
Binary Search Trees 



¡  Understand tree terminology 
¡  Understand and implement tree traversals 
¡  Define the binary search tree property 
¡  Implement binary search trees 
¡  Implement the TreeSort algorithm 
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¡  A set of nodes (or vertices) 
with a single starting point 
§  called the root 

¡  Each node is connected by 
an edge to another node 

¡  A tree is a connected graph 
§  There is a path to every node 

in the tree 
§  A tree has one fewer edges 

than the number of nodes 
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yes! 
NO! 

All the nodes are 
not connected 

NO! 
There is an extra 
edge (5 nodes 
and 5 edges) 

yes! (but not 
a binary tree) 

yes! (it’s actually 
the same graph as 

the blue one) 



A 

B C D 

G E F 

¡  Node v is said to be a child 
of u, and u the parent of v if 
§  There is an edge between the 

nodes u and v, and  
§  u is above v in the tree,  

¡  This relationship can be 
generalized 
§  E and F are descendants of A 
§  D and A are ancestors of G 
§  B, C and D are siblings 
§  F and G are? 
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root 

edge 

parent of 
B, C, D 



¡  A leaf is a node with no children 
¡  A path is a sequence of nodes v1 … vn 

§  where vi is a parent of vi+1 (1 ≤ i ≤ n-1) 
¡  A subtree is any node in the tree along with all 

of its descendants 
¡  A binary tree is a tree with at most two children 

per node 
§  The children are referred to as left and right 
§  We can also refer to left and right subtrees 

October 2004 John Edgar 7 



October 2004 John Edgar 8 

C 

A 

B C D 

G E F E F G 

D 

G 

A 

leaves: 

C,E,F,G 

path from 
A to D to G 

subtree 
rooted at B 
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A 

B C 

G D E 

left subtree 
of A 

H I J 

F 

right 
subtree of C 

right child of A 



¡  The height of a node v is the length of the 
longest path from v to a leaf 
§  The height of the tree is the height of the root 

¡  The depth of a node v is the length of the path 
from v to the root 
§  This is also referred to as the level of a node 

¡  Note that there is a slightly different formulation 
of the height of a tree 
§  Where the height of a tree is said to be the number of 

different levels of nodes in the tree (including the root) 
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height of node B is ? 

height of the tree is ? 

depth of 
node E is ? 

level 1 

level 2 

level 3 
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yes! 
yes!  

However, these trees are not “beautiful” (for some applications) 



¡  A binary tree is perfect, if 
§  No node has only one child 
§  And all the leaves have the 

same depth 
¡  A perfect binary tree of 

height h has how many 
nodes? 
§  2h+1 – 1 nodes, of which 2h 

are leaves 
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12 

22 

31 

23 24 

33 34 35 36 38 

01 

11 

21 

32 37 

l  Each level doubles the number of nodes 
l  Level 1 has 2 nodes (21) 
l  Level 2 has 4 nodes (22) or 2 times the number in Level 1 

l  Therefore a tree with h levels has 2h+1 - 1nodes 
l  The root level has 1 node the bottom level 

has 2h nodes, that 
is, just over ½ the 
nodes are leaves 



¡  A binary tree is complete if 
§  The leaves are on at most two 

different levels, 
§  The second to bottom level is 

completely filled in, and 
§  The leaves on the bottom 

level are as far to the left as 
possible 

¡  Perfect trees are also 
complete 

October 2004 John Edgar 16 

A 

B C 

D E F 



¡  A binary tree is balanced if 
§  Leaves are all about the same distance from the root 
§  The exact specification varies 

¡  Sometimes trees are balanced by comparing 
the height of nodes 
§  e.g. the height of a node’s right subtree is at most 

one different from the height of its left subtree 
¡  Sometimes a tree's height is compared to the 

number of nodes 
§  e.g. red-black trees 
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¡  A traversal algorithm for a binary tree visits each 
node in the tree 
§  Typically,  it will do something while visiting each node! 

¡  Traversal algorithms are naturally recursive 
¡  There are three traversal methods 

§  Inorder 
§  Preorder 
§  Postorder 
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// InOrder traversal algorithm 
void inOrder(Node *n) { 
  if (n != 0) { 
   inOrder(n->leftChild); 
   visit(n); 
   inOrder(n->rightChild); 
  } 
} 
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C++ 



InOrder Traversal 
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A 
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F D E 



// PreOrder traversal algorithm 
void preOrder(Node *n) { 
  if (n != 0) { 
   visit(n); 
   preOrder(n->leftChild); 
   preOrder(n->rightChild); 
  } 
} 
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C++ 
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visit(n) 

preOrder(n->leftChild) 

preOrder(n->rightChild) 

visit 
preOrder(l) 
preOrder(r) 

visit 
preOrder(l) 
preOrder(r) 

visit 
preOrder(l) 
preOrder(r) 

visit 
preOrder(l) 
preOrder(r) 

visit 
preOrder(l) 
preOrder(r) 

visit 
preOrder(l) 
preOrder(r) 

visit 
preOrder(l) 
preOrder(r) 



