Priority Queues and Heaps

CMPT 225

Remember Queues?

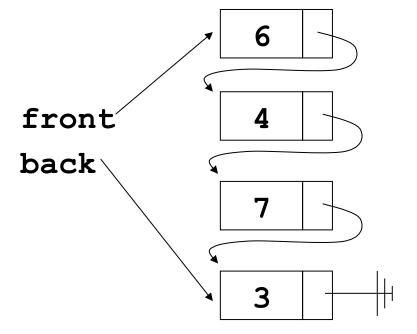
- A queue should implement at least the first two of these operations:
 - insert insert item at the back of the queue
 - remove remove an item from the front
 - peek return the item at the front of the queue without removing it
- It is assumed that these operations will be implemented efficiently
 - That is, in constant time

Queue Implementations

Either with an array

4	18	25	2	5			
0	1	2	3	4	5	6	7

Or with a linked list



October 2004

John Edgar

3

FIFO

- Queues are first-in first-out (FIFO)
- Priority queues are a fancier type of queue
 - Maintains an ordering of items in the queue, not necessarily first-in first-out

Priority Queues

Priority Queues

- Items in a priority queue are given a priority value
 - Which could be numerical or something else
- The highest priority item is removed first
- Uses include
 - System requests
 - Data structure to support Dijkstra's Algorithm

September 2004 John Edgar 6

Priority Queue Problem

- Can items be inserted and removed efficiently from a priority queue?
 - Using an array, or
 - Using a linked list?
- Note that items are not removed based on the order in which they are inserted

Now we'll see how we can do these efficiently (using a different data structure)

September 2004 John Edgar 7

ADT Priority Queue

- Items in a priority queue have a priority
 - Not necessarily numerical
 - Could be lowest first or highest first
- The highest priority item is removed first
- Priority queue operations
 - Insert
 - Remove in priority queue order
 - Both operations should be performed in at most O(log n) time

Priority Queue Implementation

September 2004 John Edgar 9

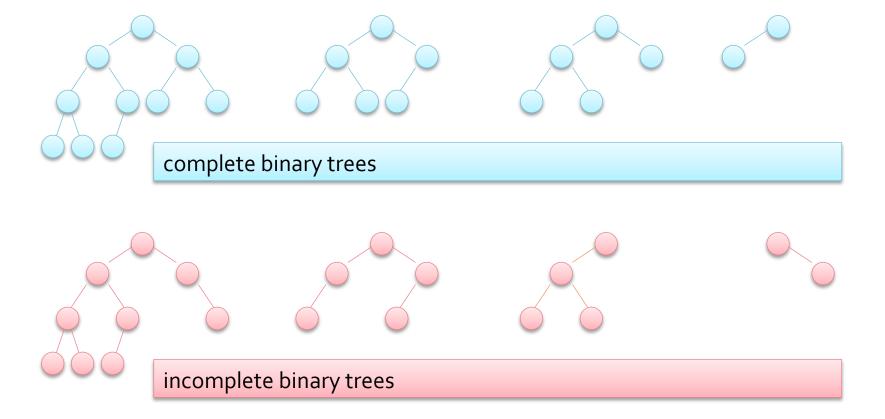
Implementing a Priority Queue

- Items have to be removed in priority order
 - This can only be done efficiently if the items are ordered in some way
- One option would be to use a balanced binary search tree
 - Binary search trees are fully ordered and insertion and removal can be implemented in O(log n) time
 - Some operations (e.g. removal) are complex
 - Although operations are O(logn) they require quite a lot of structural overhead
- There is a much simpler binary tree solution

