Recursion

CMPT 225

Objectives

Understand how the Fibonacci series is generated
Recursive Algorithms

Write simple recursive algorithms

Analyze simple recursive algorithms

Understand the drawbacks of recursion
Name other recursive algorithms and data
structures

John Edgar 2

What happens if you put a

pair of rabbits in a field?
More rabbits!

Assume that rabbits take

one month to reach

maturity and that

Each pair of rabbits

produces another pair of

rabbits one month after

mating.

John Edgar

... and more Bunnies

How many pairs of rabbits
are there after g months?
Month 1: start—1

Month 2: the rabbits are now v | =
mature and can mate —1 S e N —
Month 3: —the first pair give N

birth to two babies —2

Month 4: the first pair give birth
to 2 babies, the pair borniin
month 3 are now mature —3

Month 5: the 3 pairs from month °
4, and 2 new pairs—5

John Edgar 4

... and even more Bunnies

After g months there are 5 month: 1 2 3 4 5 6
pairs of rabbits pairs: 1 1 2 3 5 8

i.e. the number of pairs at 4
months (3) plus the number of
pairs at 3 months (2)

Why?
While there are 3 pairs of
bunnies in month 4 only 2 of
them are able to mate

the ones alive in month 3
This series of numbers is
called the Fibonacci series

John Edgar 5

Fibonacci Series

The nt" number in the Fibonacci series, fib(n), is:
oifn=0,and1ifn=1
fib(n—1) + ib(n—2) foranyn>1

e.g. what is fib(23)
Easy if we only knew fib(22) and fib(21)

The answer is fib(22) + fib(21)

What happens if we actually write a function to calculate
Fibonacci numbers like this?

John Edgar 6

Calculating the Fibonacci Series

Let's write a function just like the formula
fib(n)=oifn=0,1ifn=1,
otherwise fib(n) = fib(n —1) + fib(n —2)

int fib(int n) { The function
if(n ==0 || n==1){ calls itself
return n;
}else({

return fib(n-1) + fib(n-2) ;
}

John Edgar 7

Recursive Functions

The Fibonacci function is recursive
A recursive function calls itself

Each call to a recursive method results in a separate call to
the method, with its own input

Recursive functions are just like other functions
The invocation is pushed onto the call stack

And removed from the call stack when the end of a method
or a return statement is reached

Execution returns to the previous method call

John Edgar 8

Analysis of fib(s)

int f£ib(int n) {

if(n =0 || n == 1)
return n;
else
return fib(n-1) + f£fib(n-2);

fib(4)

fib(3)

1 1 1

fib(2) fib(2) fib(2)

fib(2) fib(o)

John Edgar

3

fib(2)

fib(s)

fib(o)

2
fib(3)
1 1
fib(2) fib(2)
1 0
fib(z) fib(o)

Recursive Functions — the Stack

When a function is called it is pushed onto the call
stack

This applies to each invocation of that function
When a recursive call is made execution switches to
that method call

The call stack records the line number of the previous
method where the call was made from

Once a method call execution finishes, returns to the
previous invocation

John Edgar 10

Recursion for Problem Solving

Recursive Function Anatomy

Recursive functions do not use loops to repeat
Instructions

But use recursive calls, in if statements
Recursive functions consist of two or more cases,
there must be at least one

Base case, and one

Recursive case

John Edgar 12

Base Case

The base case is a smaller problem with a
simpler solution

This problem’s solution must not be recursive

Otherwise the function may never terminate
There can be more than one base case

John Edgar 13

Recursive Case

The recursive case is the same problem with
smaller input

The recursive case must include a recursive
function call

There can be more than one recursive case

John Edgar 14

Finding Recursive Solutions

Define the problem in terms of a smaller
problem of the same type

The recursive part

e.g.return fib(n-1) + fib(n-2);
And the base case where the solution can be
easily calculated

This solution should not be recursive

eg.1f (n == || n == 1) return n;

John Edgar 15

Steps Leading to Recursive

Solutions

How can the problem be defined in terms of
smaller problems of the same type?

By how much does each recursive call reduce the
problem size?

By 1, by half, ...?
What are the base cases that can be solved
without recursion?

Will a base case be reached as the problem size is
reduced?

