Problem solving and search

Chapter 3
\diamond Problem-solving agents
\diamond Problem types
\diamond Problem formulation
\diamond Example problems
\diamond Basic search algorithms

Problem-solving agents

Restricted form of general agent:

```
function Simple-Problem-Solving-Agent ( percept) returns an action
    static: seq, an action sequence, initially empty
            state, some description of the current world state
            goal, a goal, initially null
            problem, a problem formulation
    state \(\leftarrow\) Update-State(state, percept)
    if \(s e q\) is empty then
        goal \(\leftarrow\) Formulate-Goal(state)
        problem \(\leftarrow\) Formulate-Problem(state, goal)
        \(s e q \leftarrow \operatorname{SEARCH}(\) problem \()\)
    action \(\leftarrow \operatorname{FIRST}(s e q)\)
    \(s e q \leftarrow \operatorname{REST}(s e q)\)
    return action
```

Note: this is offline problem solving; solution executed "eyes closed." Online problem solving involves acting without complete knowledge.

Example: Romania

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest
Formulate goal:
be in Bucharest
Formulate problem:
states: various cities
actions: drive between cities
Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

Problem types

Deterministic, fully observable \Longrightarrow single-state problem
Agent knows exactly which state it will be in; solution is a sequence
Non-observable \Longrightarrow conformant problem
Agent may have no idea where it is; solution (if any) is a sequence
Nondeterministic and/or partially observable \Longrightarrow contingency problem percepts provide new information about current state solution is a contingent plan or a policy often interleave search, execution

Unknown state space \Longrightarrow exploration problem ("online")

Example: vacuum world

Single-state, start in \#5. Solution??

Example: vacuum world

Single-state, start in \#5. Solution??
[Right, Suck]
Conformant, start in $\{1,2,3,4,5,6,7,8\}$ e.g., Right goes to $\{2,4,6,8\}$. Solution??

Example: vacuum world

Single-state, start in \#5. Solution??
[Right, Suck]
Conformant, start in $\{1,2,3,4,5,6,7,8\}$ e.g., Right goes to $\{2,4,6,8\}$. Solution?? [Right, Suck, Left, Suck]

Contingency, start in \#5 or \#7

2

 Murphy's Law: Suck can dirty a clean carpet Local sensing: dirt, location only. Solution??

Example: vacuum world

Single-state, start in \#5. Solution??
[Right, Suck]
Conformant, start in $\{1,2,3,4,5,6,7,8\}$ e.g., Right goes to $\{2,4,6,8\}$. Solution?? [Right, Suck, Left, Suck]

Contingency, start in \#5 or \#7

Murphy's Law: Suck can dirty a clean carpet Local sensing: dirt, location only.
Solution??
[Right, if dirt then Suck]

Single-state problem formulation

A problem is defined by four items:
initial state
e.g., "at Arad"
successor function $S(x)=$ set of action-state pairs
e.g., $S($ Arad $)=\{\langle$ Arad \rightarrow Zerind, Zerind $\rangle, \ldots\}$
goal test, can be
explicit, e.g., $x=$ "at Bucharest"
implicit, e.g., NoDirt(x)
path cost (additive)
e.g., sum of distances, number of actions executed, etc.
$c(x, a, y)$ is the step cost, assumed to be ≥ 0
A solution is a sequence of actions
leading from the initial state to a goal state

Selecting a state space

Real world is absurdly complex
\Rightarrow state space must be abstracted for problem solving
(Abstract) state $=$ set of real states
(Abstract) action $=$ complex combination of real actions
e.g., "Arad \rightarrow Zerind" represents a complex set of possible routes, detours, rest stops, etc.
For guaranteed realizability, any real state "in Arad" must get to some real state "in Zerind"
(Abstract) solution $=$
set of real paths that are solutions in the real world
Each abstract action should be "easier" than the original problem!

Example: vacuum world state space graph

[^0]
Example: vacuum world state space graph

states??: integer dirt and robot locations (ignore dirt amounts etc.) actions??
goal test??
path cost??

Example: vacuum world state space graph

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp
goal test??
path cost??

Example: vacuum world state space graph

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp
goal test??: no dirt path cost??

Example: vacuum world state space graph

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??: Left, Right, Suck, NoOp
goal test??: no dirt
path cost??: 1 per action (0 for $N o O p$)

Example: The 8-puzzle

Start State

Goal State

Example: The 8-puzzle

Start State

Goal State
states??: integer locations of tiles (ignore intermediate positions) actions??
goal test??
path cost??

Example: The 8-puzzle

Start State

Goal State
states??: integer locations of tiles (ignore intermediate positions) actions??: move blank left, right, up, down (ignore unjamming etc.) goal test??
path cost??

