Memory and C++ Pointers

CMPT 225

C++ objects and memory
C++ primitive types and memory

Note: “primitive types” = int, long, float, double,
char, ...

January 2010 Greg Mori 2

Dynamic Memory Example

(from cmpt225 2stack, Java)

Java code public int[] getOrdArray (int n) {
//
// in function, £ .. int arr[] = new int[n];
int arrl[]; for (int i = 0; i < arr.length; ++i) {

! - = . * g
arr = getOrdArray (5) ; } prr[i] ~ 2
/] . .

return arr;
}

| 5
getOrdArray
arr n
F
f
arr

January 2010 Greg Mori

Dynamic Memory Example

(from cmpt225 2stack, C++)

// in function,
// C++ code

int *arr;

f .

arr = getOrdArray (5) ;

// ..

int * getOrdArray (int n) {
int *arr = new int[n];
for (int 1 = 0; i < n; ++i){
arr[i] =i * 2 + 1;
}

return arr;

getOrdArray

arr

f

arr

C++ and Memory

In C++:

Both primitive types and objects can be
allocated either on the stack or on the heap

Both primitive type and object value and
reference variables are allowed

Hence, there needs to be C++ notation to
distinguish between the two

January 2010 Greg Mori 6

Referring to things in C++:

Pointers

There are two ways to refer to things in
C++

The first is pointers

The * character is used to denote a pointer

// n is a Node object

Node n;

// n is a pointer to a Node object
Node *n;

January 2010 Greg Mori 7

Heap vs. Stack Variables in C++

Variables in methods are allocated in stack
memory
C++ uses the keyword new to allocate space in

the

January 2010

heap

// n is a Node object, in stack
Node n;

// np is a pointer to a Node variable, np is in stack

Node *np;

// new creates a Node object, in heap
// np points to this object
np = new Node() ;

C++ Objects on Stack/Heap

// n is a Node object, in stack
Node n;
// np is a pointer to a Node variable, np is in stack

Node *np;

// new creates a Node object, in heap
// np points to this object
np = new Node() ;

Node object o— —»| Node object

n np

January 2010 Greg Mori 9

Heap vs. Stack Variables in C++

In C++, you can do the same with primitive
types, e.g.: int

// i is an integer variable, in stack

int 1i;

// ip is pointer to an integer variable, in stack
int *ip;

// new creates an integer variable, in heap

ip = new int;

January 2010 10

C++ Primitives on Stack/Heap

// i1 is an integer variable, in stack

int 1i;

// ip is pointer to an integer variable, in stack
int *ip;

// new creates an integer variable, in heap

ip = new int;

January 2010 Greg Mori 11

C++ Following Pointers

How do we access the contents of the
thing a pointer points to?
This is called “dereferencing” a pointer
The * notation is used again

// ip is pointer to an integer variable, in stack
int *ip;
// new creates an integer variable, in heap

ip = new int;

// *ip is the contents of the new integer
*ip = 5;

int i = *ip;

January 2010 Greg Mori 12

C++ Following Pointers

// ip is pointer to an integer variable, in stack
int *ip;
// new creates an integer variable, in heap

ip = new int;

// *ip is the contents of the new integer

*ip = 5;
int i1 = *ip;
5 *—
£ 5
i ip

January 2010 Greg Mori 13

C++ Following Pointers: Objects

There is a shorthand for following pointers
and accessing object methods / variables

Uses the -> characters

// np is a pointer to a Node variable, np is in stack
// new creates a Node object, in heap

// np points to this object

Node *np = new Node(5) ;

// both of these run the getData method on the Node object

int i = (*np) .getData();
int i = np -> getData();

January 2010 Greg Mori 14

C++ Obtaining Addresses

C++ allows one to obtain the address of
an existing object / variable

This is called “referencing”
Uses the & operator (“address of”)

// i is an integer variable, in stack
int i;
// ip is pointer to an integer variable, in stack

int *ip;

// ip refers to the memory where i resides

ip = &i;

January 2010 Greg Mori 15

C++ Obtaining Addresses

// i is an integer variable, in stack
int i;
// ip is pointer to an integer variable, in stack

int *ip;

// ip refers to the memory where i resides

ip = &i;
*ip = 5;
5 ¢—e
f
i ip

January 2010 Greg Mori 16

C++ Memory Pitfalls

Taking Out the Trash in C++

Java does Garbage Collection for you
C++ you need to do it yourself

If you don’t want an object any longer, call delete

If it's an array, call delete [], which calls delete on all array
elements

Bugs result if mistakes are made

January 2010 Greg Mori 18

C++ Delete

// np is a pointer to a Node variable, np is in stack

// new creates a Node object, in heap, np points to this object

Node *np = new Node() ;

// delete frees the heap memory referred to by np
delete np;

E —» Node object
np

January 2010 Greg Mori 19

Stack Objects?

