
Notes on Satisfiability-Based Problem Solving

First Order Logic

David Mitchell
mitchell@cs.sfu.ca
February 8, 2020

This is a preliminary draft. Please do not distribute. Corrections and suggestions welcome.

In this section we present the basics of classical first order logic. The treatment is similar
to that of standard mathematical logic texts, but with a focus on properties that are
directly relevant to our context.

1 Formulas of First Order Logic

It is essential to distinguish syntax from semantics. The syntax of first order logic defines
the set of strings that are formulas. Our primary interest is in using formulas to define
classes of structures, and we start by selecting a suitable vocabulary for describing the
structures of interest. A vocabulary L is a tuple of symbols consisting of:

1. A non-empty set of relation (or predicate) symbols, each with an associated arity.

2. A set (possibly empty) of function symbols, each with an associated arity.

We typically use P,Q,R, etc., for relation symbols, and also symbols such as =, ≤, and
words in camel font. We use f , g, etc., for function symbols, and also symbols such as +

and −. 0-ary function symbols are constant symbols, for which we use c, 0, 1, etc.

Example 1.

1. The vocabulary of graphs is LG = (E,=), where E and = are both binary relation symbols.
E is the edge relation.

2. The standard vocabulary for arithmetic, LA = (0, s,+, · ;=), has the constant symbol 0,
the unary function symbol s (for “successor”), the binary function symbols + and ·, and
the binary relation symbol =.

1

The formulas of first order logic for a given vocabulary L (or L-formulas) are strings over
an alphabet consisting of the symbols in L, a countably infinite set x1, x2, . . . of variable
symbols, and the symbols ∧,∨,¬, ∀, ∃, (,). We often use x, y, z etc. for variables.

We first define the terms, which are expressions used to denote objects in the universe of
discourse, and functions over those objects.

Definition 1. The terms for vocabulary L (or L-terms) are defined inductively by the
following rules.

1. Each variable symbol xi is an L-term;

2. If f is a k-ary function symbol of L and t1, . . . tk are L-terms, then f t1 . . . tk is an
L-term.

Example 2.

1. LG has no function symbols, so the LG-terms are just the variable symbols.

2. If L contains unary function symbol f and binary function symbol g, and x and y are
variable symbols, then the following are L-terms: f x, gxy, f gyx, g f xy and f g f x f gyz.

3. Among the terms of LA = (0, s,+, · ;=) are 0, s0, +0ss0 and ·ss0ss0. (In the standard
interpretation of the symbols, these terms denote the numbers 0, 1, 2, and 4, respectively.)

A term is called closed or ground if it contains no variable symbols.

No punctuation is required to ensure terms have a unique parsing, but we sometimes use
function notation with parentheses, as in f (x) and g(x, y), for readability. For example
f g f x f gyz is (arguably) easier to understand when written f (g(f (x), f (g(y, z)))). Also,
we often use infix notation for binary functions to improve readability. For example, we
normally write t1 + t2 rather than +t1t2.

Definition 2. The first order formulas for vocabulary L (or L-formulas) are defined
inductively by the following rules.

1. If P is a k-ary relation symbol of L, and t1, . . . tk are L-terms, then Pt1 . . . tk is an
L-formula. We call Pt1 . . . tk atomic, because no sub-string of it is a formula.

2. If A and B are L-formulas, then ¬A, (A ∧ B), and (A ∨ B) are L-formulas.

3. If A is an L-formula, and x a variable symbol, then ∀xA and ∃xA are L-formulas.

2

The connectives ∧, ∨ and ¬ are read “and”, “or” and “not”, as before. The universal
quantifier ∀ is read “for every”, and the existential quantifier ∃ is read “for some”.

We use the usual abbreviations: (A → B) means (¬A ∨ B), and (A ↔ B) means
((A→ B) ∧ (B→ A)). We also use t1 = t2 to mean = t2t2 and t1 6= t2 for ¬(t1 = t2).

Example 3.