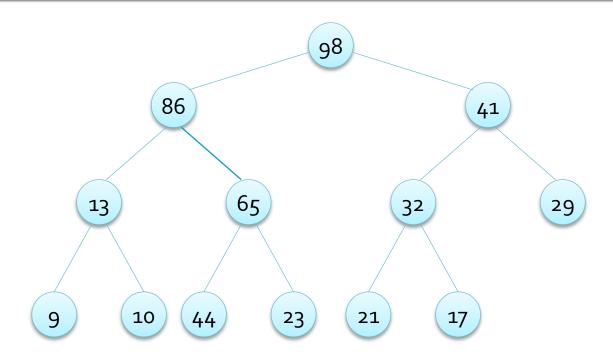
Heaps

- A heap is binary tree with two properties
- Heaps are complete
 - All levels, except the bottom, are completely filled in
 - The leaves on the bottom level are as far to the left as possible.
- Heaps are partially ordered
 - The value of a node is at least as large as its children's values, for a max heap or
 - The value of a node is no greater than its children's values, for a min heap

Complete Binary Trees



Partially Ordered Tree - max heap



Heaps are not fully ordered, an inorder traversal would result in:

9, 13, 10, 86, 44, 65, 23, 98, 21, 32, 17, 41, 29

Priority Queues and Heaps

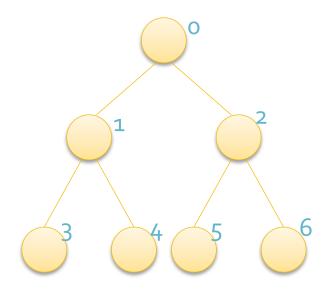
- A heap can implement a priority queue
- The item at the top of the heap must always be the highest priority value
 - Because of the partial ordering property
- Implement priority queue operations:
 - Insertions insert an item into a heap
 - Removal remove and return the heap's root
 - For both operations preserve the heap property

Heap Implementation Using an Array

September 2004 John Edgar 15

Heap Implementation

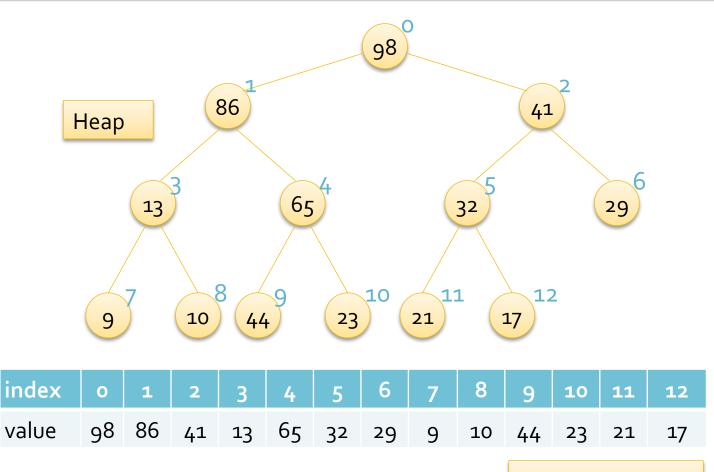
- Heaps can be implemented using arrays
- There is a natural method of indexing tree nodes
 - Index nodes from top to bottom and left to right as shown on the right
 - Because heaps are complete binary trees there can be no gaps in the array



Referencing Nodes

- It will be necessary to find the index of the parents of a node
 - Or the children of a node
- The array is indexed from 0 to n-1
 - Each level's nodes are indexed from:
 - $2^{\text{level}} 1$ to $2^{\text{level+1}} 2$ (where the root is level 0)
 - The children of a node i, are the array elements indexed at 2i + 1 and 2i + 2
 - The parent of a node i, is the array element indexed at floor((i − 1) / 2)