In C++ objects can be in stack memory
(unlike Java)

Delete is automatically called on them
when a method returns

Don’t manually delete them

20

C++ Stack Objects

// in function, £ .. void g () {
Node n; Node m;
g():’ Node r;
/] .. J

delete is called on mand r
|

.. | nodeObj | nodeObj

r m

nodeOb]j

n

January 2010 Greg Mori

21

Memory Pitfalls

Two major bug types can result if mistakes are
made

Memory leaks

Dangling pointers

January 2010 Greg Mori 22

Memory Leaks

Memory leaks occur if there is heap memory
which is not pointed to by any variable (at any
scope)

No pointers to the memory in the current method nor
any below it on the stack

Including global variables
There is no way to access the memory

The system will not use the memory for another
object/variable

Eventually, you might run out of memory

January 2010 Greg Mori 23

C++ Memory Leak

// in function, £ .. void g () {
g(); Node *m = new Node() ;

/] . }

This memory is not accessible
|

£ Node object

January 2010 Greg Mori 24

C++ Memory Leak?

// in function, £ .. Node * g () {
Node *n: Node *m = new Node() ;
n=g(); return m;
/] .. b
—
g
m
£ - A Node object
n

January 2010 Greg Mori 25

Dangling Pointers

Once you call delete, or a method returns,
memory IS gone

If you try to refer to this memory you will
get an error*

If it is being used by something else

Which will likely happen, but the error symptoms
can be confusing

January 2010 Greg Mori 26

C++ Dangling Pointer

// in function, £ ..
int *ip = new int;

int *jp = ip;

*ip = 5
“eiete **" This memory is not available
*jp = 6;
. — 0 5
jp | ip

January 2010 Greg Mori 27

C++ Dangling Pointer?

// in function, £ .. Node * g () {
Node *n; Node m;
n=gl(); return &m;
/] . }
This memory is not available
|
devi |
g no :\j
f

January 2010 Greg Mori 28

References, the other way

C++ References

There are two ways to do refer to things in
C++:

Pointers
Which we just did

References

Januar y 2010 Greg Mori 30

C++ References

C++ also has references in addition to
pointers

References can be thought of as a
restricted form of pointer

A few differences, key ones:
References cannot be NULL, pointers can

References cannot be reassigned, pointers can
This means they must be assigned at declaration time
Different syntax for access
Leads to cleaner code (but perhaps harder to understand)

January 2010 Greg Mori 31

C++ References Syntax

The & character is used to denote references
Yes, the same character as address-of

// n is a Node object, in stack

Node n;
// nr is a reference to a Node object, in stack

// nr refers to the object n

Node &nr = n;

January 2010 Greg Mori 32

C++ Objects on Stack/Heap

// n is a Node object, in stack

Node n;
// nr is a reference to a Node object, in stack

// nr refers to the object n

Node &nr = n;

Node objectd—*

n nr

January 2010 Greg Mori 33

C++ References Syntax cont.

References are used with same syntax as Java

Use the . character

// n is a Node object, in stack

Node n;

// nr is a reference to a Node object, in stack
// nr refers to the object n

Node &nr = n;

// both of these call the getData() method on the Node

int i = n.getData();
int i = nr.getData();

January 2010 Greg Mori 34

What are references for?

Often used for function / method
parameters

“Pass by reference” vs. “Pass by value”

void foo (int x) { void foo (inté& x) {
x=2; x=2;

} }

int main () { int main () {
int y = 4; int y = 4;
foo(y) ; foo(y) ;
cout << y; cout << y;

return 0O; return 0O;

Where do variables go?
C++

If it's a variable declaration, in stack

If it's a new statement, in heap

In C++, both primitive types and objects can go in either
stack or heap

January 2010 Greg Mori 37

How do | refer to variables?
C++

Pointers
* notation
*in type to denote "it's a pointer to a"
* in usage to denote "follow this pointer to"

References
& notation

January 2010 Greg Mori 38

How do | manage memory?
C++

Call delete manually (or delete [] for arrays)
Watch out for bugs
Memory leaks (forgot to delete)

Dangling pointers/references (deleted when you shouldn't
have)

January 2010 Greg Mori 39

Readings

Carrano
Ch. 4.1

Januar y 2010 Greg Mori 40

