External Storage

... we have been assuming that the data
collections we have been manipulating were
entirely stored in memory.

BlG Datasets

... In practice, this is not always a reasonable
assumption.

What if we were asked to search records of all Canadians
for a particular Canadian (search key -> lastname)?

How many records?
Problem?

Record for a Canadian

class Canadian
]
private:
string lastName;
string firstName;
string middleName;
string SIN;

BlG Datasets

What if we were asked to search records of all
Canadians for a particular Canadian (search
key -> l[astname)?

How many records?

How much space?
35 million * 20 bytes / string * 100 strings(?) = approx 70GB

Some large databases, in which records are kept in
files stored on external storage such as hard disk,
cannot be read entirely into main memory.

We refer to such data as disk-bound data.

BIG Datasets Stay on Disk

Hence, big datasets cannot fit in memory
Need to keep them on hard disk (*on disk”)

Just read what we need at one time into memory

Challenge: memory and disk access are not
created equal

Disk-Bound Data

Time efficiency of search for Canadian?
Important factors:

Accessing data stored in a file kept on the hard disk is
extremely slow compared to accessing data in memory
-> order of milliseconds (103)

In contrast, accessing data in memory is fast
-> order of nanoseconds (1079)

Given the million-to-1 ratio of disk access time versus
memory access time, to search our 30M records
efficiently, we will need to devise a way that minimizes
the number of disk accesses performed.

Why 1s Hard Disk Access Slow?

Spindle Head

Platter

Actuator Arm

Actuator Axis

Power Connector

Jumper Block
Actuator

IDE Connector

7,200 RPM
2.5-Inch Hard Disk Drives

MK8054GSY
Drive Capacity 80GB'
Drive Interface
Number of Platters (disks) 1
Number of Data Heads 1

Transfer Rate to Host

Track-to-track Seek
Average Seek Time
Rotational Speed
Buffer Size

MK1254GSY MK1654GSY MK2554GSY

160GB' 250GB'
Serial ATA Revision 2.6 / ATA-8

1 1 2

2 2 4

3 Gb/sec

120GB'

1ms
10.5ms (Read), 12ms (Write)
r,Z0U0 RFIVI

16MB

Your average PC hard drive

TOSHIBA

Leading Innovation

MK3254GSY

320GB'

N
s

>

Your not-so-average hard drive

15,000 RPM TQSHIBA |
3.5-Inch Enterprise Hard Disk Drives Leading Innovation 5>

MBA3073° MBA3147° MBA3300°
Drive Capacity 73.5GB' 147GB' 300GB'
Drive Interface Dual Port SAS (RC), SCA-2 80Pin (NC), 68Pin Wide (NP), Dual Port FCAL (FC)
Number of Platters (disks) 1 2 4
Number of Data Heads 2 4 8
RoHS Compliant Yes
Transfer Rate to Host SAS: 3 Gb/sec, SCSI: 320 MB/sec, FCAL: 4 Gb/sec
Track-to-track Seek 0.2ms (Read), 0.4ms (Write)
Average Seek Time 3.4ms (Read), 3.9ms (Write)
Rotational Speed 15,000 RPM
Average Latency 2ms

Buffer Size SCSI: 8MB, SAS/FC: 16MB®

Solid State Drives (SSD) can be much faster
than spinning disks

And much more expensive

However, still large latency compared to RAM

Sanity Check: Is that Slow?

What do those numbers mean?
Search in ared-black tree with 35 million records?
logn =25

If dataset fits in memory
Hundreds of nanoseconds per search

Can handle thousands of searches per second
If dataset doesn'’t

Hundreds of milliseconds per search
Can handle only a few searches per second

Disk Access

Most time consuming operation when
elements stored in external storage (disk)

Compared to 10 milliseconds, compute time is
irrelevant

How many operations can a CPU do in 10 milliseconds?
@3GHz, a lot

Block

Basic unit written to/read from external
storage (disk)
If you're going to read don't just read 1 bit
Block size varies on each system ...

Platter

Actuator Arm

Power Connector

Jumper Block
Actuator

IDE Connector

Example of blocks

O QO /Q

O

Nodes of a binary tree can be located in different blocks on a disk.

File Access

Random access file
Linear data collection (like an array)

Sequential access file

Linear data collection (like a linked list)

Go to external_reading example

Back to our problem

We have records for ~30M Canadians

Assume we can't store them in memory

So we keep them on disk

Now we want to search for one Canadian

How should we do it?