Heap Array Example



Underlying Array

Heap Insertion

September 2004 John Edgar 19

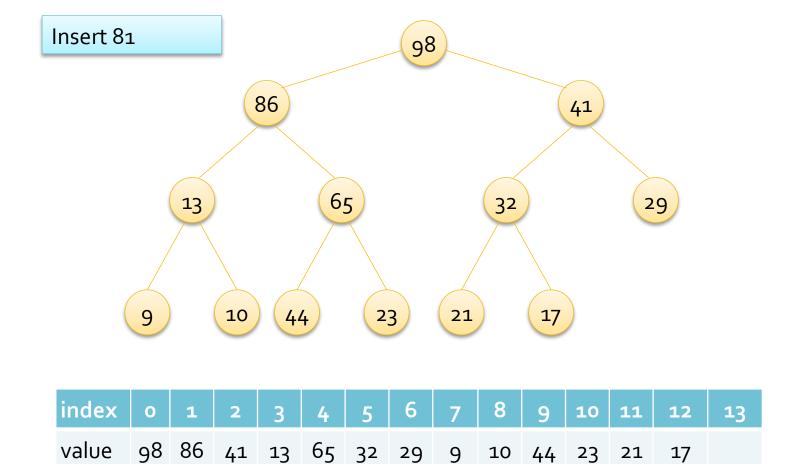
Heap Insertion

- On insertion the heap properties have to be maintained; remember that
 - A heap is a complete binary tree and
 - A partially ordered binary tree
- There are two general strategies that could be used to maintain the heap properties
 - Make sure that the tree is complete and then fix the ordering or
 - Make sure the ordering is correct first
 - Which is better?

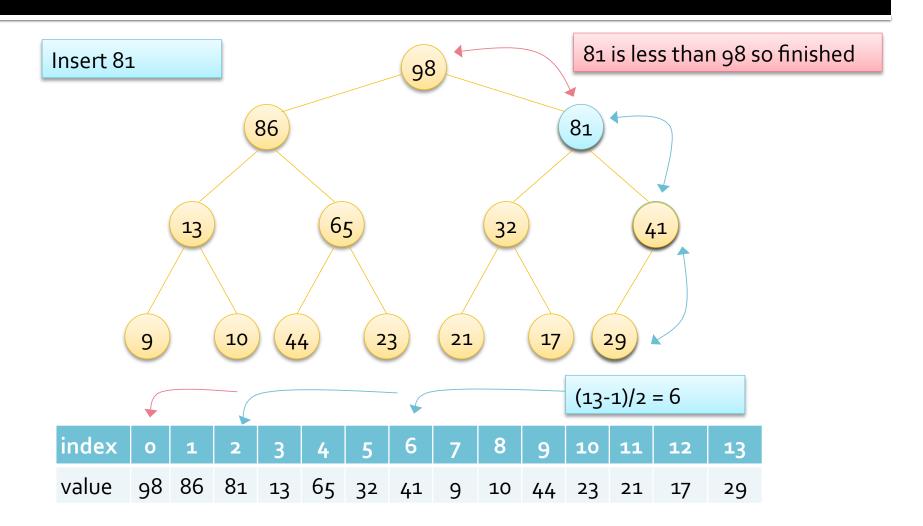
Heap Insertion Sketch

- The insertion algorithm first ensures that the tree is complete
 - Make the new item the first available (left-most) leaf on the bottom level
 - i.e. the first free element in the underlying array
- Fix the partial ordering
 - Compare the new value to its parent
 - Swap them if the new value is greater than the parent
 - Repeat until this is not the case
 - Referred to as bubbling up, or trickling up

