
Binary Search Trees

¡  Understand tree terminology
¡  Understand and implement tree traversals
¡  Define the binary search tree property
¡  Implement binary search trees
¡  Implement the TreeSort algorithm

October 2004 John Edgar 2

¡  A set of nodes (or vertices)
with a single starting point
§  called the root

¡  Each node is connected by
an edge to another node

¡  A tree is a connected graph
§  There is a path to every node

in the tree
§  A tree has one fewer edges

than the number of nodes

October 2004 John Edgar 4

October 2004 John Edgar 5

yes!
NO!

All the nodes are
not connected

NO!
There is an extra
edge (5 nodes
and 5 edges)

yes! (but not
a binary tree)

yes! (it’s actually
the same graph as

the blue one)

A

B C D

G E F

¡  Node v is said to be a child
of u, and u the parent of v if
§  There is an edge between the

nodes u and v, and
§  u is above v in the tree,

¡  This relationship can be
generalized
§  E and F are descendants of A
§  D and A are ancestors of G
§  B, C and D are siblings
§  F and G are?

October 2004 John Edgar 6

root

edge

parent of
B, C, D

¡  A leaf is a node with no children
¡  A path is a sequence of nodes v1 … vn

§  where vi is a parent of vi+1 (1 ≤ i ≤ n-1)
¡  A subtree is any node in the tree along with all

of its descendants
¡  A binary tree is a tree with at most two children

per node
§  The children are referred to as left and right
§  We can also refer to left and right subtrees

October 2004 John Edgar 7

October 2004 John Edgar 8

C

A

B C D

G E F E F G

D

G

A

leaves:

C,E,F,G

path from
A to D to G

subtree
rooted at B

October 2004 John Edgar 9

A

B C

G D E

left subtree
of A

H I J

F

right
subtree of C

right child of A

¡  The height of a node v is the length of the
longest path from v to a leaf
§  The height of the tree is the height of the root

¡  The depth of a node v is the length of the path
from v to the root
§  This is also referred to as the level of a node

¡  Note that there is a slightly different formulation
of the height of a tree
§  Where the height of a tree is said to be the number of

different levels of nodes in the tree (including the root)

October 2004 John Edgar 10

October 2004 John Edgar 11

A

B C

G D E

H I J

F

A

B

E

height of node B is ?

height of the tree is ?

depth of
node E is ?

level 1

level 2

level 3

2

3

2

October 2004 John Edgar 13

yes!
yes!

However, these trees are not “beautiful” (for some applications)

¡  A binary tree is perfect, if
§  No node has only one child
§  And all the leaves have the

same depth
¡  A perfect binary tree of

height h has how many
nodes?
§  2h+1 – 1 nodes, of which 2h

are leaves

October 2004 John Edgar 14

A

B C

G D E F

October 2004 John Edgar 15

12

22

31

23 24

33 34 35 36 38

01

11

21

32 37

l  Each level doubles the number of nodes
l  Level 1 has 2 nodes (21)
l  Level 2 has 4 nodes (22) or 2 times the number in Level 1

l  Therefore a tree with h levels has 2h+1 - 1nodes
l  The root level has 1 node the bottom level

has 2h nodes, that
is, just over ½ the
nodes are leaves

¡  A binary tree is complete if
§  The leaves are on at most two

different levels,
§  The second to bottom level is

completely filled in, and
§  The leaves on the bottom

level are as far to the left as
possible

¡  Perfect trees are also
complete

October 2004 John Edgar 16

A

B C

D E F

¡  A binary tree is balanced if
§  Leaves are all about the same distance from the root
§  The exact specification varies

¡  Sometimes trees are balanced by comparing
the height of nodes
§  e.g. the height of a node’s right subtree is at most

one different from the height of its left subtree
¡  Sometimes a tree's height is compared to the

number of nodes
§  e.g. red-black trees

October 2004 John Edgar 17

October 2004 John Edgar 18

A

B C

F D E

A

B C

F D E

G

October 2004 John Edgar 19

A

B

C D

A

B C

E D

F

¡  A traversal algorithm for a binary tree visits each
node in the tree
§  Typically, it will do something while visiting each node!