1. Formulas of LG, the vocabulary of graphs, include Exy, Exx, ∀u∀vEuv, ∀x∃yExy and
∀u∀v1∀v2(Euv1 ∧ Euv2 → v1 = v2).

2. Let L = (f , g; P, Q), where f is a unary function symbol, g is a binary function symbol,
P is a unary predicate symbol, and Q is a binary predicate symbol. Then, the L-formulas
include Px, Qxy, P f x, (P f x ∧Q f xgyx), and ∀x(Px → ∃yQxy).

3. Formulas of LA include 0 = 0, s0 6= 0, ∀x∀y((x + y) = (y + x)).

Any sub-string of A that is a formula is a sub-formula of a A. A is a sub-formula of
itself; proper sub-formulas are proper sub-strings.

An occurrence of variable x in a formula A is called bound if it is in a sub-formula of A
of the form ∀xB or ∃xB, and otherwise is free. A formula with no free variables is called
a sentence (or ground formula).

2 Semantics of First Order Logic

The semantics of a logic are defined by its satisfaction relation, for which we use the
symbol |=. For propositional logic, |= is a relation between truth assignments and for-
mulas. This simple semantics is possible because propositional formulas only involve
simple propositions. Formulas of first order logic can “talk about” functions, sets and
relations, so require semantic objects that contain these. The family of objects in question
are called (mathematical) structures, and are simply defined but very general.

A structureM is a set M (the universe or domain of discourse), together with a collection
of functions and relations over M. Structures which might be familiar include graphs,
algebraic objects such as groups, and matrices. We use the structure N of the natural
numbers with arithmetic daily. The role of a structure in logical semantics is to assign a
meaning, or “interpretation”, to each term and each relation symbol.

Definition 3. A structureM for vocabulary L (or L-structure) is a tuple consisting of:

1. A non-empty set M, called the universe (or domain) ofM;

3

2. For each k-ary function symbol f of L, a k-ary function fM : Mk → M;

3. For each k-ary predicate symbol P of L, a k-ary relation PM ⊂ Mk.

A structureM for L is sometimes called an interpretation for L, and if S is a vocabulary
symbol of L, then SM may be called the interpretation of S inM.

If = is included in a vocabulary, it is required to denote true equality (identity of objects).
All other predicate symbols may be given arbitrary interpretations. For example, if <

is a binary predicate symbol, then <M can be any binary relation, and need not be an
order relation. In practice, we try to choose symbols mnemonically, and normally would
use < only for a relation intended to be an order.

Example 4.

1. Any graph G = 〈V, E〉 is a structure for the vocabulary of graphs LG = (E,=), although
in the notation of these notes we would write it G = 〈G, EG〉, with G = V.

2. Let L = (f ; P), where f is a unary function symbol and P is a unary relation symbol. One
example of an L-structure is M = 〈M, PM, fM〉, where M = {a,b,c}, PM = {a,b},
and fM = {(a 7→ b), (b 7→ a), (c 7→ a)}.

3. The standard structure for LA is the structure N of the natural numbers with:

• N = N = {0, 1, 2, . . .};

• 0N = 0;

• sN is the successor function, i.e., the function that adds one;

• +N and ·N are the standard operations of addition an multiplication;

• =N is equality.

We wish to define the satisfaction relation between L-structures and L-formulas. An
effect of this definition will be that, for every L-structure M, every sentence for L will
be either true or false in M. We need to define one more term before we can define
satisfaction.

An object assignment (sometime called a valuation) for structure M is a function map-
ping each variable xi to an element of the universe M. The purpose of an object assign-
ment is to give a meaning to free variables in formulas. This is needed because we cannot
say whether a formula with free variables is true or not, without knowing which objects
those variables denote. For example, we do not know if x + y < 5 unless we know which
numbers x and y are supposed to denote.

4

We are now in a position to define the semantics of terms, and then of formulas.

Definition 4. The denotation (or meaning) of term t in structure M with valuation σ,
written tM[σ], is defined by recursion on the structure of t, according to the following
rules.

