411 Knowledge Representation (Delgrande)
- ♦ 412/414 Computer Vision (Funt, Drew, Li, Mori)
- ♦ 413 Computational Linguistics (Sarkar, Popowich)
- ♦ 418 Computational Cognitive Architecture (Hadley)
- \diamond 419 Game Theory (Schulte)
- ♦ 419 Machine Learning (Mori, Schulte, Sarkar)

Final Exam Format

Approximately 10 questions (with subparts)

- Same format as midterm, but longer
- Allowed cheat sheets, 2 single-sided pages (8.5" x 11" each)
- Bring a calculator

Two broad types:

- Apply algorithm A to problem P (denoted by A)

- Discuss tradeoffs / assumptions / relative merits of algorithms / problem formulations / models (short answer)

Exam is Sat. Dec. 6 12:00-15:00

- I will be away at a conference
- Prof. Richard Vaughan will proctor the exam

Intelligent Agents

- $\diamondsuit~$ Definitions of AI
- \Diamond Rationality
- \diamond Environment types
- \diamondsuit Agent types

Search

 \diamondsuit Understand different problem types and strategies for solving each of them

 \diamondsuit Naive search algorithms, tradeoffs and advantages/disadvantages of each (A)

 \diamondsuit Heuristic search algorithms, why and how they work, advantages/disadvantages (A)

♦ Iterative improvment algorithms (hill climbing)

Constraint Satisfaction Problems

- \diamondsuit Relationship to search problems
- \diamondsuit Heuristics for solving
- \diamond Apply heuristics to problems (A)
- \diamond Algorithm for arc consistency (\neg A)

Game Playing

- \diamond Minimax search (A)
- $\Diamond \alpha$ - β pruning (A)
- \diamondsuit Apply these algorithms to game trees

Propositional Logic

- \diamondsuit Models and entailment
- \Diamond Inference algorithms
 - Enumeration
 - Forward/backward chaining $(\neg A)$
 - Resolution proof
- \diamond Horn clauses

First Order Logic

- \diamondsuit Models and interpretations
- \diamond Write sentences in FOL (A)
- \diamondsuit Actions
 - Situation calculus
 - Frame problem
 - Successor-state axioms

Uncertainty

- \diamondsuit Probabilities, conditional probabilities, random variables
- \diamond Normalization via α constant

 \diamondsuit Independence and conditional independence: reducing size of joint probability distribution

 \diamondsuit Bayes' rule

 \diamondsuit If you can do question 16.11 that's all you need in terms of algorithms

Bayesian Networks

- \diamondsuit Constructing Bayesian Networks
- \diamondsuit Joint distribution represented by a BN

 \diamondsuit How to represent conditional distributions: Gaussian, Linear Gaussian, Sigmoid

 \diamond Methods for inference: enumeration, stochastic simulation (\neg A)

Temporal Probability Models

- \diamond Hidden Markov Models
- \diamond Filtering (A)
- \diamond Most likely explanation (Viterbi) (A)

Rational Decisions

- \diamond Utilities
- \diamond Value of information (A, not really an algorithm, but a formula)
- \diamondsuit Again, knowing how to solve problem 16.11 is enough

Learning

- ♦ Generalizing from a set of examples (inductive learning)
- ♦ Issues: consistency vs. simplicity (Ockham's razor)
- \diamond What is a decision tree?
 - How do we build one from a set of examples? (A)