¡  Traversal algorithms are naturally recursive
¡  There are three traversal methods

§  Inorder
§  Preorder
§  Postorder

October 2004 John Edgar 21

// InOrder traversal algorithm
void inOrder(Node *n) {
 if (n != 0) {
 inOrder(n->leftChild);
 visit(n);
 inOrder(n->rightChild);
 }
}

October 2004 John Edgar 22

C++

InOrder Traversal

October 2004 John Edgar 23

A

B C

F D E

// PreOrder traversal algorithm
void preOrder(Node *n) {
 if (n != 0) {
 visit(n);
 preOrder(n->leftChild);
 preOrder(n->rightChild);
 }
}

October 2004 John Edgar 24

C++

October 2004 John Edgar 25

visit(n)

preOrder(n->leftChild)

preOrder(n->rightChild)

visit
preOrder(l)
preOrder(r)

visit
preOrder(l)
preOrder(r)

visit
preOrder(l)
preOrder(r)

visit
preOrder(l)
preOrder(r)

visit
preOrder(l)
preOrder(r)

visit
preOrder(l)
preOrder(r)

visit
preOrder(l)
preOrder(r)

// PostOrder traversal algorithm
void postOrder(Node *n) {
 if (n != 0) {
 postOrder(n->leftChild);
 postOrder(n->rightChild);
 visit(n);
 }
}

October 2004 John Edgar 26

C++

October 2004 John Edgar 27

postOrder(n->leftChild)

postOrder(n->rightChild)

visit(n)

postOrder(l)
postOrder(r)
visit

postOrder(l)
postOrder(r)
visit

postOrder(l)
postOrder(r)
visit

postOrder(l)
postOrder(r)
visit

postOrder(l)
postOrder(r)
visit

postOrder(l)
postOrder(r)
visit

postOrder(l)
postOrder(r)
visit

¡  The binary tree can be implemented using
a number of data structures
§  Reference structures (similar to linked lists)
§  Arrays

¡  We will look at three implementations
§  Binary search trees (reference / pointers)
§  Red – black trees (reference / pointers)
§  Heap (arrays)

October 2004 John Edgar 29

¡  Consider maintaining data in some order
§  The data is to be frequently searched on the sort key

e.g. a dictionary
¡  Possible solutions might be:

§  A sorted array
▪  Access in O(logn) using binary search
▪  Insertion and deletion in linear time

§  An ordered linked list
▪  Access, insertion and deletion in linear time

§  Neither of these is efficient

October 2004 John Edgar 30

¡  The data structure should be able to perform all
these operations efficiently
§  Create an empty dictionary
§  Insert
§  Delete
§  Look up

¡  The insert, delete and look up operations should
be performed in at most O(logn) time

October 2004 John Edgar 31

¡  A binary search tree (BST) is a binary tree
with a special property
§  For all nodes in the tree:
▪  All nodes in a left subtree have labels less than the

label of the node
▪  All nodes in a right subtree have labels greater than

or equal to the label of the node
¡  Binary search trees are fully ordered

October 2004 John Edgar 32

October 2004 John Edgar 33

October 2004 John Edgar 34

inOrder(n->leftChild)

visit(n)

inOrder(n->rightChild)

inOrder(l)
visit
inOrder(r)

inOrder(l)
visit
inOrder(r)

inOrder(l)
visit
inOrder(r)

inOrder(l)
visit
inOrder(r)

inOrder(l)
visit
inOrder(r)

inOrder(l)
visit
inOrder(r)

inOrder(l)
visit
inOrder(r)

An inorder traversal retrieves
the data in sorted order

¡  Binary search trees can be implemented using a
reference structure

¡  Tree nodes contain data and two pointers to
nodes

October 2004 John Edgar 35

Node *leftChild Node *rightChild data

pointers to Nodes

data to be stored
in the tree

¡  To find a value in a BST search from the root
node:
§  If the target is less than the value in the node search its

left subtree
§  If the target is greater than the value in the node search

its right subtree
§  Otherwise return true, or return data, etc.

¡  How many comparisons?
§  One for each node on the path
§  Worst case: height of the tree + 1

October 2004 John Edgar 36

¡  The BST property must hold after insertion
¡  Therefore the new node must be inserted in the

correct position
§  This position is found by performing a search
§  If the search ends at the (null) left child of a node

make its left child refer to the new node
§  If the search ends at the right child of a node make its

right child refer to the new node
¡  The cost is about the same as the cost for the

search algorithm, O(height)

October 2004 John Edgar 37

October 2004 John Edgar 38

47

63 32

19 41

10 23

7 12

54 79

37 44 53 59 96

30 57 91 97

insert 43
create new node
find position
insert new node

43

43

¡  After deletion the BST property must hold
¡  Deletion is not as straightforward as search or

insertion
§  So much so that sometimes it is not even

implemented!
§  Deleted nodes are marked as deleted in some way

¡  There are a number of different cases that must
be considered

October 2004 John Edgar 39

¡  The node to be deleted has no children
¡  The node to be deleted has one child
¡  The node to be deleted has two children

October 2004 John Edgar 40

¡  The node to be deleted has no children
§  Remove it (assigning null to its parent’s reference)

October 2004 John Edgar 41

October 2004 John Edgar 42

63

41

10

7 12

54 79

37 44 53 59 96

57 91 97

delete 30
47

32

19

23

30

¡  The node to be deleted has one child
§  Replace the node with its subtree

October 2004 John Edgar 43

October 2004 John Edgar 44

47

63 32

19 41

10 23

7 12

54 79

37 44 53 59 96

30 57 91 97

delete 79
replace with subtree

October 2004 John Edgar 45

47

63 32

19 41

10 23

7 12

54

37 44 53 59 96

30 57 91 97

delete 79
after deletion

¡  The node to be deleted has two children
§  Replace the node with its successor, the left most

node of its right subtree
▪  It is also possible to replace the node with its predecessor,

the right most node of its left subtree

§  If that node has a child (and it can have at most one
child) attach it to the node’s parent
▪  Why can a predecessor or successor have at most one child?

