
Memory and C++ Pointers

¡  C++ objects and memory
¡  C++ primitive types and memory

§  Note: “primitive types” = int, long, float, double,
char, …

January 2010 Greg Mori 2

// Java code
// in function, f …

int arr[];
arr = getOrdArray(5);
// …

… arr
f

… null

…

n
getOrdArray

5

stack (static)

public int[] getOrdArray(int n){
int arr[] = new int[n];
for (int i = 0; i < arr.length; ++i){

arr[i] = i * 2 + 1;
}
return arr;

}

heap (dynamic)

1 3 5 7 9

arr

January 2010 3 Greg Mori

// in function, f …
// C++ code

int *arr;

arr = getOrdArray(5);
// …

… arr
f

… null

…

n
getOrdArray

5

stack

int * getOrdArray(int n){
int *arr = new int[n];
for (int i = 0; i < n; ++i){

arr[i] = i * 2 + 1;
}
return arr;

}

heap

1 3 5 7 9

arr

January 2010 Greg Mori 5

¡  In C++:
§  Both primitive types and objects can be

allocated either on the stack or on the heap
§  Both primitive type and object value and

reference variables are allowed
▪  Hence, there needs to be C++ notation to

distinguish between the two

January 2010 Greg Mori 6

¡  There are two ways to refer to things in
 C++

§  The first is pointers
§  The * character is used to denote a pointer

January 2010 Greg Mori 7

// n is a Node object
Node n;

// n is a pointer to a Node object
Node *n;

// i is an integer variable

int i;
// i is pointer to an integer variable
int *i;

¡  Variables in methods are allocated in stack
memory

¡  C++ uses the keyword new to allocate space in
the heap

Greg Mori 8

// n is a Node object, in stack
Node n;

// np is a pointer to a Node variable, np is in stack
Node *np;

// new creates a Node object, in heap

// np points to this object
np = new Node();

January 2010

n np
f

null

…

stack heap

Node object

// n is a Node object, in stack
Node n;

// np is a pointer to a Node variable, np is in stack
Node *np;

// new creates a Node object, in heap

// np points to this object
np = new Node();

Node object

January 2010 9 Greg Mori

¡  In C++, you can do the same with primitive
types, e.g.: int

Greg Mori 10

// i is an integer variable, in stack

int i;
// ip is pointer to an integer variable, in stack
int *ip;
// new creates an integer variable, in heap

ip = new int;

January 2010

i ip
f

null

…

stack heap

?

// i is an integer variable, in stack

int i;
// ip is pointer to an integer variable, in stack
int *ip;
// new creates an integer variable, in heap

ip = new int;

January 2010 11 Greg Mori

¡  How do we access the contents of the
thing a pointer points to?
§  This is called “dereferencing” a pointer
▪  The * notation is used again

January 2010 Greg Mori 12

// ip is pointer to an integer variable, in stack

int *ip;
// new creates an integer variable, in heap
ip = new int;

// *ip is the contents of the new integer
*ip = 5;
int i = *ip;

i ip
f

null

…

stack heap

?

// ip is pointer to an integer variable, in stack
int *ip;

// new creates an integer variable, in heap
ip = new int;

// *ip is the contents of the new integer

*ip = 5;
int i = *ip;

5 5

January 2010 13 Greg Mori

¡  There is a shorthand for following pointers
and accessing object methods / variables
§  Uses the -> characters

January 2010 Greg Mori 14

// np is a pointer to a Node variable, np is in stack
// new creates a Node object, in heap

// np points to this object
Node *np = new Node(5);

// both of these run the getData method on the Node object

int i = (*np).getData();
int i = np -> getData();

¡  C++ allows one to obtain the address of
an existing object / variable
§  This is called “referencing”
▪  Uses the & operator (“address of”)

January 2010 Greg Mori 15

// i is an integer variable, in stack

int i;
// ip is pointer to an integer variable, in stack
int *ip;

// ip refers to the memory where i resides
ip = &i;

i ip
f

null

…

stack heap

5

// i is an integer variable, in stack
int i;

// ip is pointer to an integer variable, in stack
int *ip;

// ip refers to the memory where i resides

ip = &i;

*ip = 5;

January 2010 16 Greg Mori

January 2010 Greg Mori 17

¡  Java does Garbage Collection for you
¡  C++ you need to do it yourself

§  If you don’t want an object any longer, call delete
▪  If it’s an array, call delete [], which calls delete on all array

elements

¡  Bugs result if mistakes are made

January 2010 Greg Mori 18

np
f

null

…

stack heap

// np is a pointer to a Node variable, np is in stack
// new creates a Node object, in heap, np points to this object

Node *np = new Node();

// delete frees the heap memory referred to by np
delete np;