Search - Take #1

We could store our 30M Canadian records in a
disk file which we access randomly

Assume each block on disk contains only 1 record
Time efficiency to search for that Canadian?

If our records are not sorted: linear search -> O(n)

How fast is this in seconds?
30M * milliseconds = seconds

Search - Take #2

We could store our 30M Canadian records in a
disk file which we access randomly.

Assume each block on disk contains only 1 record

Sort the records within the disk file (A. Aaronson at
beginning of file, Z. Zygmund at end)

Time efficiency to search for that Canadian
If our records are sorted: binary search -> O(log, n)

How fast is this in seconds?
log (30M) * milliseconds = hundreds of milliseconds

Better, but still not so good

Still need to do many disk accesses

Array is sorted, so log(n) disk accesses
Disk accesses are really slow

Let’s try to reduce them even further

Search - Take #3

Main idea: split data into two files on disk
DATA file

Holds all information about all Canadians (our 70GB of
data)

INDEX file

A smaller file that tells me where to find data about each
Canadian
Remember the seekg command, random access to DATA file

Index File

INDEX file should hold entries <key, file byte>
key is name of Canadian (or SIN)

file byte is offset into DATA file of where the
record for this Canadian starts

<G Mori, 504>

<H Mori, 206>

<G Jensen, 7>

<R Henderson, 1083> ¢

501

4
502

2
503

i

507

t
500

M
504

o
505

r
506

INDEX file
DATA file

Size of Index File

Index file will be smaller than data file
File size will be?
Canadians * key size * file byte size

Much smaller than data file if record for each
Canadianis large

Organization of Index File

In order to find data about
an individual, need to find
his entry in index file

So what should we do to
the index file?

Sort it, e.g. into a tree data
structure

<G Mori, 504>

<H Mori, 206>

<G Jensen, 7>

<R Henderson, 1083>

INDEX file

Search —Take #3 Flavour 1

Let’s assume 30 million * key size * file byte
size is not “too big”

l.e. it fits in memory
Build a tree structure to store the contents of
the index file in memory

Can build it / read it from disk when the program
starts

Make it a balanced tree (e.qg. red-black)

Search - Take #3 — Flavour 1

Time efficiency to search for a record will be:

O(log, n) comparisons (worst case)
(for searching the index tree and finding the desired key, hence block #)

+ 1 disk access to fetch the block, in the data file, that
contains the desired record (using block # found above)

Time efficiency to search for a particular
Canadian will be:

about 25 comparisons + 1 disk access
Just a few milliseconds

Isn’t that Index File Pretty Big?

Wait a minute, 30 million * key size * file byte

size isn't that much smaller than the data
file!!

Hmm... we can use a similar trick on the index
file

Search - Take #3 — Flavour 2

If the entire tree stored in the Index file
cannot be loaded into main memory:
Each of its nodes, stored in a block, will
contain as the “location of this node’s left and
right subtrees” the block # of the block in the
Index file containing the root of the left/right
subtree.

l.e. instead of a tree in memory with child
pointers, a tree in the file with child block #s

Search - Take #3 — Flavour 2

To perform a search:

the block containing the root of the tree is first
accessed from the Index file

Tree search algorithm is performed on node contained
in that block

the block # of the next tree node (block in Index file) is

determined and the block containing that node is
accessed

above two steps are repeated until the desired key is
found or bottom of tree is reached i.e., key not found)

if key found, the data file block containing the
matching record is accessed using the block # of pair

Search - Take #3 — Flavour 2

Time efficiency to search for a record will be:
O(log, n) disk accesses (worst case)

+ 1 disk access to fetch the block, in the data file, that
contains the desired record

Time efficiency to search for a particular
Canadian will be:

about 25 disk accesses + 1 disk access

Not so good (again)

Wait, 25 disk accesses sounds familiar

That was the case for good old binary search
on the data file

Let’s (again) try to do better

Search - Take #4

How can we improve search performance?

In order to minimize the number of disk
accesses, we need to minimize the number of
levels in our search tree, i.e., we need to
flatten our tree.

This can be achieved by increasing the
number of records each node of our search
tree can deal with.

A B Tree can help ...

