Object Oriented Programming

CMPT 225

OOP Basic Principles
C++ Classes

September 2004 John Edgar 2

Colours

How should we work with colours?

How should we store them?
How should we modify or operate on them?

Linked lists

How should we provide the functionality of a
inked list?
Shapes

September 2004 John Edgar 3

OOP Principles

OOP Principles

Encapsulation
Color Class
Designing Classes

September 2004 John Edgar 5

Representing Colour

Let's say we need to represent colours
There are many different colour models

One such is the RGB (red green blue) model
RGB colours

A colour is represented by three numbers, which
represent the amount of red, green and blue

These values are sometimes recorded as doubles
(between 0.0 and 1.0) or sometimes as

Integers, between 0 and 255 (or some other number)
How many colours can be represented?

September 2004 John Edgar

Colours and rgb Values

255,0,0

128,128,192

—

Edit Colors

Basic colors:

.

0,255,0
11 Il I
255,128,0 \
Cipstom colors: \
0,0,255 T I
- _ Hue: 200 Red: 255
IR “ -
‘ Sat: 240 Green: 0
 ColorSolid) o120 Blue: | 255
[0K] [Chncel J ‘\[Add to Custom Colors
——rr
0,0,0 128,128,128 | |1 255,255,255 !
September 2004 John Edgar

Storing Colour Data

We need three variables to represent one colour
It would be convenient to refer to colours in the
same way we refer to primitive types

Object Oriented Programming (OOP) organizes
programs to collect variables and methods

A class is a factory (or blueprint) for creating objects
of a particular type

An object is a collection of variables and methods,
and is an instantiation of a class

Color * ¢ = new Color();

September 2004

Encapsulation

An object combines both variables and methods in the
same construct

Variables give the structure of an object

Methods dictate its behaviour

A class should be a cohesive construct that performs one task (or
set of related tasks) well

Obijects can be used as if they were primitive types
To encapsulate means to encase or enclose

Each object should protect and manage its own information,
hiding the inner details

Objects should interact with the rest of the system only through a
specific set of methods (its public interface)

September 2004 John Edgar 9

Classes and Objects

The class describes the data and operations

For colours these include:
Attributes for red, green and blue
Methods to access and change and create colours

An individual object is an instance of a class
Similar to the way that a variable is of a type

Each object has its own space in memory, and
therefore each object has its own state

Individual Color objects represent individual colours, each with
their own values for red, green and blue

September 2004 John Edgar 10

Information Hiding

To achieve loose coupling, classes are only

allowed to communicate through their interfaces
Thereby hiding their implementations details

Loose coupling is desirable as it:

Decreases the chance that changing one module's
Implementation causes changes to other modules

Prevents other modules from assigning invalid values
to attributes

Information hiding is relatively easy to achieve
using object oriented programming

September 2004 John Edgar 1

Designing a Class

There are many ways to design classes, as the
purpose of classes differs widely

Classes may store data and require operations to
support this, or

May implement an algorithm, or

Combine both data and operations
The initial focus may either be on a class's
variables or its methods

There are, however, some general principles of
good design

September 2004 John Edgar 12

Design: Make Variables Private

Variables should generally be made directly
inaccessible from outside the class

This is achieved by making them private
The values of variables can be accessed
using getter methods (or accessors)
New values can be assigned to variables
using setter methods (or mutators)

A setter method assigns the value passed to its
parameter to a variable

While protecting any class invariants

September 2004 John Edgar 13

Design: Write Constructors

Constructors should initialize all of the variables
In an object

It is often necessary to write more than one
constructor

Default constructor, with no parameters that assigns
default values to variables

Constructor with parameters for each variable, that
assigns the parameter values to those variables

Copy constructor that takes an object of the same
class and creates a copy of it

September 2004 John Edgar 14

Design: Make Helper Methods

Private

Helper methods are methods that assist class
methods in performing their tasks

Helper methods are often created to implement part of
a complex task or to

Perform sub-tasks that are required by more than one
class methods

They are therefore only useful to the class and
should not be visible outside the class

Helper methods only relate to the implementation of a
class, and should not be made part of the interface

September 2004 John Edgar 15

Design: Setters Only When

Needed

Class variables are made private

To prevent them from being assigned inappropriate
values, and

To prevent classes from depending on each others'
Implementations and

Consider whether or not each variable requires
a setter method

Is it more appropriate to create a new object rather
than changing an existing object's variables?