Heap Insertion Example



Heap Insertion Example

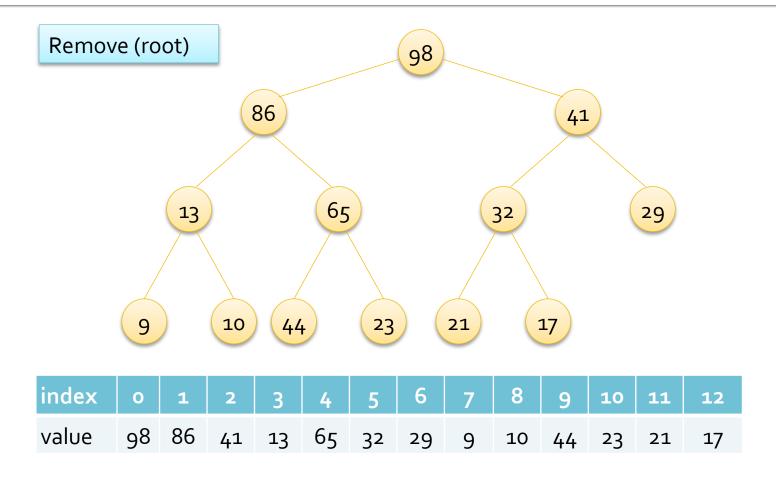


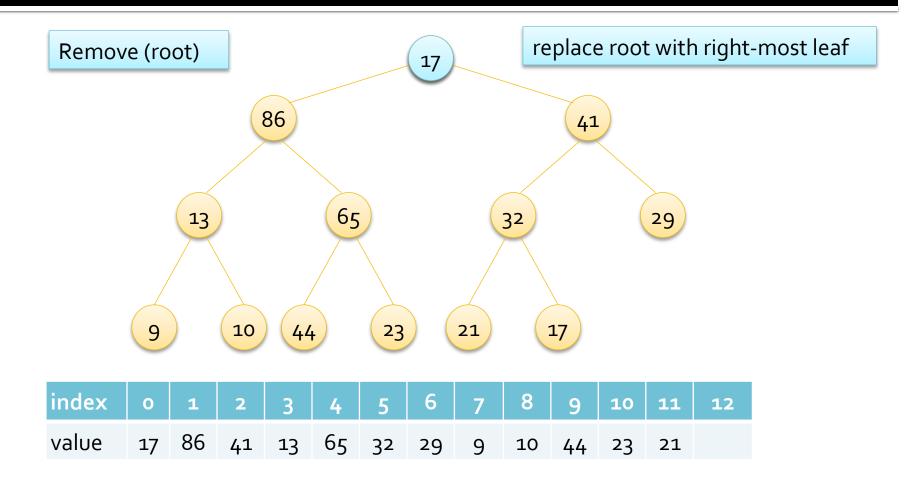
Heap Removal

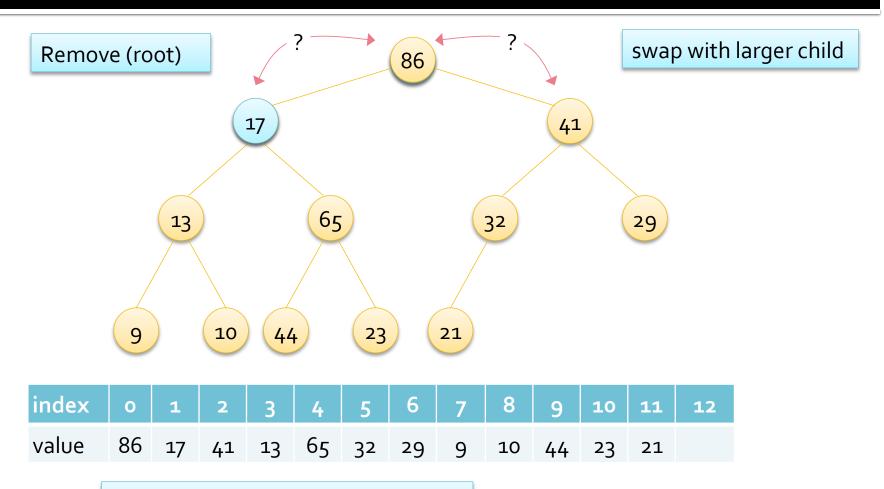
September 2004 John Edgar 24

Heap Removal

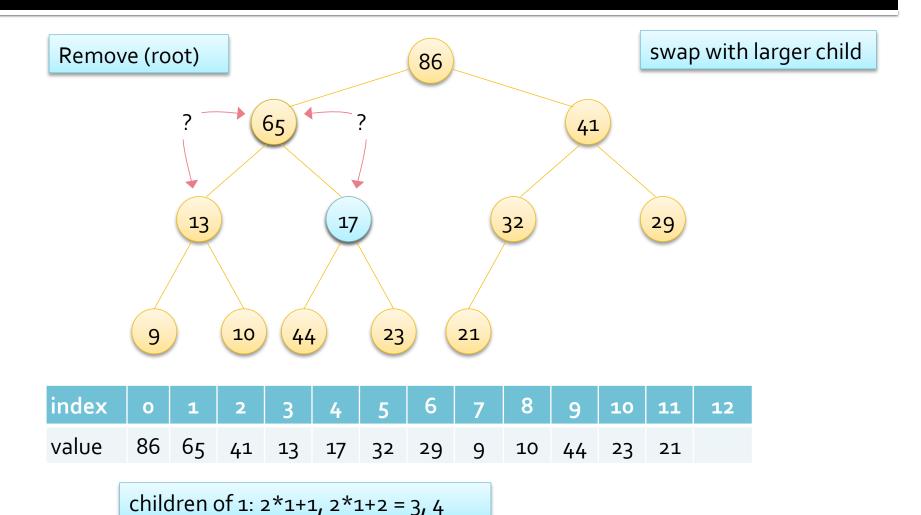
- Make a temporary copy of the root's data
- Similarly to the insertion algorithm, first ensure that the heap remains complete
 - Replace the root node with the right-most leaf
 - i.e. the highest (occupied) index in the array
- Swap the new root with its largest valued child until the partially ordered property holds
 - i.e. bubble down
- Return the root's data

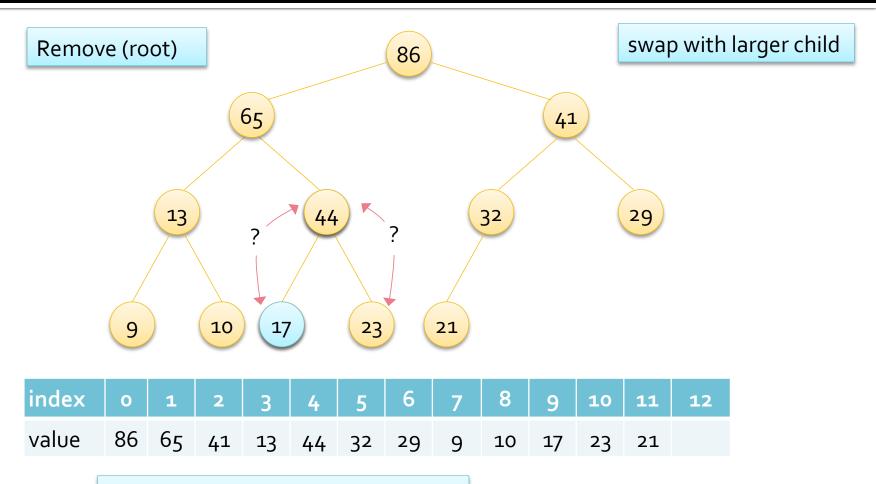






children of root: 2*0+1, 2*0+2 = 1, 2





children of 4: 2*4+1, 2*4+2 = 9, 10

Bubbles

September 2004 John Edgar 31

Bubble Up and Bubble Down

- Helper functions are usually written for preserving the heap property
 - bubbleUp ensures that the heap property is preserved from the start node up to the root
 - bubbleDown ensures that the heap property is preserved from the start node down to the leaves
- These functions may be implemented recursively or iteratively

BubbleDown Algorithm

Go to terminal

Removal Algorithm

Insertion Algorithm

Lab next week

BubbleUp Algorithm

Lab next week

Heap Efficiency

- For both insertion and removal the heap performs at most height swaps
 - For insertion at most height comparisons
 - To bubble up the array
 - For removal at most height * 2 comparisons
 - To bubble down the array (have to compare two children)
- Height of a complete binary tree is [log₂(n)]
 - Both insertion and removal are therefore O(logn)