John Edgar 16

Recursive Searching

Recursive Searching

Linear Search
Binary Search

Assume sorted array

John Edgar

18

Linear Search Algorithm

int linSearch(int *arr, int n, int x){
for (int i=0; i1 < n; 1i++){
if(x == arr[i]) {
return 1i;

}
} //for
return -1; //target not found

The algorithm searches the array one
element at a time using a for loop

John Edgar 19

Recursive Linear Search

Base cases

Target is found at first position in array

The end of the array is reached
Recursive case

Target not found at first position

Search again, discarding the first element of the array

John Edgar 20

Recursive Linear Search

int linSearch(int *arr, int n, int x){
return reclLinSearch(arr,n,0,x);
}
int reclLinSearch(int *arr, int n, int i, int x){
if (i >= n){
return -1;
} else if (x == arr[i]) {
return 1i;
} else
return reclLinSearch(arr, n, i1 + 1, x);

}

John Edgar 21

Binary Search

Of course, if it's a sorted array we wouldn‘t do
linear search

John Edgar 22

Thinking About Binary Search

Each sub-problem searches a subarray

Differs only in the upper and lower array indices
that define the subarray

Each sub-problem is smaller than the last one

In the case of binary search, half the size
There are two base cases

When the target item is found and

When the problem space consists of one item
Make sure that this last item is checked

John Edgar 23

Recursive Binary Search

int binSearch(int *arr, int lower, int upper,
int x) {

int mid = (lower + upper) / 2;
if (lower > upper) {
return - 1; //base case
} else if (arr[mid] == x) {
return mid; //second base case
} else if(arr[mid] < x){
return binSearch(arr, mid + 1, upper, x);
} else { //arr[mid] > target
return binSearch(arr, lower, mid - 1, Xx);

}

John Edgar 24

Recursive Sorting

Recursive Searching

Merge Sort
Quicksort

John Edgar 26

Merge Sort

Merge Sort

What's the easiest list to sort?
A list of 1 number

John Edgar 28

Merging sorted lists

Let’s say | have 2 sorted lists of numbers
How can | merge them into 1 sorted list?

List1 1 12 22 23 List 2 3 5 42 99

output

John Edgar 29

Merge Sort

If | have a list of n numbers, how should | sort
them?
| know two things

How to sort a list of 1 number

How to merge 2 sorted lists of numbers into 1
sorted list

Smells like recursion

John Edgar 30

Merge Sort Pseudocode

mergeSort (array)

if (array is length 1)
// base case, one element
return the array

else
arrl = mergeSort(first half of array)
arr2 = mergeSort (second half of array)
return merge (arrl,arr?)

John Edgar 31

Merge Sort Analysis

What is the time complexity of a merge?

List1 1 12 22 23 List 2 3 5 42 99

output

John Edgar 32

Merge Sort Analysis

How many recursive steps are there?
How large are the merges at each recursive
step?

Merge takes O(n) time for n elements

John Edgar 33

Merge Sort Recursion

07113 10|23 33 a1 45 | o [ERURU.

23133 |41 1 0711]19] 45
23 1a1 35 o1 07115 11 45 QEEERRRPR

I I I I I I I Sort eighths

John Edgar 34

Merge Sort Recursion

41 53 Bt o7l 48 B

How many recursive steps are there?
How large are the merges at each recursive
step?

Merge takes O(n) time for n elements

John Edgar 35

Merge Sort Recursion

41 53 Bt o7l 48 B

How many recursive steps are there?

O(log n) steps: split array in half each time
How large are the merges at each recursive step?

In total, merge n elements each step
Time complexity is O(n log n)

John Edgar 36

O Notation Running Times

Mergesort
Best case: O(n(log,n))
Average case: O(n(log,n))
Worst case: O(n(log,n))

John Edgar 37

Introduction to QuickSort

QuickSort Introduction

Quicksort is a more efficient sorting algorithm than
either selection or insertion sort

It sorts an array by repeatedly partitioning it
We will go over the basic idea of quicksort and an
example of it

See text / on-line resources for details

John Edgar 39

Partitioning

Partitioning is the process of dividing an array into
sections (partitions), based on some criteria
"Big" and "small" values
Negative and positive numbers
Names that begin with a-m, names that begin with n-z
Darker and lighter pixels
Quicksort uses repeated partitioning to sort an array

John Edgar 40

Partitioning an Array

Partition this array into small

and big values using a 31 12 07 23 93 02 11 18

partitioning algorithm

John Edgar 41

Partitioning an Array

Partition this array into small
and big values using a 31 12 0723 /93 /02 11 18

partitioning algorithm

We will partition the array
around the last value (28), we'll
call this value the pivot

