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Objectives

Determine the running time of simple algorithms
Best case
Average case

Worst case
Profile algorithms
Understand O notation's mathematical basis
Use O notation to measure running time
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Algorithm Analysis

Algorithms can be described in terms of

Time efficiency

Space efficiency
Choosing an appropriate algorithm can make a
significant difference in the usability of a system

Government and corporate databases with many millions
of records, which are accessed frequently

Online search engines

Real time systems where near instantaneous response is
required
From air traffic control systems to computer games
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Comparing Algorithms

There are often many ways to solve a problem

Different algorithms that produce the same results
e.g. there are numerous sorting algorithms

We are usually interested in how an algorithm
performs when its input is large

In practice, with today's hardware, most algorithms will
perform well with small input

There are exceptions to this, such as the Traveling
Salesman Problem

John Edgar 4



Measuring Algorithms

It is possible to count the number of operations that
an algorithm performs
By a careful visual walkthrough of the algorithm or by

Inserting code in the algorithm to count and print the
number of times that each line executes (profiling)

It is also possible to time algorithms

Compare system time before and after running an
algorithm

E.g., inC++: #include <ctime>
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Timing Algorithms

It may be useful to time how long an
algorithm takes to run

In some cases it may be essential to know how
long an algorithm takes on some system

e.g. air traffic control systems
But is this a good general comparison

method?
Running time is affected by a number of
factors other than algorithm efficiency
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Running Time is Affected By

CPU speed

Amount of main memory

Specialized hardware (e.g. graphics card)
Operating system

System configuration (e.g. virtual memory)
Programming language

Algorithm implementation

Other programs

System tasks (e.g. memory management)
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Counting

Instead of timing an algorithm, count the number of

instructions that it performs
The number of instructions performed may vary

based on
The size of the input

The organization of the input
The number of instructions can be written as a cost
function on the input size
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A Simple Example

vold printArray(int *arr, 1int n) {
for (int 1 = 0; 1 < n; ++1){
cout << arr[i] << endl;

}
}

' f d
Operations prformed onan | |11 ||| || I {11 1] 1l Il Il |

declare and perform comparison, make
initializej  Printarray element, and comparison
increment j:10 times wheni=10
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Cost Functions

Instead of choosing a particular input size we will
express a cost function for input of size n

Assume that the running time, t, of an algorithm is
proportional to the number of operations

Express t as a function of n

Where t is the time required to process the data using
some algorithm A

Denote a cost function as t,(n)
i.e. the running time of algorithm A, with input size n

John Edgar 10



A Simple Example

vold printArray (1
for (int 1 = 0; 1 < n; ++1){
cout << arr[i] << endl;

}
}
Operations performed on an
array of length n . =i
declare and perform comparison,

print array element, and
increment i: n times

initialize i
t=3n+2
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nt *arr, int n) {

1

make
comparison
wheni=n
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Input Varies

The number of operations usually varies based on
the size of the input
Though not always, consider array lookup

In addition algorithm performance may vary based
on the organization of the input

For example consider searching a large array

If the target is the first item in the array the search will be
very quick
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Best, Average and Worst Case

Algorithm efficiency is often calculated for three
broad cases of input

Best case
Average (or “usual”) case

Worst case
This analysis considers how performance varies
for different inputs of the same size
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Analyzing Algorithms

It can be difficult to determine the exact number of
operations performed by an algorithm

Though it is often still useful to do so
An alternative to counting all instructions is to focus

on an algorithm's barometer instruction

The barometer instruction is the instruction that is executed
the most number of times in an algorithm

The number of times that the barometer instruction is
executed is usually proportional to its running time
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Comparisons

Let's analyze and compare some different
algorithms

Linear search

Binary search

Selection sort

Insertion sort
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Cost Functions for Searching




Searching

It is often useful to find out whether or not a
list contains a particular item
Such a search can either return true or false

Or the position of the item in the list
If the array isn't sorted use linear search

Start with the first item, and go through the array
comparing each item to the target