October 2004 John Edgar 46

October 2004 John Edgar 47

47

63 32

19 41

10 23

7 12

54 79

37 44 53 59 96

30 57 91 97

delete 32

temp

find successor and detach

October 2004 John Edgar 48

47

63 32

19 41

10 23

7 12

54 79

37 44 53 59 96

30 57 91 97

delete 32

37

temp

temp

find successor
attach target node’s
 children to
 successor

October 2004 John Edgar 49

47

63 32

19 41

10 23

7 12

54 79

44 53 59 96

30 57 91 97

delete 32

37

temp

- find successor
- attach target’s
 children to
 successor
- make successor
 child of
 target’s
 parent

October 2004 John Edgar 50

47

63

19 41

10 23

7 12

54 79

44 53 59 96

30 57 91 97

delete 32

37

temp

note: successor
had no subtree

October 2004 John Edgar 51

47

63 32

19 41

10 23

7 12

54 79

37 44 53 59 96

30 57 91 97

delete 63

temp

- find predecessor*: note
 it has a subtree

*predecessor used instead
of successor to show its
location - an
implementation would have
to pick one or the other

October 2004 John Edgar 52

47

63 32

19 41

10 23

7 12

54 79

37 44 53 59 96

30 57 91 97

delete 63

temp

- find predecessor
- attach predecessor’s
 subtree to its
 parent

October 2004 John Edgar 53

47

63 32

19 41

10 23

7 12

54 79

37 44 53 59 96

30 57 91 97

delete 63

59

temp

temp
- find predecessor
- attach subtree
- attach target’s
 children to
 predecessor

October 2004 John Edgar 54

47

63 32

19 41

10 23

7 12

54 79

37 44 53 96

30 57 91 97

delete 63

59

temp
- find predecessor
- attach subtree
- attach children
- attach pre.
 to target’s
 parent

October 2004 John Edgar 55

47

32

19 41

10 23

7 12

54 79

37 44 53 96

30 57 91 97

delete 63

59

¡  The efficiency of BST operations depends on
the height of the tree

¡  All three operations (search, insert and delete)
are O(height)

¡  If the tree is complete the height is ⎣log(n)⎦
¡  What if it isn’t complete?

October 2004 John Edgar 56

¡  Insert 7
¡  Insert 4
¡  Insert 1
¡  Insert 9
¡  Insert 5
¡  It’s a complete tree!

October 2004 John Edgar 57

7

4 9

1 5

height = ⎣log(5)⎦ = 2

¡  Insert 9
¡  Insert 1
¡  Insert 7
¡  Insert 4
¡  Insert 5
¡  It’s a linked list with a lot

of extra pointers!

October 2004 John Edgar 58

7

1

9

5

4
height =
n – 1 = 4 = O(n)

¡  It would be ideal if a BST was always
close to complete
§  i.e. balanced

¡  How do we guarantee a balanced BST?
§  We have to make the insertion and deletion

algorithms more complex
▪  e.g. red – black trees.

October 2004 John Edgar 59

¡  It is possible to sort an array using a binary
search tree
§  Insert the array items into an empty tree
§  Write the data from the tree back into the array using an

InOrder traversal
¡  Running time = n*(insertion cost) + traversal

§  Insertion cost is O(h)
§  Traversal is O(n)
§  Total = O(n) * O(h) + O(n), i.e. O(n * h)
§  If the tree is balanced = O(n * log(n))

October 2004 John Edgar 60

Tree Quiz I

¡  Write a recursive function to print the
items in a BST in descending order

October 2004 John Edgar 62

class Node {
 public:
 int data;
 Node *leftc;
 Node *rightc;
};

Tree Quiz II

¡  Write a recursive function to delete a BST
stored in dynamic memory

October 2004 John Edgar 63

class Node {
 public:
 int data;
 Node *leftc;
 Node *rightc;
};

Summary

¡  Trees
§  Terminology: paths, height, node relationships, …

¡  Binary search trees
§  Traversal
▪  Post-order, pre-order, in-order

§  Operations
▪  Insert, delete, search

¡  Balanced trees
§  Binary search tree operations are efficient for

balanced trees

October 2004 John Edgar 65

Readings

¡  Carrano Ch. 10

October 2004 John Edgar 66