More Trees (M-way, B)

M-Way Search Tree

Definition: m-way search treeT is a tree of order m, in which
each node can have at most m children
Binary search trees generalize directly to m-way search trees
Purpose of m-way search tree: Efficient search (hence
retrieval)
Other names given to m-way search trees are

m-ary search trees

multiway search trees

n-way search trees

n-ary search trees

M-Way Search Tree

Definition: An m-way search tree T is an m-way tree (a
tree of order m) such that:
T is either empty or
each non-leaf node of T has at most m children (subtrees):
T, Ty o
and m—1 key values in ascending order:
K, <K, <...<K_,,

for every key valueV in subtree T.: (rules of construction)

V<K, i=0
Ki<V<K,, 1<=i<=m-2
V>K I=m-1

m-1/

every subtree T, is also an m-way search tree

16

18

17

22

26

20

24

28

30

Insertion into m-way Search Tree

Search for the spot where the new element is
to be inserted (using its search key) until you
reach an empty subtree

Insert the new element into the parent of the
empty subtree, if there is room in the node.
Insert the new element into the subtree, if
there is no room in its parent.

Insertion into an m-way Search Tree

Let’s construct the m-way search tree shown on the
previous slide where m=3
To do so, we shall insert the following search keys: 18, 16,
6, 22, 26, 4, 28, 24, 20, 30, 17
Remember: the search keys (and their associated
elements) are inserted in ascending sorting order in a
node
Let's begin by inserting 18:
since the m-way tree is empty, we create the first node i.e., the
root and insert 18

18

Insertion into an m-way Search Tree

Let's insert 16:

Search for the spot where the new element is to be inserted using
its search key until you reach an empty subtree

Insert the new element into the parent of the empty subtree, in
the proper sorted order, if there is room in the parent node.

18 becomes 16| 18

Insertion into an m-way Search Tree

Let's insert 6:

Search for the spot where the new element is to be inserted using
its search key until you reach an empty subtree

Insert the new element into the empty subtree, if there is no room
in its parent node.

16 | 18 becomes 16| 18

/

Insertion into an m-way Search Tree

Let's Insert 22:

Search for the spot where the new element is to be inserted using
its search key until you reach an empty subtree

Insert the new element into the empty subtree, if there is no room
in its parent node.

16| 18 becomes 16| 18

/ AN

Insertion into an m-way Search Tree

Let's insert 26:

Search for the spot where the new element is to be inserted using its
search key until you reach an empty subtree

Insert the new element into the parent of the empty subtree, in the
proper sorted order, if there is room in the parent node.

16 | 18 becomes 16| 18

AN AN

Insertion into an m-way Search Tree

Let's insert 4:

Search for the spot where the new element is to be inserted using its
search key until you reach an empty subtree

Insert the new element into the parent of the empty subtree, in the
proper sorted order, if there is room in the parent node.

16 | 18 becomes 16 | 18
AN VAN
6

6 22126 4 22126

Insertion into an m-way Search Tree

Let's insert 28:

Search for the spot where the new element is to be inserted using its
search key until you reach an empty subtree

Insert the new element into the empty subtree, if there is no room in
its parent node.

16 | 18 becomes 16|18

AN VAN

4 |6 22126 416 22126

N\

Insertion into an m-way Search Tree

Let's insert 24:

Search for the spot where the new element is to be inserted using
its search key until you reach an empty subtree

Insert the new element into the empty subtree, if there is no room
in its parent node.

16 | 18 becomes 16| 18

AN /\

416 22126 4 26

N /\

28 24

Insertion into an m-way Search Tree

L et’s Insert 20:

Search for the spot where the new element is to be inserted using its
search key until you reach an empty subtree

Insert the new element into the empty subtree, if there is no room in
its parent node.

16 | 18 becomes 16| 18

2 Bm o5 B
—/ N\ /\

20 24 28 24

Insertion into an m-way Search Tree

Let’s insert 30:

Search for the spot where the new element is to be inserted using its
search key until you reach an empty subtree

Insert the new element into the parent of the empty subtree, in the
proper sorted order, if there is room in the parent node.

16 | 18 becomes 16| 18

AN /\

416 22126 4 26

VN //\

20 24 28 20 28 | 30

Insertion into an m-way Search Tree

Let's insert 17:

Search for the spot where the new element is to be inserted using its
search key until you reach an empty subtree

Insert the new element into the empty subtree, if there is no room in
its parent node.

4 {16 18> 26 becomj ‘6// \ g
// \ 2// > 30

20 24 28 |30

B Tree

Definition: A BTree is a data collection that
organizes its blocks (B) into an m-way search
tree, and in addition

the root of a B Tree has at least 2 children (unless
it is a leaf node)

and its other non-leaf nodes have at least/m/ 2|
children.

B Tree

A B Tree is built from the leaves up, rather
than from the root down, and so all leaf
nodes in a B Tree are on the same level.