Node object

January 2010 19 Greg Mori

¡  In C++ objects can be in stack memory
(unlike Java)

¡  Delete is automatically called on them
when a method returns
§  Don’t manually delete them

January 2010 Greg Mori 20

// in function, f …
Node n;

g();
// …

… n
f

… null

…

stack (static)

void g (){
 Node m;
 Node r;

}

heap (dynamic)

nodeObj

m
g

nodeObj

r

nodeObj

…

…

delete is called on m and r

January 2010 21 Greg Mori

¡  Two major bug types can result if mistakes are
made
§  Memory leaks
§  Dangling pointers

January 2010 Greg Mori 22

¡  Memory leaks occur if there is heap memory
which is not pointed to by any variable (at any
scope)
§  No pointers to the memory in the current method nor

any below it on the stack
▪  Including global variables

¡  There is no way to access the memory
¡  The system will not use the memory for another

object/variable
¡  Eventually, you might run out of memory

January 2010 Greg Mori 23

// in function, f …
g();

// …

…
f

…

…

stack (static)

void g (){
 Node *m = new Node();

}

heap (dynamic)

m
g

…

…

This memory is not accessible

Node object

January 2010 24 Greg Mori

// in function, f …
Node *n;

n = g();
// …

…
f

…

…

stack (static)

Node * g (){
 Node *m = new Node();
 return m;

}

heap (dynamic)

m
g

…

…

Node object
n

January 2010 25 Greg Mori

¡  Once you call delete, or a method returns,
memory is gone

¡  If you try to refer to this memory you will
get an error*
§  If it is being used by something else
▪  Which will likely happen, but the error symptoms

can be confusing

January 2010 Greg Mori 26

// in function, f …
int *ip = new int;

int *jp = ip;
*ip = 5
delete ip;
// …

*jp = 6;

…
f

…

…

stack (static) heap (dynamic)

This memory is not available

5
ip jp

January 2010 27 Greg Mori

// in function, f …
Node *n;

n = g();
// …

…
f

…

…

stack (static)

Node * g (){
 Node m;
 return &m;

}

heap (dynamic)

m
g

nodeObj

…

…

n

This memory is not available

January 2010 28 Greg Mori

January 2010 Greg Mori 29

¡  There are two ways to do refer to things in
C++:
§  Pointers
▪  Which we just did

§  References

January 2010 Greg Mori 30

¡  C++ also has references in addition to
pointers

¡  References can be thought of as a
restricted form of pointer
§  A few differences, key ones:
▪  References cannot be NULL, pointers can
▪  References cannot be reassigned, pointers can
▪  This means they must be assigned at declaration time

▪  Different syntax for access
▪  Leads to cleaner code (but perhaps harder to understand)

January 2010 Greg Mori 31

¡  The & character is used to denote references
▪  Yes, the same character as address-of

January 2010 Greg Mori 32

// n is a Node object, in stack
Node n;

// nr is a reference to a Node object, in stack
// nr refers to the object n
Node &nr = n;

n nr
f

null

…

stack heap

Node object

// n is a Node object, in stack
Node n;

// nr is a reference to a Node object, in stack
// nr refers to the object n
Node &nr = n;

January 2010 33 Greg Mori

¡  References are used with same syntax as Java
§  Use the . character

January 2010 Greg Mori 34

// n is a Node object, in stack
Node n;

// nr is a reference to a Node object, in stack
// nr refers to the object n
Node &nr = n;

// both of these call the getData() method on the Node
int i = n.getData();
int i = nr.getData();

¡  Often used for function / method
parameters
§  “Pass by reference” vs. “Pass by value”

35

void foo (int x) {
 x=2;

}

int main () {
 int y = 4;

 foo(y);
 cout << y;

 return 0;
}

void foo (int& x) {
 x=2;

}

int main () {
 int y = 4;

 foo(y);
 cout << y;

 return 0;
}

January 2010 Greg Mori 36

¡  Where do variables go?
§  C++
▪  If it’s a variable declaration, in stack
▪  If it’s a new statement, in heap
▪  In C++, both primitive types and objects can go in either

stack or heap

January 2010 Greg Mori 37

¡  How do I refer to variables?
§  C++
▪  Pointers
▪  * notation
­  * in type to denote "it's a pointer to a"
­  * in usage to denote "follow this pointer to"

▪  References
▪  & notation

January 2010 Greg Mori 38

¡  How do I manage memory?
§  C++
▪  Call delete manually (or delete [] for arrays)
▪ Watch out for bugs
­  Memory leaks (forgot to delete)
­  Dangling pointers/references (deleted when you shouldn't

have)

January 2010 Greg Mori 39

¡  Carrano
§  Ch. 4.1

January 2010 Greg Mori 40