If the target item is found return true (or the index
of the target element)
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Linear Search

int linSearch(int* arr, int n, int target) {
for (int i1=0; i < n; i++){

if (target == arr[i]) { The function returns as soon as
return i; the target item is found
}
} //for

return -1; //target not found

return -1 to indicate that the
item has not been found
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Linear Search Barometer

Instruction

Iterate through an array of n items searching for the
target item
The barometer instruction is equality checking (or
comparisons for short)

X == arr|[i];

There are actually two other barometer instructions, what

are they?
How many comparisons does linear search do?
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Linear Search Comparisons

Best case
The target is the first element of the array
Make 1 comparison
Worst case
The target is not in the array or
The target is at the last position in the array

Make n comparisons in either case
Average case

|s it (Best case + Worst case)/2,so(n+1)/2?
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Linear Search: Average Case

There are two situations when the worst case

arises

When t

When t
To calcu

ne target is the last item in the array
he target is not there at all

ate the average cost we need to know

how often these two situations arise

We can

make assumptions about this

Though any these assumptions may not hold for a
particular use of linear search
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Assumptions

Assume that the target is not in the array %2
the time
Therefore V4 the time the entire array has to be
searched
Assume that there is an equal probability of
the target being at any array location

If itisin the array

That is, there is a probability of 1/n that the target
is at some location
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Cost When Target Not Found

Work done if the target is not in the array
n comparisons
This occurs with probability of 0.5
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Cost When Target Is Found

Work done if target is in the array:

1 comparison if target is at the 15t location
Occurs with probability 1/n (second assumption)

2 comparisons if target is at the 2" location

Also occurs with probability 1/n
i comparisons if target is at the /" location
Take the weighted average of the values to find the
total expected number of comparisons (E)
E=1*1/n+2*1/n+3*1/n+...+n*1/nor
E=(n+1)/2
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Average Case Cost

Targetis not in the array: n comparisons

Targetis in the array (n + 1) / 2 comparisons

Take a weighted average of the two amounts:
=(n*V2)+((n+1)/2*1V2)

(n/2)+((n+1)/4)

(2n/4) +((n+1) [ 4)

=(3n+1)/4
Therefore, on average, we expect linear search to

perform (3n + 1) / 4 comparisons®

*recall the assumptions we made about ¥2 not in array,
uniform distribution if in array
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Searching Sorted Arrays

If we sort the target array first we can change the
linear search average cost to around n/ 2

Once a value equal to or greater than the target is found
the search can end

So, if a sequence contains 8 items, on average, linear
search compares 4 of them,

If a sequence contains 1,000,000 items, linear search
compares 500,000 of them, etc.

However, if the array is sorted, it is possible to do
much better than this
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Binary Search Sketch

Search for 32

Guess that the target item is in the middle, thatisindex=15/2=7

The array is sorted, and contains 16 items indexed from o to 15
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Binary Search Sketch

Search for 32
45 is greater than 32 so the target must be in the lower half of the array

Repeat the search, guessing the mid point of the lower subarray (6 / 2 = 3)

Everything in the upper half of the array can be ignored, halving the search space
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Binary Search Sketch

Search for 32
21 is less than 32 so the target must be in the upper half of the subarray

Repeat the search, guessing the mid point of the new search space, 5

The target is found so the search can terminate

The mid point = (lower subarray index + upper index) / 2
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Binary Search

Requires that the array is sorted

In either ascending or descending order
Make sure you know which!
A divide and conquer algorithm
Each iteration divides the problem space in half

Ends when the target is found or the problem space
consists of one element

John Edgar 30



Binary Search Algorithm

int binSearch(int * arr, int n, int target) {

int lower = 0;
int upper = n - 1; Index of the last element in

int mid = 0; the array
while (lower <= upper) {
mid = (lower + upper) / 2;
if (target == arr[mid]) {
return mid;
} else if(target > arr[mid]) { Note the if, else if,
lower = mid + 1; else

} else { //target < arr[mid]
upper = mid - 1;
}

} //while
return -1; //target not found
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Analyzing Binary Search