Hence, B Tree is a balanced m-way tree, just as
Red-black trees are balanced binary search trees

B-Tree Structure

Each block contains a tree node
m-1 <key, data file block #> pairsin a node +
index file block # as links to children/subtrees

Example of B Tree

B-Tree of order 5 (m =5) in which every node (except the root and the leaves) has
e at least [5 / 2_| = 3 children, and

* no more than 5 children

| o PRPTPTTTIPIITIPIrY <Key, block #> pair
/ o R bl . S Children: block # in index file
c | f nr
/ fj N BN
= L HENE k|| AR s [t {ul3

Example: The following is a B Tree with m=4

(such BTrees are called 2-3-4 search trees)

17

20

15

7|12
5 9
3|4 3
6 10| 11

22

23

18

Insertion into a B Tree

Let’s construct the B Tree shown on the previous slide
where m=¢4
Actually, that B Tree is an example of a 2-3-4 search tree

To do so, we shall insert the following search keys: 12, 1, 7,
23[20[6I 18[5[4[22[10[15[8I 3 I/ 9[17[11[16
Remember: the search keys (and their associated
elements) are inserted in ascending sorting order in a
node
Let's begin by inserting 12:

since the m-way tree is empty, we create the first node i.e., the

root and insert 12

12

Insertion into a B Tree

Insert 1:

compare each key found in the root with the
key 1 and since 1 < 12, move 12 over, then insert
1

1112

Insert 7:

compare each key found in the root with the
key 7 and since 1 < 7 <12, move 12 over, then

insert7 1 7112

Insertion into a B Tree

Insert23: | 1|7 |12

starting at the root, right away we encounter a full
node so we split it as follows:

create a new node (parent) and move the middle key
Into it

create a sibling and move the key > 7 into it

link the subtrees to the newly formed parent node

7

[\

Insertion into a B Tree

Insert 23 (cont'd):

starting at the root, since 7 < 23, 23 is inserted into
its right subtree

considering the root of its right subtree, since its
only key 12 < 23, insert 23 after 12

7

AN

Insertion into a B Tree

Insert 20: .
1 12|23

starting at the root, since 7 < 20, 20 is inserted into
its right subtree

moving on to the root of its right subtree, since 12
< 20 < 23, move 23 over, then insert 20

7

[\

Insertion into a B Tree

Let’s pick up the pace now...
Insert 6:

7 7

AN [O\

Insertion into a B Tree

Insert 18: \

1|6 1212023

on our way to insert 18 we encounter
a full node so we split it first:

we move its middle key into the parent node
we create a sibling and move the key > 20 into it

link the newly formed rightmost subtree to the parent
node

7 120

[N T

116 12 23

Insertion into a B Tree

Insert 18 (cont'd):

7 |20
1|6 12|18 23
Insert &:
7 |20

Insertion into a B Tree

Insert 4: 7 120

[N T

115]6 12 | 18 23

on our way to insert 4 we encounter a full node, so
we Sp“t it first 517120

[\

1 6 12118 23

theninsert 4

517

[N T

Insertion into a B Tree

Insert 22: 5/ / <
1|4 6 12118 23

on our way to insert 22, right away we encounter a
full node so we split it first hence creating another
level

7

5 20

o/ T

Insertion into a B Tree

Insert 22 (cont'd):
then insert 22:

/

Insertion into a B Tree

Insert 10:
5 20
1|4 6 1011218

22

23

Insertion into a B Tree

Insert 15:

on our way to insert 15, we encounter a full node,
so we split it first

/

5 12 120

— 7 /

7

Insertion into a B Tree

Insert 15:
then insert 15:

7
/
5 12| 20
— \
4 6 10 15[18] ||22]23

Insertion into a B Tree

Insert 8, 3, 9 and 17:

7
/
5 12| 20
— 7 [\
3046 8 19 10] [15]17]18]]22]23

Insertion into a B Tree

Insert 11:

on our way to insert 11, we encounter a full node,
so we split it first, then we insert 12

/

7

/

Insertion into a B Tree

And finally, we insert 16:

on our way to insert 16, we encounter 2 full nodes
which we split before inserting 16.

/7

5 9 12120

134/8 /1517182223

Insertion into a B Tree

Insert 16 (cont'd):

/

7 112

Insertion into a B Tree

Insert 16 (cont'd):

/

7 112

Insertion into a B Tree

Insert 16 (cont'd):

7 112
|5 9 1720
113141 6 3 \\15 16 \X 22| 23
A 10111 18
Et voila!