1. If t is a variable x, then tM[σ] = σ(x);

2. If t is a term of the form f t1 . . . tk, then tM[σ] = fM(tM1 [σ], . . . tMk [σ]).

Although notationally a bit heavy, this says the obvious (described operationally): to
determine what object f t1 . . . tk denotes (according to M and σ), find what function f
denotes (according to M), figure out what objects the arguments t1, . . . tk denote (acc-
cording toM and σ), and then apply the function to those objects.

Example 5.

1. Let L and M be as in Example 4.2, and σ be such that σ(x) = a. Then (f f x)M[σ] =

fM((f x)M[σ]) = fM(fM(xM[σ]) = fM(fM(σ(x))) = fM(fM(a)) = fM(b) = a.

2. ssoN = sN (sN (0N)) = sN (sN (0)) = sN (1) = 2.

Notation: If σ is an object assignment, then σ(x 7→ a) denotes the object assignment such
that σ(x 7→ a)(x) = a and σ(x 7→ a)(y) = σ(y) when y is a variable other than x.

Definition 5. The satisfaction relationM |= A[σ] is defined by recursion on the structure
of A, according to the following rules.

1. M |= Pt1 . . . tk [σ] iff 〈tM1 [σ], . . . tMk [σ]〉 ∈ PM

2. M |= t1 = t2 [σ] iff tM1 [σ] = tMk [σ]

3. M |= ¬B [σ] iff M 6|= B [σ]

4. M |= (B ∨ C) [σ] iff M |= B [σ] orM |= C [σ];

5. M |= (B ∧ C) [σ] iff M |= B [σ] andM |= C [σ];

6. M |= ∀xB [σ] iff for every a ∈ M,M |= B [σ(x 7→ a)]

7. M |= ∃xB [σ] iff for some a ∈ M,M |= B [σ(x 7→ a)]

Notice that item 2 in Definition 5 follows from item 1 and the requirement that = always
denotes equality.

5

Example 6.

1. N |= (x + y) = sssss0 [σ] iff σ is such that σ(x) + σ(y) = 5.

2. N |= ∀x∃y(y = ssx), regardless what σ is, because the formula has no free variables, and
for every natural number there is another that is larger by two.

3. N 6|= ∀x∃y(ssy = x), regardless what σ is, because the formula has no free variables, and
there is no natural number two smaller than 1 or 0.

4. LetM be an LA-structure with M = {0, 1, 2}, 0M = 0, sM(x) = x+ 1 mod 3, and +M

be addition modulo 3. ThenM |= (x + y) = sssss0 [σ] iff σ is such that σ(x) + σ(y) =
2 mod 3.

5. LetM be an LG-structure with M = {a,b,c} and EM = {(a,b), (b,c)}. ThenM |=
Euv[σ] if σ(u) = a and σ(v) = b, butM 6|= Euv[σ] if σ(u) = a and σ(v) = c

6. Let G be a graph. Then G |= ∀u∀vEuv if and only if G is a complete graph.

If A is a sentence, then σ plays no role in the truth of A: For each structure M (for the
same vocabulary as A), either M |= A [σ] for every σ or for no σ. Thus, we may leave
out σ and simply writeM |= A, orM 6|= A. In the case thatM |= A, we say that “A is
true inM”, or that “M satisfies A”, or that “M is a model for A”.

The size of structureM is the size of its universe M, and we callM finite if M is finite.

Definition 6. The problem of model checking for first order logic (FO) on a class C of
finite structures is:

Given: A (string encoding a) structureM from C and a FO sentence A;
Question: DoesM |= A?

Fact 1.

1. If C is all structures, FO model checking for C is undecidable.

2. If C is all finite structures, FO model checking for C is PSPACE complete.

3. If C contains only finite structures, FO model checking for C can be done in time O(nk),
where n is the size of the structure, and k the size of the sentence (in symbols, counting all
terms).