The algorithm consists of three parts
Initialization (setting lower and upper)
While loop including a return statement on success

Return statement which executes when on failure
Initialization and return on failure require the same
amount of work regardless of input size
The number of times that the while loop iterates
depends on the size of the input
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Binary Search Iteration

The while loop contains an if, else if, else statement
The first if condition is met when the target is found

And is therefore performed at most once each time the
algorithm is run

The algorithm usually performs 5 operations for each
iteration of the while loop

Checking the while condition

Assignment to mid

Equality comparison with target

Inequality comparison

One other operation (setting either lower or upper)
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Binary Search: Best Case

In the best case the target is the midpoint
element of the array

Requiring one iteration of the while loop
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Binary Search: Worst Case

What is the worst case for binary search?
Either the targetis not in the array, or

It is found when the search space consists of one
element

How many times does the while loop iterate
in the worst case?
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Analyzing the Worst Case

Each iteration of the while loop halves the search
space
For simplicity assume that nis a power of 2
Son=2K(e.q.ifn=128, k=7)
The first iteration halves the search space to n/2
After the second iteration the search space is n/4

After the kth iteration the search space consists of just one
element, since n/2=n/n=1

Because n =2, k=1log,n
Therefore at most log,n iterations of the while loop are
made in the worst case!
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Average Case

Is the average case more like the best case or the
worst case?

What is the chance that an array element is the target
1/n the first time through the loop
1/(n/2) the second time through the loop
...andsoon...

It is more likely that the target will be found as the
search space becomes small
That is, when the while loop nears its final iteration

We can conclude that the average case is more like the
worst case than the best case
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Binary Search vs Linear Search

n (3n+1)/4 log,(n)

10 38 i 3

100 76 7

1,000 751 10
10,000 7,501 13
100,000 75,001 17
1,000,000 750,001 20

10,000,000 7,500,001 2/
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Simple Sorting

As an example of algorithm analysis let's look at two
simple sorting algorithms

Selection Sort and

Insertion Sort
Calculate an approximate cost function for these
two sorting algorithms

By analyzing how many operations are performed by
each algorithm

This will include an analysis of how many times the
algorithms' loops iterate
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Selection Sort

Selection sort is a simple sorting algorithm
that repeatedly finds the smallest item

The array is divided into a sorted part and an
unsorted part

Repeatedly swap the first unsorted item with
the smallest unsorted item

Starting with the element with index o, and
Ending with last but one element (index n —1)
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Selection Sort
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Selection Sort Comparisons

n n-1
n-1 n-2
3 2
2 1
1 0

n(n-1)/2
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Selection Sort Algorithm

void selectionSort(int *arr, int n) {
for(int 1 = 0; 1 < n-1; ++1) {
int smallest = 1i;
outerloop | // Find the index of the smallest element
for(int j =1 + 1; j < n; ++3){
if (arr[j] < arr[smallest]) {
smallest = j;

n-1times

inner loop body
\ } n(n —1)/2 times
// Swap the smallest with the current item
int temp = arr[i];

arr[i] = arr[smallest];

arr[smallest] = temp;
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Selection Sort Cost Function

The outer loop is evaluated n-1 times
7 instructions (including the loop statements)
Cost is 7(n-1)

The inner loop is evaluated n(n —1)/2 times

There are 4 instructions but one is only evaluated some of
the time

Worst case cost is 4(n(n —1)/2)

Some constant amount (k) of work is performed
e.g. initializing the outer loop

Total cost: 7(n-1) + 4(n(n—1)/2) + k
Assumption: all instructions have the same cost
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Selection Sort Summary

In broad terms and ignoring the actual number of
executable statements selection sort

Makes n*(n —1)/2 comparisons, regardless of the original
order of the input

Performs n —1 swaps
Neither of these operations are substantially

affected by the organization of the input
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Insertion Sort

Another simple sorting algorithm

Divides array into sorted and unsorted parts
The sorted part of the array is expanded one
element at a time

Find the correct place in the sorted part to place
the 15t element of the unsorted part
By searching through all of the sorted elements

