
Object Oriented Programming

¡  OOP Basic Principles
¡  C++ Classes

• September 2004 • John Edgar • 2

¡  Colours
§  How should we work with colours?
▪  How should we store them?
▪  How should we modify or operate on them?

¡  Linked lists
§  How should we provide the functionality of a

linked list?
¡  Shapes

§  …

• September 2004 • John Edgar • 3

¡  Encapsulation
§  Color Class
§  Designing Classes

• September 2004 • John Edgar • 5

¡  Let's say we need to represent colours
§  There are many different colour models
§  One such is the RGB (red green blue) model

¡  RGB colours
§  A colour is represented by three numbers, which

represent the amount of red, green and blue
§  These values are sometimes recorded as doubles

(between 0.0 and 1.0) or sometimes as
§  Integers, between 0 and 255 (or some other number)
▪  How many colours can be represented?

• September 2004 • John Edgar • 6

• September 2004 • John Edgar • 7

255,0,0

0,0,255

0,255,0

0,0,0

255,128,0

255,255,255 128,128,128

128,128,192

¡  We need three variables to represent one colour
¡  It would be convenient to refer to colours in the

same way we refer to primitive types
¡  Object Oriented Programming (OOP) organizes

programs to collect variables and methods
§  A class is a factory (or blueprint) for creating objects

of a particular type
§  An object is a collection of variables and methods,

and is an instantiation of a class
▪  Color * c = new Color();

• September 2004 • John Edgar • 8

class pointer to
object

constructor

¡  An object combines both variables and methods in the
same construct
§  Variables give the structure of an object
§  Methods dictate its behaviour
§  A class should be a cohesive construct that performs one task (or

set of related tasks) well
§  Objects can be used as if they were primitive types

¡  To encapsulate means to encase or enclose
§  Each object should protect and manage its own information,

hiding the inner details
§  Objects should interact with the rest of the system only through a

specific set of methods (its public interface)

• September 2004 • John Edgar • 9

¡  The class describes the data and operations
§  For colours these include:
▪  Attributes for red, green and blue
▪  Methods to access and change and create colours

¡  An individual object is an instance of a class
§  Similar to the way that a variable is of a type
§  Each object has its own space in memory, and

therefore each object has its own state
▪  Individual Color objects represent individual colours, each with

their own values for red, green and blue

• September 2004 • John Edgar • 10

¡  To achieve loose coupling, classes are only
allowed to communicate through their interfaces
§  Thereby hiding their implementations details

¡  Loose coupling is desirable as it:
§  Decreases the chance that changing one module's

implementation causes changes to other modules
§  Prevents other modules from assigning invalid values

to attributes
¡  Information hiding is relatively easy to achieve

using object oriented programming

• September 2004 • John Edgar • 11

¡  There are many ways to design classes, as the
purpose of classes differs widely
§  Classes may store data and require operations to

support this, or
§  May implement an algorithm, or
§  Combine both data and operations

¡  The initial focus may either be on a class's
variables or its methods

¡  There are, however, some general principles of
good design

• September 2004 • John Edgar • 12

¡  Variables should generally be made directly
inaccessible from outside the class
§  This is achieved by making them private

¡  The values of variables can be accessed
using getter methods (or accessors)

¡  New values can be assigned to variables
using setter methods (or mutators)
§  A setter method assigns the value passed to its

parameter to a variable
§  While protecting any class invariants

• September 2004 • John Edgar • 13

¡  Constructors should initialize all of the variables
in an object

¡  It is often necessary to write more than one
constructor
§  Default constructor, with no parameters that assigns

default values to variables
§  Constructor with parameters for each variable, that

assigns the parameter values to those variables
§  Copy constructor that takes an object of the same

class and creates a copy of it

• September 2004 • John Edgar • 14

¡  Helper methods are methods that assist class
methods in performing their tasks
§  Helper methods are often created to implement part of

a complex task or to
§  Perform sub-tasks that are required by more than one

class methods
¡  They are therefore only useful to the class and

should not be visible outside the class
§  Helper methods only relate to the implementation of a

class, and should not be made part of the interface

• September 2004 • John Edgar • 15

¡  Class variables are made private
§  To prevent them from being assigned inappropriate

values, and
§  To prevent classes from depending on each others'

implementations and
¡  Consider whether or not each variable requires

a setter method
§  Is it more appropriate to create a new object rather

than changing an existing object's variables?
§  Setters should always respect class invariants