Sorting with Heaps

September 2004 John Edgar 38

Sorting with Heaps

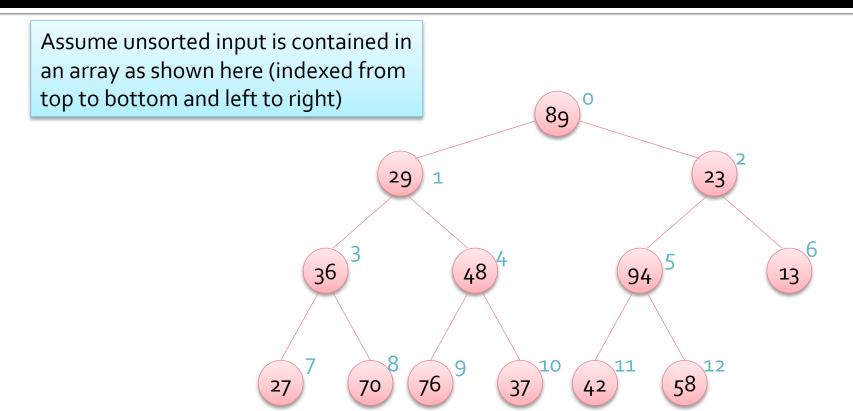
- Observation 1: Removal of a node from a heap can be performed in O(logn) time
- Observation 2: Nodes are removed in order
- Conclusion: Removing all of the nodes one by one would result in sorted output
- Analysis: Removal of αll the nodes from a heap is a O(n*log n) operation

But ...

- A heap can be used to return sorted data
 - In *O*(*n**log*n*) time
- However, we can't assume that the data to be sorted just happens to be in a heap!
 - Aha! But we can put it in a heap.
 - Inserting an item into a heap is a O(logn) operation so inserting n items is O(n*logn)
- But we can do better than just repeatedly calling the insertion algorithm

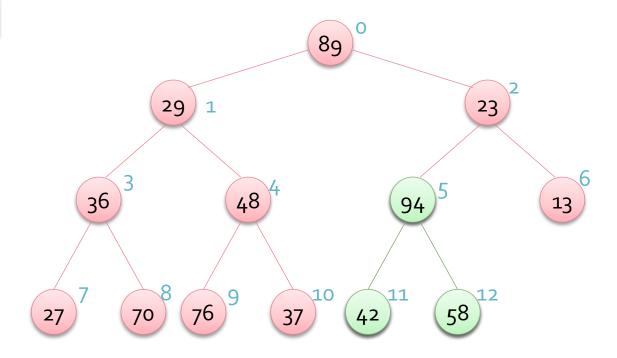
Heapifying Data

- To create a heap from an unordered array repeatedly call bubbleDown
 - Any subtree in a heap is itself a heap
 - Call bubbleDown on elements in the upper ½ of the array
 - Start with index n/2 and work up to index o
 - i.e. from the last non-leaf node to the root
- bubbleDown does not need to be called on the lower half of the array (the leaves)
 - Since bubbleDown restores the partial ordering from any given node down to the leaves



n = 12, (n-1)/2 = 5

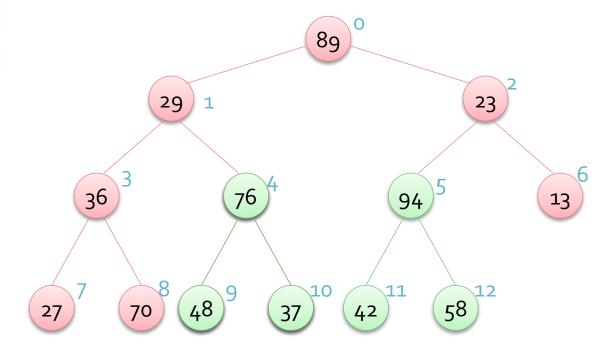
bubbleDown(5)



n = 12, (n-1)/2 = 5

bubbleDown(5)

bubbleDown(4)

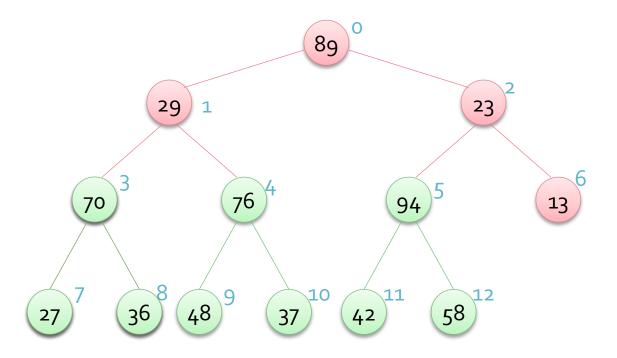


n = 12, (n-1)/2 = 5

bubbleDown(5)

bubbleDown(4)

bubbleDown(3)