4. If C contains N , the structure of the natural numbers with addition and multiplication,
then FO model checking for C is undecidable.

6

To see that item 3 is true, observe that a recursive algorithm directly implementing the
recursion of Defintions 5 and 4 runs in the claimed time.

3 Satisfiability, Validity, Equivalence and Logical Consequence

Definition 7.

1. Formula A is satisfiable iffM |= A[σ], for someM and σ, and otherwise is unsat-
isfiable;

2. Set Φ of formulas is satisfiable iff there is someM and σ, such thatM |= A[σ] for
every A ∈ Φ;

3. Formula A is valid (written |= A), iffM |= A[σ] for everyM (of suitable vocabu-
lary) and every σ;

Fact 2.

1. The problem “given a FO formula A, is A satisfiable?”, is undecidable.

2. The problem “given a FO formula A, is A valid”, is undecidable.

One might hope the the undecidability is a consequence of the fact that some formulas
are satisfiable but have only infinite models. But this is not the case.

Definition 8. Formula A is finitely satisfiable iffM |= A [σ], for some finiteM and σ.

Fact 3.

1. The problem “given a FO formula A, is A finitely satisfiable?”, is undecidable.

2. The problem “given a FO formula A and natural number k, does A have a model of size
k?” can be decided in time O(2(k

n)), where n is the size of the formula.
Definition 9.

1. A is a logical consequence of Φ (written Φ |= A) iff for everyM and σ,M |= A [σ];

2. A and B are logically equivalent (written A ≡ B) iff, for allM and σ,M |= A [σ]

iffM |= B [σ].

7

Example 7.

1. Does (∀xA∨ ∀xB) |= ∀x(A∨ B) hold for every two formulas A,B? Yes. SupposeM and
σ are such that M |= (∀xA ∨ ∀xB)[σ]. Then, by Definition 5, either M |= ∀xA[σ] or
M |= ∀xB[σ]. Suppose the first case. Then, for every a ∈ M, M |= A[σ(a/x)], so, for
every a ∈ M, M |= (A ∨ B)[σ(a/x)]. Therefore M |= ∀x(A ∨ B)[σ]. The symmetric
argument applies ifM 6|= ∀xA[σ], butM |= ∀xB[σ].

2. Does ∀x(A∨ B) |= (∀xA∨ ∀xB) hold for every two formulas A,B? No. Let A be Px, and
B be Qx, and letM be the structure with M = N, PM the set of even natural numbers,
and QM the set of odd natural numbers. Then M |= ∀x(A ∨ B), because every natural
number is either even or odd, butM 6|= (∀xA ∨ ∀xB), because some natural numbers are
not even, and some are not odd.

Exercise 1. Verify each of the following.

1. For every formula A, ¬∀xA ≡ ∃x¬A.
2. For every formula A, ¬∃xA ≡ ∀x¬A.
3. For every two formulas A, B, (∀xA ∧ ∀xB) ≡ ∀x(A ∧ B).
4. For every two formulas A, B, (∃xA ∨ ∃xB) ≡ ∃x(A ∨ B).
5. For every two formulas A, B, ∃x(A ∧ B) |= (∃xA ∧ ∃xB).
6. There are formulas A, B for which (∃xA ∧ ∃xB) 6|= ∃x(A ∧ B).
7. For every formula A, ∀x∀yA ≡ ∀y∀xA.
8. For every formula A, ∃x∀yA |= ∀y∃xA.
9. There are formulas A for which ∀x∃yA 6|= ∃y∀xA.

10. For every formula A, ∀xA |= ∃xA.

Fact 4.

1. The problem “given two FO formulas A, B, does A |= B”, is undecidable, as is checking if
A ≡ B.

2. The problem “given two FO formulas A, B, does A finitely entail B (that is, is every finite
model of A also a model of B), is undecidable, as is checking if A and B have the same finite
models.

8

	Formulas of First Order Logic
	Semantics of First Order Logic
	Satisfiability, Validity, Equivalence and Logical Consequence