Setters should always respect class invariants

September 2004 John Edgar 16

C++ Classes

Basic C++ Classes

Every C++ class should be divided into header
and implementation files
The header file contains the class definition
The implementation file contains the definiton of
class methods

The implementation file has a .cpp extension

And should contain the definition of each method
declared in the header file

Each method name must be preceded by the class
name and “: :”

September 2004 John Edgar 18

C++ Header Files

The header file has a .h extension and contains
Class definition (c1ass keyword and class name)
Class variables

Method declarations (not definitions) for

Constructors, a destructor, getters and setters as necessary,
and any other methods that are required

The class should be divided into public and private
sections as necessary

September 2004 John Edgar 19

Basic C++ Classes, .h

// Thing.h
class Thing
{
public:
Thing() ;
Thing(int startAge);
//copy constructor and destr:i
// made by the compiler
void display() ;

private:
int age; //the one and only attribute

};

John Edgar 20

Basic C++ Classes, .cpp

// Thing.cpp
#include "thing.h"
#include <iostream>
using namespace std;

Thing: : Thing () {
age = 0;
}//default constructor

Thing: :Thing(int startAge) {
age = startAge;
}//constructor

void Thing: :display () {
cout << age << endl;

}//display
John Edgar 21

C++ Constructors

If no constructor exists for a class the C++
compiler creates a default constructor

Creating any constructor prevents this default from
being created

If no copy constructor exists C++ creates one

This copy constructor makes a shallow copy

It only copies the values of data members; which, for pointers,
are addresses, and not the dynamically allocated data

If the class uses dynamically allocated memory a copy
constructor that performs a deep copy must be written

September 2004 John Edgar 22

C++ Destructors

Every C++ class must have a destructor which
IS responsible for destroying a class instance
~Thing (); //tilde specifies destructor

A class can have only one destructor
C++ automatically creates a destructor for a

class if one has not been written

If a class does not use dynamically allocated memory
It can depend on the compiler generated destructor

Otherwise a destructor must be written to deallocate
any dynamically allocated memory, using delete

September 2004 John Edgar 23

Objects in Stack (Static)

Memory

Unlike Java C++ objects do not have to be
created in dynamic memory

Thing th; creates a new Thing object in
stack memory

And calls the default constructor
Thing th (3) ; would call the second constructor

September 2004 John Edgar 24

Copying Objects

Shallow Copies

Consider a copy constructor for a Linked List
LinkedList: :LinkedList (LinkedListé& 1l1) {
head = 11 .head;

}
This constructor has not created a new list, it

has just created a new pointer to the existing list
There is still only one list
This is an example of a shallow copy

Where only the references are copied, and not
the underlying data in dynamic memory

September 2004 John Edgar 26

Deep Copies

A deep copy creates a copy of an object's data
and not just its pointers

By creating a new object in dynamic memory for each
such object in the original

For a linked list this would mean traversing the list
making a new node for each original node

Deep copies are required whenever a class
allocates space in dynamic memory
That is, creates objects using new

Lab 3 will demonstrate this concept

September 2004 John Edgar 27

Summary

Object-oriented programming
Encapsulation, information hiding

C++ classes
.h file to specify methods/variables, .cpp for details

Obijects can be created in heap (dynamic) or stack
(static) memory

September 2004 John Edgar 29

Readings

Carrano
Ch. 8

September 2004 John Edgar 30