// PostOrder traversal algorithm 
void postOrder(Node *n) { 
  if (n != 0) { 
   postOrder(n->leftChild); 
   postOrder(n->rightChild); 
   visit(n); 
  } 
} 
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C++ 
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postOrder(n->leftChild) 

postOrder(n->rightChild) 

visit(n) 

postOrder(l) 
postOrder(r) 
visit 

postOrder(l) 
postOrder(r) 
visit 

postOrder(l) 
postOrder(r) 
visit 

postOrder(l) 
postOrder(r) 
visit 

postOrder(l) 
postOrder(r) 
visit 

postOrder(l) 
postOrder(r) 
visit 

postOrder(l) 
postOrder(r) 
visit 





¡  The binary tree can be implemented using 
a number of data structures 
§  Reference structures (similar to linked lists) 
§  Arrays 

¡  We will look at three implementations 
§  Binary search trees (reference / pointers) 
§  Red – black trees (reference / pointers) 
§  Heap (arrays) 
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¡  Consider maintaining data in some order 
§  The data is to be frequently searched on the sort key 

e.g. a dictionary 
¡  Possible solutions might be: 

§  A sorted array 
▪  Access in O(logn) using binary search 
▪  Insertion and deletion in linear time 

§  An ordered linked list 
▪  Access, insertion and deletion in linear time 

§  Neither of these is efficient 
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¡  The data structure should be able to perform all 
these operations efficiently 
§  Create an empty dictionary 
§  Insert 
§  Delete 
§  Look up 

¡  The insert, delete and look up operations should 
be performed in at most O(logn) time 
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¡  A binary search tree (BST) is a binary tree 
with a special property 
§  For all nodes in the tree: 
▪  All nodes in a left subtree have labels less than the 

label of the node 
▪  All nodes in a right subtree have labels greater than 

or equal to the label of the node 
¡  Binary search trees are fully ordered 
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inOrder(n->leftChild) 

visit(n) 

inOrder(n->rightChild) 

inOrder(l) 
visit 
inOrder(r) 

inOrder(l) 
visit 
inOrder(r) 

inOrder(l) 
visit 
inOrder(r) 

inOrder(l) 
visit 
inOrder(r) 

inOrder(l) 
visit 
inOrder(r) 

inOrder(l) 
visit 
inOrder(r) 

inOrder(l) 
visit 
inOrder(r) 

An inorder traversal retrieves 
the data in sorted order 



¡  Binary search trees can be implemented using a 
reference structure 

¡  Tree nodes contain data and two pointers to 
nodes 
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Node *leftChild Node *rightChild data 

pointers to Nodes 

data to be stored 
in the tree 



¡  To find a value in a BST search from the root 
node: 
§  If the target is less than the value in the node search its 

left subtree 
§  If the target is greater than the value in the node search 

its right subtree 
§  Otherwise return true, or return data, etc. 

¡  How many comparisons? 
§  One for each node on the path 
§  Worst case: height of the tree + 1 
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¡  The BST property must hold after insertion 
¡  Therefore the new node must be inserted in the 

correct position 
§  This position is found by performing a search 
§  If the search ends at the (null) left child of a node 

make its left child refer to the new node 
§  If the search ends at the right child of a node make its 

right child refer to the new node 
¡  The cost is about the same as the cost for the 

search algorithm, O(height) 
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47 

63 32 

19 41 

10 23 

7 12 

54 79 

37 44 53 59 96 

30 57 91 97 

insert 43 
create new node 
find position 
insert new node 

43 

43 



¡  After deletion the BST property must hold 
¡  Deletion is not as straightforward as search or 

insertion 
§  So much so that sometimes it is not even 

implemented! 
§  Deleted nodes are marked as deleted in some way 

¡  There are a number of different cases that must 
be considered 
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¡  The node to be deleted has no children 
¡  The node to be deleted has one child 
¡  The node to be deleted has two children 
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¡  The node to be deleted has no children 
§  Remove it (assigning null to its parent’s reference) 
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63 

41 

10 

7 12 

54 79 

37 44 53 59 96 

57 91 97 

delete 30 
47 

32 

19 

23 

30 



¡  The node to be deleted has one child 
§  Replace the node with its subtree 
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47 

63 32 

19 41 

10 23 

7 12 

54 79 

37 44 53 59 96 

30 57 91 97 

delete 79 
replace with subtree 
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47 