18
smalls < 18 bigs > 18

John Edgar 42

Partitioning an Array

Partition this array into small

and big values using a 31 12 072393 /02 11 18

partitioning algorithm

We will partition the array
around the last value (28), we'll
call this value the pivot

arr[low] is greater than the pivot and
should be on the right, we need to swap
it with something

Use two indices, one at each

end of the array, call them low
and high

John Edgar 43

Partitioning an Array

Partition this array into small

and big values using a 31 12 072393 /02 11 18

partitioning algorithm

We will partition the array
around the last value (28), we'll
call this value the pivot

arr[low] (31) is greater than the pivot
and should be on the right, we need to
swap it with something

Use two indices, one at each

end of the array, call them low
and high

arr[high] (212) is less than the pivot so
swap with arr[low]

John Edgar 44

Partitioning an Array

Partition this array into small

and big values using a 11 1207 23|93 02 31 18

partitioning algorithm

We will partition the array
around the last value (28), we'll
call this value the pivot

Use two indices, one at each

end of the array, call them low
and high

John Edgar 45

Partitioning an Array

Partition this array into small e

and big values using a 11 12 07 02 93 23 31 18

partitioning algorithm

We will partition the array
around the last value (28), we'll
call this value the pivot

repeat this process until:

Use two indices, one at each

end of the array, call them low
and high

John Edgar 46

Partitioning Algorithm

Partition this array into small —

and big values using a 11 12 07 02 93 23 31 18

partitioning algorithm

We will partition the array
around the last value (28), we'll
call this value the pivot

repeat this process until:

high and low are the same

Use two indices, one at each

end of the array, call them low
and high

John Edgar 47

Partitioning an Array

Partition this array into small

and big values using a 11 12 07 02 18 23 31 93

partitioning algorithm

We will partition the array
around the last value (28), we'll
call this value the pivot

Use two indices, one at each

end of the array, call them low
and high

John Edgar

repeat this process until:
high and low are the same

We'd like the pivot value to be in the
centre of the array, so we will swap it
with the first item greater than it

48

Partitioning an Array

Partition this array into small

and big values using a 11 12 07 02 18 23 31 93
partitioning algorithm _

smalls bigs
We will partition the array

around the last value (28), we'll
call this value the pivot

Use two indices, one at each

end of the array, call them low
and high

John Edgar 49

Partitioning Question

Use the same algorithm to

00

08

07

01

06

02

05

09

partition this array into small

and big values

00

08

07

01

06

02

05

09

John Edgar

smalls

50

Partitioning Question

Or this one:

09

08

07

06

05

04

02

01

01

08

07

06

05

04

02

09

smalls |

John Edgar

51

Quicksort

The quicksort algorithm works by repeatedly
partitioning an array
Each time a subarray is partitioned there is

A sequence of small values,
A sequence of big values, and

A pivot value which is in the correct position
Partition the small values, and the big values

Repeat the process until each subarray being partitioned
consists of just one element

John Edgar 52

Quicksort Analysis

How long does quicksort take to run?
Let's consider the best and the worst case

These differ because the partitioning algorithm may not
always do a good job

Let's look at the best case first

Each time a subarray is partitioned the pivot is the exact
midpoint of the slice (or as close as it can get)

Soitis divided in half
What is the running time?

John Edgar 53

Quicksort Best Case

08/ 01/02/07,03/06|04 |05

First partition

04 01/02/03 05/06|08|07

smalls

John Edgar 54

Quicksort Best Case

Second partition

04

01

02

03 05

02

01

John Edgar

sm1

03

04

05

06

08

07

06

sm2

07

08

55

Quicksort Best Case

Third partition

02

01 03

John Edgar

done

done

08

done

02 03 04 05 06 07 O8

56

Quicksort Best Case

Each subarray is divided exactly in half in each set of
partitions

Each time a series of subarrays are partitioned around n
comparisons are made

The process ends once all the subarrays left to be partitioned
are of sizea

How many times does n have to be divided in half
before the result is 1?
log, (n) times