Start State

Goal State
states??: integer locations of tiles (ignore intermediate positions) actions??: move blank left, right, up, down (ignore unjamming etc.) goal test??: = goal state (given) path cost??

Start State

Goal State
states??: integer locations of tiles (ignore intermediate positions) actions??: move blank left, right, up, down (ignore unjamming etc.)
goal test??: = goal state (given)
path cost??: 1 per move
[Note: optimal solution of n-Puzzle family is NP-hard]

states??:

states??: real-valued coordinates of robot joint angles parts of the object to be assembled
actions??:

states??: real-valued coordinates of robot joint angles parts of the object to be assembled
actions??: continuous motions of robot joints
goal test??:

Example: robotic assembly

states??: real-valued coordinates of robot joint angles parts of the object to be assembled
actions??: continuous motions of robot joints
goal test??: complete assembly with no robot included!
path cost??:

Example: robotic assembly

states??: real-valued coordinates of robot joint angles parts of the object to be assembled
actions??: continuous motions of robot joints
goal test??: complete assembly with no robot included!
path cost??: time to execute

Tree search algorithms

Basic idea:
offline, simulated exploration of state space by generating successors of already-explored states (a.k.a. expanding states)
function Tree-Search (problem, strategy) returns a solution, or failure initialize the search tree using the initial state of problem

loop do

if there are no candidates for expansion then return failure choose a leaf node for expansion according to strategy if the node contains a goal state then return the corresponding solution else expand the node and add the resulting nodes to the search tree end

Search strategies

A strategy is defined by picking the order of node expansion
Strategies are evaluated along the following dimensions:
completeness-does it always find a solution if one exists?
time complexity-number of nodes generated/expanded
space complexity-maximum number of nodes in memory
optimality—does it always find a least-cost solution?
Time and space complexity are measured in terms of
b-maximum branching factor of the search tree
d-depth of the least-cost solution
m-maximum depth of the state space (may be ∞)

Uninformed search strategies

Uninformed strategies use only the information available in the problem definition

Breadth-first search
Uniform-cost search
Depth-first search
Depth-limited search
Iterative deepening search

Breadth-first search

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors go at end

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end

Properties of breadth-first search

Complete??

Properties of breadth-first search

Complete?? Yes (if b is finite)

Time??

Properties of breadth-first search

Complete?? Yes (if b is finite)
Time?? $1+b+b^{2}+b^{3}+\ldots+b^{d}+b\left(b^{d}-1\right)=O\left(b^{d+1}\right)$, i.e., exp. in d
Space??

Properties of breadth-first search

Complete?? Yes (if b is finite)
Time?? $1+b+b^{2}+b^{3}+\ldots+b^{d}+b\left(b^{d}-1\right)=O\left(b^{d+1}\right)$, i.e., exp. in d
Space?? $O\left(b^{d+1}\right)$ (keeps every node in memory)
Optimal??

Properties of breadth-first search

Complete?? Yes (if b is finite)
Time?? $1+b+b^{2}+b^{3}+\ldots+b^{d}+b\left(b^{d}-1\right)=O\left(b^{d+1}\right)$, i.e., exp. in d
Space?? $O\left(b^{d+1}\right)$ (keeps every node in memory)
Optimal?? Yes (if cost $=1$ per step); not optimal in general
Space is the big problem; can easily generate nodes at $100 \mathrm{MB} / \mathrm{sec}$ so $24 \mathrm{hrs}=8640 \mathrm{~GB}$.

Uniform-cost search

Expand least-cost unexpanded node

Implementation:

fringe $=$ queue ordered by path cost, lowest first
Equivalent to breadth-first if step costs all equal
Complete?? Yes, if step cost $\geq \epsilon$
Time?? \# of nodes with $g \leq$ cost of optimal solution, $O\left(b^{\left\lceil C^{*} / \epsilon\right\rceil}\right)$ where C^{*} is the cost of the optimal solution

Space?? \# of nodes with $g \leq$ cost of optimal solution, $O\left(b^{\left[C^{*} / \epsilon\right\rceil}\right)$
Optimal?? Yes—nodes expanded in increasing order of $g(n)$

Depth-first search

Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node

Implementation:

fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node

Implementation:

fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node

Implementation:

fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node

Implementation:

fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node

Implementation:

fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node

Implementation:

fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node

Implementation:

fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node

Implementation:

fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node

Implementation:

fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node

Implementation:

fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node

Implementation:

fringe $=$ LIFO queue, i.e., put successors at front

Properties of depth-first search
Complete??

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path
\Rightarrow complete in finite spaces
Time??

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path
\Rightarrow complete in finite spaces
Time?? $O\left(b^{m}\right)$: terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first
Space??