Move the elements after the insertion point up
one position to make space
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Insertion Sort
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Insertion Sort Algorithm

void insertionSort(int *arr, int n) {
for(int 1 = 1; i < n; ++1i){

outer loop
n-1 times

int temp = arr[i];

int pos = 1;

// Shuffle up all sorted items > arr[i]
while (pos > 0 && arr[pos - 1] > temp) {

arr[pos] = arr[pos - 1]; inner loop body
pos--; how many times?
} //while
// Insert the current item min: just the test for each
arr[pos] = temp; outer loop iteration, n

max: i — 1 times for each
iteration, n* (n—-1)/2
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Insertion Sort Cost

0 0 0

1 1 1

2 2 2

n-1 n-1 n-1
n(n-1)/2 n(n-1)/2
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Insertion Sort Best Case

The efficiency of insertion sort is affected by
the state of the array to be sorted

In the best case the array is already
completely sorted!

No movement of array elements is required
Requires n comparisons
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Insertion Sort Worst Case

In the worst case the array is in reverse order
Every item has to be moved all the way to the
front of the array
The outer loop runs n-1 times
In the first iteration, one comparison and move

In the last iteration, n-1 comparisons and moves
On average, n/2 comparisons and moves

For a total of n * (n-1) / 2 comparisons and moves
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Insertion Sort: Average Case

What is the average case cost?
Is it closer to the best case?

Or the worst case?
If random data are sorted, insertion sort is
usually closer to the worst case

Around n * (n-1) [ 4 comparisons

What is average input for a sorting
algorithm in any case?
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Algorithm Summary

Linear search: 3(n + 1)/4 — average case

Given certain assumptions
Binary search: log,n — worst case

Average case similar to the worst case
Selection sort: n((n—1) / 2) — all cases
Insertion sort: n((n—1) [ 2) —worst case

Average case is similar to the worst case

John Edgar
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Algorithm Comparison

Let's compare these algorithms for some
arbitrary input size (say n = 1,000)
In order of the number of comparisons
Binary search
Linear search
Insertion sort best case

Quicksort (next week) average and best cases

Selection sort all cases, Insertion sort average and worst
cases, Quicksort worst case
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Algorithm Growth Rate

What do we want to know when comparing
two algorithms?

The most important thing is how quickly the time
requirements increase with input size

e.g. If we double the input size how much longer
does an algorithm take?

Here are some graphs ...
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Smalln

Hard to see what is happening with n so small ...
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Not Much Bigger n

n2 and n(n-1)/2 are growing much faster than any of the others
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n from 10 to 1,000,000

Hmm! Let's try a logarithmic scale ...
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n from 10 to 1,000,000

Notice how clusters of growth rates start to emerge
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O Notation Introduction

Exact counting of operations is often difficult (and
tedious), even for simple algorithms

And is often not much more useful than estimates due to
the relative importance of other factors

O Notation is a mathematical language for
evaluating the running-time of algorithms

O-notation evaluates the growth rate of an algorithm
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Example of a Cost Function

Cost Function: t,(n) = n?+ 20n + 100

Which term in the funtion is most important (dominates)?
It depends on the size of n
n=2,t,(n) =4+ 40 + 100
The constant, 100, is the dominating term
n=1o, t,(n) =100 + 200 + 100
20n is the dominating term
n =100, t,(n) = 10,000 + 2,000 + 100
n?is the dominating term
n =1000, t,(n) =1,000,000 + 20,000 + 100
n?is the dominating term
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Big O Notation

O notation approximates a cost function that allows
us to estimate growth rate
The approximation is usually good enough

Especially when considering the efficiency of an
algorithm as n gets very large

Count the number of times that an algorithm
executes its barometer instruction

And determine how the count increases as the input size
Increases
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Why Big O?

An algorithm is said to be order f(n)

Denoted as O(f(n))
The function f(n) is the algorithm's growth
rate function

If a problem of size n requires time proportional to
n then the problem is O(n)

i.e. If the input size is doubled then the running time is
doubled
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Big O Notation Definition

An algorithm is order f(n) if there are positive
constants k and m such that

t,(n)<k*f(n)foralln=m

If so we would say that t,(n) is O(f(n))
The requirement n > m expresses that the time
estimate is correct if n is sufficiently large
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Or In English...