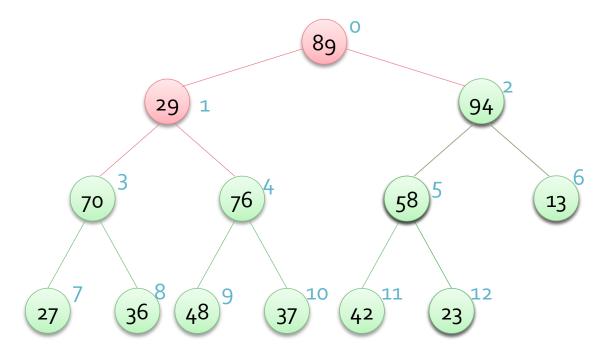
n = 12, (n-1)/2 = 5

bubbleDown(5)

bubbleDown(4)

bubbleDown(3)

bubbleDown(2)



n = 12, (n-1)/2 = 5

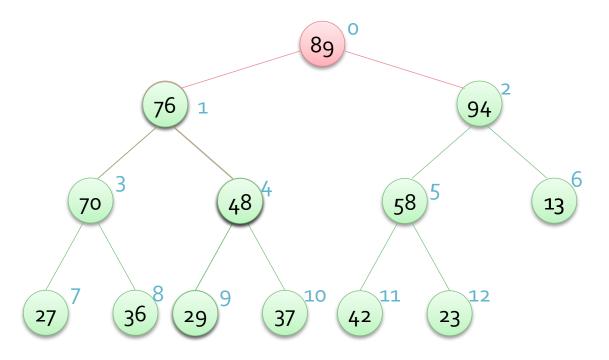
bubbleDown(5)

bubbleDown(4)

bubbleDown(3)

bubbleDown(2)

bubbleDown(1)



n = 12, (n-1)/2 = 5

bubbleDown(5)

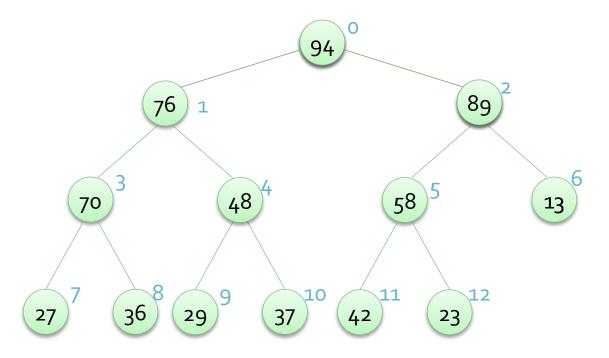
bubbleDown(4)

bubbleDown(3)

bubbleDown(2)

bubbleDown(1)

bubbleDown(o)



Cost to Heapify an Array

- bubbleDown is called on half the array
 - The cost for bubbleDown is O(height)
 - It would appear that heapify cost is O(n*logn)
- In fact the cost is O(n)
- The analysis is complex but
 - bubbleDown is only called on n/2 nodes
 - and mostly on sub-trees

HeapSort Algorithm Sketch

- Heapify the array
- Repeatedly remove the root
 - After each removal swap the root with the last element in the tree
 - The array is divided into a heap part and a sorted part
- At the end of the sort the array will be sorted in reverse order

HeapSort Notes

- The algorithm runs in O(n*logn) time
 - Considerably more efficient than selection sort and insertion sort
 - The same average case complexity as MergeSort and QuickSort
- The sort can be carried out in-place
 - That is, it does not require that a copy of the array to be made

Summary

September 2004 John Edgar 52

Objectives

- Define the ADT priority queue
- Define the partially ordered property
- Define a heap
- Implement a heap using an array
- Implement the heapSort algorithm

Readings

- Java Ch. 12
- C++ Ch. 11