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
\Rightarrow complete in finite spaces
Time?? $O\left(b^{m}\right)$: terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first
Space?? $O(b m)$, i.e., linear space!
Optimal??

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path
\Rightarrow complete in finite spaces
Time?? $O\left(b^{m}\right)$: terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first
Space?? $O(b m)$, i.e., linear space!
Optimal?? No

Depth-limited search

$=$ depth-first search with depth limit l,
i.e., nodes at depth l have no successors

Recursive implementation:

```
function Depth-Limited-Search(problem, limit) returns soln/fail/cutoff
    Recursive-DLS(Make-Node(Initial-State[problem]), problem, limit)
function RECURSIVE-DLS(node, problem, limit) returns soln/fail/cutoff
    cutoff-occurred? \leftarrowfalse
    if Goal-Test(problem, State[node]) then return node
    else if Depth[node] = limit then return cutoff
    else for each successor in Expand(node, problem) do
        result }\leftarrow\mathrm{ Recursive-DLS(successor, problem, limit)
        if result = cutoff then cutoff-occurred? \leftarrowtrue
        else if result }\not=\mathrm{ failure then return result
    if cutoff-occurred? then return cutoff else return failure
```


Iterative deepening search

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution inputs: problem, a problem
for depth $\leftarrow 0$ to ∞ do
result \leftarrow DEPTH-Limited-SEARCH $($ problem, depth $)$
if result \neq cutoff then return result
end

Iterative deepening search $l=0$

Limit $=0$ (4) \square

Iterative deepening search $l=1$

Iterative deepening search $l=2$

Iterative deepening search $l=3$

Properties of iterative deepening search

Complete??

Properties of iterative deepening search

Complete?? Yes
Time??

Properties of iterative deepening search

Complete?? Yes
Time?? $(d+1) b^{0}+d b^{1}+(d-1) b^{2}+\ldots+b^{d}=O\left(b^{d}\right)$
Space??

Properties of iterative deepening search

Complete?? Yes
Time?? $(d+1) b^{0}+d b^{1}+(d-1) b^{2}+\ldots+b^{d}=O\left(b^{d}\right)$
Space?? $O(b d)$
Optimal??

Properties of iterative deepening search

Complete?? Yes
Time?? $(d+1) b^{0}+d b^{1}+(d-1) b^{2}+\ldots+b^{d}=O\left(b^{d}\right)$
Space?? $O(b d)$
Optimal?? Yes, if step cost $=1$
Can be modified to explore uniform-cost tree

Summary of algorithms

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening
Complete?	Yes *	Yes* *	No	Yes, if $l \geq d$	Yes
Time	b^{d+1}	$b^{\left[C^{*} / \epsilon\right]}$	b^{m}	b^{l}	b^{d}
Space	b^{d+1}	$b^{\left[C^{*} / \epsilon\right]}$	$b m$	$b l$	$b d$
Optimal?	Yes *	Yes	No	No	Yes *

Repeated state checking

Depth-first search: Is checking current node w.r.t. path stored in memory enough?
i.e. Is linear space sufficient?

Failure to detect repeated states can turn a linear problem into an exponential one!

Repeated state checking

Depth-first search: Is checking current node w.r.t. path stored in memory enough?
i.e. Is linear space sufficient?

No! Can only detect looping paths, not all repeated states.
Need exponential space to store all visited nodes.

Graph search

```
function Graph-SEarch ( problem, fringe) returns a solution, or failure
    closed \(\leftarrow\) an empty set
    fringe \(\leftarrow \operatorname{Insert}(\) Make-Node(Initial-State[problem]), fringe)
    loop do
    if fringe is empty then return failure
    node \(\leftarrow\) Remove-Front(fringe)
    if Goal-Test(problem, State[node]) then return node
    if State[node] is not in closed then
        add State[node] to closed
        fringe \(\leftarrow \operatorname{Insert}\) All(Expand (node, problem), fringe)
    end
```

Is this optimal?

- BFS in INSERTALL
- DFS in INSERTALL

Summary

Problem formulation usually requires abstracting away real-world details to define a state space that can feasibly be explored

Variety of uninformed search strategies
Iterative deepening search uses only linear space and not much more time than other uninformed algorithms

Graph search can be exponentially more efficient than tree search

Complexity of BFS and DFS

Complexity of BFS and DFS is linear in the number of states V
In particular, Dijkstra's algorithm for single source shortest paths is $\Theta(E+V \log V)$, i.e. polynomial in V

However, V is b^{m} in many cases.
e.g. chess, theorem proving, scheduling problems

[^0]: states??
 actions??
 goal test??
 path cost??