The idea is that a cost function can be approximated
by another, simpler, function
The simpler function has 1 variable, the data size n

This function is selected such that it represents an upper
bound on the value of t,(n)

Saying that the time efficiency of algorithm A t,(n)
is O(f(n)) means that
A cannot take more than O(f(n)) time to execute, and
The cost function t,(n) grows at most as fast as f(n)
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Big O Example

Consider an algorithm with a cost function of
3N +12
If we can find constants m and k such that:
k*n=3n+12foralln=mthen

The algorithm is O(n)
Find values of k and m so that this is true

k =4, and
m =12 then
tn=3n+12foralln=12
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Another Big O Example

Consider an algorithm with a cost function of
2n2+10n+6

If we can find constants m and k such that:

k* n?=2n%+10n + 6 forall n=mthen

The algorithm is O(n?)
Find values of k and m so that this is true

k =3, and

m = 11 then

3n2=2n?>+1on+6foralln=11
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And Another Graph
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The general idea is ...

When using Big-O notation

Instead of giving a precise formulation of the cost
function for a particular data size

Express the behaviour of the algorithm as the data
size n grows very large so ignore

lower order terms and
constants
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O Notation Examples

All these expressions are O(n):

n,3n,6in+5,22n—5, ...
All these expressions are O(n?):
n2,9n?, 18n%+ 4h — 53, ...
All these expressions are O(n log n):
n(log n), sn(log 99n), 18 + (4n—2)(log (5n + 3)), ...
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Arithmetic and O Notation

O(k * f) = O(f) if kis a constant

e.g. O(23 * O(log n)), simplifies to O(log n)
O(f + g) = max[O(f), O(g)]

O(n + n?), simplifies to O(n?)
O(f * g) = O(f) * O(g)

O(m * n), equals O(m) * O(n)

Unless there is some known relationship between mand n
that allows us to simplify it, e.g. m<n
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Typical Growth Rate Functions

O(1) — constant time
The time is independent of n, e.qg. list look-up
O(log n) — logarithmic time
Usually the log is to the base 2, e.g. binary search
O(n) — linear time, e.qg. linear search
O(n*logn) — e.qg. quicksort, mergesort (next week)
O(n?) — quadratic time, e.qg. selection sort
O(n*) — polynomial (where k is some constant)
O(2") — exponential time, very slow!
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Note on Constant Time

We write O(1) to indicate something that takes a
constant amount of time

e.g. finding the minimum element of an ordered array
takes O(12) time

The min is either at the first or the last element of the array
Important: constants can be huge

So in practice O(1) is not necessarily efficient

It tells us is that the algorithm will run at the same speed
no matter the size of the input we give it
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Worst, Average and Best Case

The O-notation growth rate of some algorithms
varies depending on the input
Typically we consider three cases:

Worst case, usually (relatively) easy to calculate and
therefore commonly used

Average case, often difficult to calculate

Best case, usually easy to calculate but less important
than the other cases

John Edgar 76



O Notation Running Times

Linear search
Best case: O(1)

Average case: O(n)

Worst case: O(n)
Binary search

Best case: O(1)
Average case: O(log n)
Worst case: O(log n)
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O Notation Running Times

Selection sort
Best Case: O(n?)
Average case: O(n?)

Worst case: O(n?)
Insertion sort

Best case: O(n)
Average case: O(n?)
Worst case: O(n?)

John Edgar 78






Summary

Analyzing algorithm running time
Record actual running time (e.g. in seconds)
Sensitive to many system [ environment conditions
Count instructions

Summarize coarse behaviour of instruction count
O Notation

Note that all are parameterized by problem size (*n")
Analyze best, worst, “average” case
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Summary

Sorting algorithms
Insertion sort

Selection sort

Running times of sorting algorithms
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Readings

Carrano Ch. g
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