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Objectives

Define the red-black tree properties
Describe and implement rotations
Implement red-black tree insertion

We will skip red-black tree deletion
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Binary Search Trees — Performance

ltems can be inserted in
and removed from BSTs
in O(height) time
So what is the height of a
BST?
If the tree is balanced:
O(logn)

If the tree is very
unbalanced: O(n)
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Balanced Binary Search Trees

Define a balanced binary tree as one where

There is no path from the root to a leaf* that is more
than twice as long as any other such path

The height of such a tree is O(logn)
Guaranteeing that a BST is balanced requires either

A more complex structure (2-3 and 2-3-4 trees) or

More complex insertion and deletion algorithms (red-
black trees)

*definition of leaf on next slide
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-black Tree Structure

A red-black tree is a balanced BST
Each node has an extra colour field which is
red or black

Usually represented as a boolean —isBlack
Nodes have an extra pointer to their parent

Imagine that empty nodes are added so that every
real node has two children

They are imaginary nodes so are not allocated space
The imaginary nodes are always coloured black
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-black Tree Properties

Every node is either red or black
Every leaf is black

This refers to the imaginary leaves
i.e. every null child of a node is considered to be a black leaf
If a node is red both its children must be black

Every path from a node to a leaf contains the same
number of black nodes
The root is black (mainly for convenience)
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-black Tree Intuition

Perfect trees are perfectly balanced

But they are inflexible, can only store 1, 3, 7, ...
nodes
"Black” nodes form a perfect tree

"Red” nodes allow flexibility

Draw some pictures
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-black Tree Height

The black height of a node, bh(v), is the number of
black nodes on a path from v to a leaf

Without counting v itself

Because of property 4 every path from a node to a leaf
contains the same number of black nodes

The height of a node, h(v), is the number of nodes
on the longest path from v to a leaf

Without counting v itself

From property 3 a red node’s children must be black
So h(v) = 2(bh(v))
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Balanced Trees

It can be shown that a tree with the red-black

structure is balanced
A balanced tree has no path from the root to a leaf that is
more than twice as long as any other such path

Assume that a tree has n internal nodes
An internal node is a non-leaf node, and the leaf nodes are
imaginary nodes
A red-black tree has = 2" — 1 internal (real) nodes
Can be proven by induction (e.g. Algorithms, Cormen et al.)
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-black Tree Height

Claim: a red-black tree has height, h < 2*log(n+1)
n =25 —1 (see above)
bh = h [ 2 (red nodes must have black children)
n = 2> —1 (replace bh with h)
log(n +1) = h/2(add 1, log, of both sides)
h < 2*log(n + 1) (multiply both sides by 2)
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Tree Rotations




Rotations

An item must be inserted into a red-black tree at
the correct position
The shape of a tree is determined by

The values of the items inserted into the tree

The order in which those values are inserted
This suggests that there is more than one tree (shape)
that can contain the same values
A tree’s shape can be altered by rotation while still
preserving the bst property

Note: only applies to bst with no duplicate keys!
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Left Rotation

Left rotate(x)
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Right Rotation

Right rotate(z)
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Left Rotation Example

Left rotation of 32, call the node x

Assign a pointer to x's R child
47

32 81

13 40

37 L
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Left Rotation Example

Left rotation of 32, call the node x

Assign a pointer to x's R child

Make temp’s L child x's R child 4/

Detach temp’s L child 32

13 40

37 L
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Left Rotation Example

Left rotation of 32, call the node x
Assign a pointer to x's R child
Make temp's L child x’s R child
Detach temp’s L child

Make x temp's L child

Make temp x's parent's child
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Left Rotation Example

Left rotation of 32, call the node x

47

40 81

32 A

13 37
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Right Rotation Example

Right rotation of 47, call the node x

Assign a pointer to x's L child
47

temp

13 40
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Right Rotation Example

Right rotation of 47, call the node x

Assign a pointer to x's L child

Make temp’s R child x’s L child 47
Detach temp’s R child 32— termp

13 40
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Right Rotation Example

Right rotation of 47, call the node x

Assign a pointer to x's L child

Make temp’s R child x's L child 47

Detach temp’s R child 32—
temp

Make x temp's L child

13 40
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Right Rotation Example

Right rotation of 47, call the node x

Assign a pointer to x's L child

Make temp’s R child x’s L child 32
Detach temp’s R child 13 \ 47
temp
Make x temp's L child
Make temp the new root 7 29 40 81
37

October 2004 John Edgar 22



Red-black Tree Insertion




-black Tree Insertion

Insert as for a binary search tree

Make the new node red
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Insertion Example
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Insertion Example
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-black Tree Insertion

Insert as for a binary search tree

Make the new node red

What can go wrong? (see slide 6)

The only property that can be violated is that both a red
node’s children are black (its parent may be red)

So, after inserting, fix the tree by re-colouring nodes
and performing rotations
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Fixing the Red-black Tree

The fixing of the tree remedies the problem
of two consecutive red nodes

There are a number of cases (that’s what is next)
It is iterative (or recursive) and pushes this
problem one step up the tree at each step

|.e. if the consecutive red nodes are at level d, at
the next step they are atd-1

This is why it turns out to be O(log n)
We won't go into the analysis

October 2004 John Edgar 28



-black Tree Insertion |

Need to fix tree if new node’s parent is red
Case | for fixing:
If parent and uncle are both red
Then colour them black
And colour the grandparent red
It must have been black beforehand, why?
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Insertion Example

Insert 65
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Insertion Example

Insert 65
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Insertion Example

Insert 65
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-black Tree Insertion li

Need to fix tree if new node’s parent is red
Case Il for fixing:

If parent is red but uncle is black

Need to do some tree rotations to fix it
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Insertion Example

Insert 65
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Insertion Example

Insert 65
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Insertion Example

Insert 65
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Insertion Example

Insert 65

Insert 82
Insert 87 69/
® \ / \
93
change nodes’ colours ‘/ \
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Insertion Example

Insert 65
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Insertion Rotations

Why were these rotations performed?
First rotation made the two red nodes left
children of their parents

This rotation isn't performed if this is already the
case

Note that grandparent must be a black node
Second rotation and subsequent recolouring
fixes the tree
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Insertion Summary

Full details require a few cases
See link to example code snippets at end
Understand the application of tree rotations
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Summary




Summary

Red-black trees are balanced binary search
trees
Augment each node with a colour

Maintaining relationships between node colours

maintains balance of tree
Important operation to understand: rotation

Modify tree but keep binary search tree property
(ordering of nodes)
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Readings

For implementation details, please see:
http://en.wikipedia.org/wiki/Red-black_tree

(see "Operations”)
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