63 32 

19 41 

10 23 

7 12 

54 

37 44 53 59 96 

30 57 91 97 

delete 79 
after deletion 



¡  The node to be deleted has two children 
§  Replace the node with its successor, the left most 

node of its right subtree  
▪  It is also possible to replace the node with its predecessor, 

the right most node of its left subtree 

§  If that node has a child (and it can have at most one 
child) attach it to the node’s parent 
▪  Why can a predecessor or successor have at most one child? 
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47 

63 32 

19 41 

10 23 

7 12 

54 79 

37 44 53 59 96 

30 57 91 97 

delete 32 

temp 

find successor and detach 
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47 

63 32 

19 41 

10 23 

7 12 

54 79 

37 44 53 59 96 

30 57 91 97 

delete 32 

37 

temp 

temp 

find successor 
attach target node’s 
  children to  
  successor 
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47 

63 32 

19 41 

10 23 

7 12 

54 79 

44 53 59 96 

30 57 91 97 

delete 32 

37 

temp 

- find successor 
- attach target’s 
  children to  
  successor 
- make successor 
  child of 
  target’s 
  parent 
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47 

63 

19 41 

10 23 

7 12 

54 79 

44 53 59 96 

30 57 91 97 

delete 32 

37 

temp 

note: successor 
had no subtree 
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47 

63 32 

19 41 

10 23 

7 12 

54 79 

37 44 53 59 96 

30 57 91 97 

delete 63 

temp 

- find predecessor*: note 
  it has a subtree 

*predecessor used instead 
of successor to show its 
location - an 
implementation would have 
to pick one or the other 
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47 

63 32 

19 41 

10 23 

7 12 

54 79 

37 44 53 59 96 

30 57 91 97 

delete 63 

temp 

- find predecessor 
- attach predecessor’s 
  subtree to its 
  parent 
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47 

63 32 

19 41 

10 23 

7 12 

54 79 

37 44 53 59 96 

30 57 91 97 

delete 63 

59 

temp 

temp 
- find predecessor 
- attach subtree 
- attach target’s 
  children to 
  predecessor 
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47 

63 32 

19 41 

10 23 

7 12 

54 79 

37 44 53 96 

30 57 91 97 

delete 63 

59 

temp 
- find predecessor 
- attach subtree 
- attach children 
- attach pre. 
  to target’s 
  parent 
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47 

32 

19 41 

10 23 

7 12 

54 79 

37 44 53 96 

30 57 91 97 

delete 63 

59 



¡  The efficiency of BST operations depends on 
the height of the tree 

¡  All three operations (search, insert and delete) 
are O(height) 

¡  If the tree is complete the height is ⎣log(n)⎦ 
¡  What if it isn’t complete? 
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¡  Insert 7 
¡  Insert 4 
¡  Insert 1 
¡  Insert 9 
¡  Insert 5 
¡  It’s a complete tree! 
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7 

4 9 

1 5 

height = ⎣log(5)⎦ = 2  



¡  Insert 9 
¡  Insert 1 
¡  Insert 7 
¡  Insert 4 
¡  Insert 5 
¡  It’s a linked list with a lot 

of extra pointers! 
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7 

1 

9 

5 

4 
height =  
n – 1 = 4 = O(n)  



¡  It would be ideal if a BST was always 
close to complete 
§  i.e. balanced 

¡  How do we guarantee a balanced BST? 
§  We have to make the insertion and deletion 

algorithms more complex 
▪  e.g. red – black trees. 

October 2004 John Edgar 59 



¡  It is possible to sort an array using a binary 
search tree 
§  Insert the array items into an empty tree 
§  Write the data from the tree back into the array using an 

InOrder traversal 
¡  Running time = n*(insertion cost) + traversal 

§  Insertion cost is O(h) 
§  Traversal is O(n) 
§  Total = O(n) * O(h) + O(n), i.e. O(n * h) 
§  If the tree is balanced = O(n * log(n)) 
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Tree Quiz I 

¡  Write a recursive function to print the 
items in a BST in descending order 

October 2004 John Edgar 62 

class Node { 
 public: 
  int data; 
  Node *leftc; 
  Node *rightc; 
}; 



Tree Quiz II 

¡  Write a recursive function to delete a BST 
stored in dynamic memory 
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class Node { 
 public: 
  int data; 
  Node *leftc; 
  Node *rightc; 
}; 





Summary 

¡  Trees 
§  Terminology: paths, height, node relationships, … 

¡  Binary search trees 
§  Traversal 
▪  Post-order, pre-order, in-order 

§  Operations 
▪  Insert, delete, search 

¡  Balanced trees 
§  Binary search tree operations are efficient for 

balanced trees 
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Readings 

¡  Carrano Ch. 10 
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