• September 2004 • John Edgar • 16

¡  Every C++ class should be divided into header
and implementation files

¡  The header file contains the class definition
¡  The implementation file contains the definiton of

class methods
§  The implementation file has a .cpp extension
§  And should contain the definition of each method

declared in the header file
§  Each method name must be preceded by the class

name and “::”

• September 2004 • John Edgar • 18

¡  The header file has a .h extension and contains
§  Class definition (class keyword and class name)
§  Class variables
§  Method declarations (not definitions) for
▪  Constructors, a destructor, getters and setters as necessary,

and any other methods that are required
§  The class should be divided into public and private

sections as necessary

• September 2004 • John Edgar • 19

// Thing.h
class Thing
{
public:

 Thing();
 Thing(int startAge);
 //copy constructor and destructor
 // made by the compiler
 void display();

private:
 int age; //the one and only attribute

};

• John Edgar • 20

the file is divided into public and
private sections

constructors have the same name
as the class and do not have a
return type

note the semi-colons

// Thing.cpp
#include "thing.h"
#include <iostream>
using namespace std;

Thing::Thing(){
 age = 0;

}//default constructor

Thing::Thing(int startAge){
 age = startAge;

}//constructor

void Thing::display(){
 cout << age << endl;

}//display
• John Edgar • 21

the file contains method
definitions for each method

If a method is not preceded by the
class name and :: it is not an
implementation of a class method

omitting Thing:: from a method
name may not result in a
compiler error

¡  If no constructor exists for a class the C++
compiler creates a default constructor
§  Creating any constructor prevents this default from

being created
¡  If no copy constructor exists C++ creates one

§  This copy constructor makes a shallow copy
▪  It only copies the values of data members; which, for pointers,

are addresses, and not the dynamically allocated data
▪  If the class uses dynamically allocated memory a copy

constructor that performs a deep copy must be written

• September 2004 • John Edgar • 22

¡  Every C++ class must have a destructor which
is responsible for destroying a class instance
§  ~Thing(); //tilde specifies destructor
§  A class can have only one destructor

¡  C++ automatically creates a destructor for a
class if one has not been written
§  If a class does not use dynamically allocated memory

it can depend on the compiler generated destructor
§  Otherwise a destructor must be written to deallocate

any dynamically allocated memory, using delete

• September 2004 • John Edgar • 23

¡  Unlike Java C++ objects do not have to be
created in dynamic memory
§  Thing th; creates a new Thing object in

stack memory
▪  And calls the default constructor
▪  Thing th(3); would call the second constructor

• September 2004 • John Edgar • 24

Copying Objects

• September 2004 • John Edgar • 25

¡  Consider a copy constructor for a Linked List
LinkedList::LinkedList(LinkedList& ll){
head = ll.head;

}
¡  This constructor has not created a new list, it

has just created a new pointer to the existing list
§  There is still only one list

¡  This is an example of a shallow copy
§  Where only the references are copied, and not

the underlying data in dynamic memory
• September 2004 • John Edgar • 26

¡  A deep copy creates a copy of an object's data
and not just its pointers
§  By creating a new object in dynamic memory for each

such object in the original
§  For a linked list this would mean traversing the list

making a new node for each original node
¡  Deep copies are required whenever a class

allocates space in dynamic memory
§  That is, creates objects using new

¡  Lab 3 will demonstrate this concept
• September 2004 • John Edgar • 27

Summary

• September 2004 • John Edgar • 28

Summary

¡  Object-oriented programming
§  Encapsulation, information hiding

¡  C++ classes
§  .h file to specify methods/variables, .cpp for details
§  Objects can be created in heap (dynamic) or stack

(static) memory

• September 2004 • John Edgar • 29

Readings

¡  Carrano
§  Ch. 8

• September 2004 • John Edgar • 30