Quicksort performs around n * log, (n) operations in the best
case

John Edgar 57

Quicksort Worst Case

09/08|07|06 /05|04 02 01

First partition

01 08/07/06/05/04 02|09

smalls |

John Edgar 58

Quicksort Worst Case

01/08|07/06/05({04 0209

Second partition

01 08|07 /06/05/04 02 09

smalls

John Edgar 59

Quicksort Worst Case

01/08|07|06 /05({04 02 09

Third partition

01 02|07 06|05/04 08 09

John Edgar 60

Quicksort Worst Case

01 02|07/06/05/04 08 09

Fourth
partition

01 02|07 06|05 04 0809

smalls

John Edgar 61

Quicksort Worst Case

01 02|07/06/05/04 08 09

Fifth partition

01 02 04 06 /05|07 08 09

John Edgar 62

Quicksort Worst Case

01 02 04|06 05|07 08 09

Sixth partition

01 02 04 06 /05 07 08 09

smalls

John Edgar 63

Quicksort Worst Case

01 02 04 06|05 07 08 09

Seventh(!)
partition

01 02 04 05 06 07 08 09

John Edgar 64

Quicksort Worst Case

Every partition step results in just one
partition on one side of the pivot
The array has to be partitioned n times, not
log,(n) times
So in the worst case quicksort performs around n2
operations
The worst case usually occurs when the array
is nearly sorted (in either direction)

John Edgar 65

Quicksort Average Case

With a large array we would have to be very,
very unlucky to get the worst case

Unless there was some reason for the array to
already be partially sorted

In which case first randomize the position of the array
elements!

The average case is much more like the best case
than the worst case

John Edgar 66

Recursion Pitfalls

Recursion Caveat

Recursive algorithms have more overhead
than similar iterative algorithms
Because of the repeated method calls

This may cause a stack overflow when the call
stack gets full

It is often useful to derive a solution using
recursion and implement it iteratively

Sometimes this can be quite challenging!

John Edgar 68

Another Recursion Caveat

Some recursive algorithms are inherently
inefficient

e.g. the recursive Fibonacci algorithm which
repeats the same calculation again and again

Look at the number of times £ib (2) is called
Such algorithms should be implemented
iteratively

Even if the solution was determined using recursion

John Edgar 69

Analyzing Recursive Functions

It is useful to trace through the sequence of
recursive calls

This can be done using a recursion tree
Recursion trees can be used to determine the
running time of algorithms

Annotate the tree to indicate how much work is
performed at each level of the tree

And then determine how many levels of the tree
there are

John Edgar 70

Recursion and Induction

Recursion and Induction

Recursion is similar to induction
Recursion solves a problem by
Specifying a solution for the base case and

Using a recursive case to derive solutions of any
size from solutions to smaller problems

Induction proves a property by
Proving it is true for a base case and

Proving that it is true for some number, n, if it is
true for all numbers less thann

John Edgar 72

Recursive Factorial

int fact (int x){
if (x == 0) {
return 1;
} else
return n * fact(n - 1);

}
}

Prove, using induction that the algorithm returns
the values

fact(o) =o! =1

fact(n)=n'=n*(n-1)*...*1ifn>o0

John Edgar 73

Proof by Induction

Basis: Show that the property is true forn=0, i.e.
that fact(o) returns 1

This is true by definition as fact(o) is the base case of the
algorithm and returns a

Establish that the property is true for an arbitrary k
implies that it is also true for k + 1
Inductive hypothesis: Assume that the property is
true for n = k, that is assume that

fact(k) =k *(k—1)*(k—2)*...*2%1

John Edgar 74

Proof by Induction

Inductive conclusion: Show that the property is

trueforn=k +1, i.e., that fact(k + 1) returns
(k+1)*k*(k-21)*(k-2)*..*2%1

By definition of the function: fact(k + 1) returns
(k + 1) * fact(k) —the recursive case

And by the inductive hypothesis: fact(k) returns
k*(k-1)*k-2)*...*2%1

Therefore fact(k + 1) must return
(k+1)*k*(k-1)*(k-2)*...*2%1

Which completes the inductive proof

John Edgar 75

More Recursive Algorithms

Recursive sum
Towers of Hanoi — see text
Eight Queens problem — see text
Sorting
Mergesort
Quicksort

John Edgar 76

Recursive Data Structures

Linked Lists are recursive data structures

They are defined in terms of themselves
There are recursive solutions to many list
methods

List traversal can be performed recursively

Recursion allows elegant solutions of problems
that are hard to implement iteratively

Such as printing a list backwards

John Edgar 77

Summary

Recursion as a problem-solving tool
Identify base case where solution is simple

Formulate other cases in terms of smaller case(s)
Recursion is not always a good

implementation strategy
Solve the same problem many times

Function call overhead
Recursion and induction

Induction proves properties in a form similar to
how recursion solves problems

John Edgar 79

Readings

Carrano Ch. 2, g

John Edgar 80