Phew

Ok, don’t worry, that won't be on the exam
Summary: another balanced tree
But it's not binary, it's an m-way tree
Will have far fewer levels in it than a binary tree
Has similar balancing properties to red-black

Number of levels similar to best case log(n)

B Tree Search Algorithm

Access block from index file containing the root
Linearly search for key in accessed block

If found -> done!

If not found & node (block) is leaf -> not there!

Otherwise, determine which index file block # to access next based
on rules of construction of m-way search tree

Access that block from index file

Repeat above step "Linearly search for key in accessed block”
If found desired key: determine its matching block # and
access that block from data file

Search - Take #4 - BTree

Assuming the entire Index file (B Tree) cannot be loaded into
main memory.

In analyzing the search time efficiency, we need to know how
many levels a B Tree (accommodating 30M records) has.
Answer:

Assuming we are using a B Tree of order 4 to store our 30M keys (and

matching block #'s) and that each node of the B Tree is filled (i.e., each

node contains 3 key pairs) and that every level of our B Tree is filled,
then our B Tree contains:

(4- —1) key pairs, where L is the number of levels.

Search - Take #4 - B Tree

Hence a data collection containing 30,000,000 data
records will have
log,(30,000,001) or levels!

09,4

In this example, we could increase the value of m,

which would decrease the number of levels in our B Tree,
hence further reduce the number of disk accesses
performed during a search of our data collection
containing 30M Canadians

Advantage of B Trees

Good for disk-bound data

When nis large, m can be set to a large number, which keeps the
number of levels low

Since the number of disk accesses is proportional to the number of
levels in a tree, then small # of levels translates into small number of

disk accesses, and hence good time efficiency for search/insert/
remove operations

In practice, commercial databases use specialized versions of
these search trees where mis of the order of 100

External Sorting

Sorting

Assume we inserted our 30M Canadian
records into a random access disk file.

How can we sort these records?

Let's look at our favourite algorithms
QuickSort
HeapSort
MergeSort

QuickSort

Find pivot
Walk data, swapping entries greater than/
less than pivot

s this going to work well if data are stored on
disk?

HeapSort

Heapify data
Call bubbleUp repeatedly
Remove data from heap

s this going to work well if data are stored on
disk?

Merge Sort

The simplest algorithm that can be used to
sort disk-bound data, and one that turns
out to be quite efficient, is Merge Sort.
Recall the internal Merge Sort algorithm:

divide the data collection into two sections of
approx. equal size

- recursively apply the algorithm to sort each of
the smaller sections - sorting is done on adjacent records

- merge the sorted sections back together

External MergeSort example

Suppose we're trying to sort 32 million records
Suppose disk blocks hold 1 million records

|.e. reading 1 million records is roughly as fast as
reading 1

Suppose we only have enough memory to hold 3
million records in memory at a time

Let’s see how we can MergeSort under these
constraints

External Merge Sort Algorithm

Phase 1:
Divide 32 million records into groups of 1 million

Read each 1 million into memory in turn

For each group i, sort and write back to disk as R_i
(sorted)

This phase can be done under our constraint
Phase 2:

Merge sorted groups R_1,...,R_32

Let’s see why this can be done under our
constraint

External Merging

Recall constraint: only 3 million records in
memory at a time, blocks are 1 million
We need to merge up 32 sorted files R_1,
...,R_32 each with 1 million records

First level merge is easy?
Merge R_1and R_2into R_{1,2}, R_3and R_j, ...
Each merge only requires 2 million records
What about the second level merges?

That is, merging R_{1,2} and R_{3,4}

Larger Merges

Suppose we are merging one sorted 8 million

record file with another

Only need memory for 3 mi
Read 1 million records (a bloc
Read 1 million records (a bloc

lion records!
K) from file 1

) from file 2

Allocate memory for 1 million records for output

Start merging

Once the output is full, write it to disk

Once a file input block is finished, read another

Why is this better?

QuickSort is O(n log n)
But how many disk reads will it require?
O(n log n)

External MergeSort is O(n log n)

But how many disk reads will it require?
O(n/B log n/B)

Where B is the number of records in a block

Summary

Summary

How to handle big datasets?

Big = do not fitin memory
Disk access is slow
Minimize number of disk accesses algorithms

perform
Searching

Index files and data files

Can access index file from disk too if it's too big
Sorting

Use MergeSort

Readings

Carrano: Ch. 14

