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Abstract. CDCL SAT solvers generate many “learned” clauses, so ef-
fective clause database reduction strategies are important to perfor-
mance. Over time reduction strategies have become complex, increas-
ing the difficulty of evaluating particular factors or introducing new re-
finements. At the same time, it has been unclear if the complexity is
necessary. We introduce a simple online clause reduction scheme, which
involves no sorting. We instantiate this scheme with simple mechanisms
for taking into account clause activity and LBD within the winning solver
from the 2018 SAT Solver Competition, obtaining performance compa-
rable to the original. We also present empirical data on the effects of
simple measures of clause age, activity and LBD on performance.
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1 Introduction

CDCL SAT solvers generate a very large number of new “learned” clauses, so
clause management methods are central to solver performance [2,13]. In partic-
ular, most learned clauses must be deleted to keep the clause database of prac-
tical size, and the clause database reduction scheme is one of a small number of
key heuristic mechanisms in a CDCL solver [14,3]. Typical clause maintenance
strategies involve two stores of learned clauses, which we will call Core and Lo-
cal. Clauses placed in Core are retained for the entire run. The size of Core is
limited by being selective about which clauses are added. The large majority
of learned clauses are placed in Local. The size of Local is limited by periodic
deletion of “low quality” clauses, which are deemed unlikely to be of high future
utility. The quality measure is typically a combination of size, age, literal block
distance (LBD) and some measure of usage or activity [3,8,9,15,10,8,14,11].

Major changes to the general scheme are rare, but over time many refinements
have combined to make the overall mechanism in the best recent solvers quite
complex. Most details have intuitive explanations, and were chosen based on
empirical performance. At the same time, the complexity seems perhaps a bit
much relative to our understanding of “clause quality”. This complexity makes
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it hard to evaluate the contributions of individual elements, and is an obstacle
to adding new features or refined quality measures.

There are two main aspects to a clause deletion strategy. The first is a method
to categorize clauses as likely to be useful (high quality), or not (low quality).
The second is implementation of an algorithmic method to remove low quality
clauses efficiently. In an idealized scheme, we might have a clause quality mea-
sure Q, and keep the clauses in a heap so that the lowest quality clause(s) can be
removed when the clause database is deemed too large. Conventional wisdom is
that using a heap would be too inefficient. It also seems unlikely that spending
time to obtain the very worst clause is necessary. Thus, fast heuristics are de-
sired. One scheme, which we call Delete-Half, is to periodically sort the clauses of
Local and delete the half with lowest quality. This scheme has been very widely
used for many years, but there are many other possible schemes. While some
solvers use other schemes (e.g., [4,16]), we think much more investigation is jus-
tified. Regarding clause quality, we expect a very good clause quality measure to
involve a combination of many factors. The dominant current quality measure
uses VSIDS-like clause “activities”. Unfortunately, the way activities are com-
puted and maintained in practice makes it hard to combine activity with other
measures of quality in a simple and meaningful way.

The goal of this work is to identify simple methods that might largely account
for effectiveness of the best current schemes. We make the following contribu-
tions.

1. We introduce a new “online” clause deletion scheme which is simple to im-
plement and maintains the size of Local at a desired value. It does not use
sorting and in many natural instantiations takes constant time per conflict.
The scheme is presented in Section 2.

2. We show that a simple instantiation of this scheme performs comparably
to the state of the art. In particular, we implemented the scheme within
MapleLCMDistChronoBT, the first-place solver from the 2018 SAT Com-
petition [12,1]. This instantiation takes into account clause usage and LBD
using very simple mechanisms. The resulting solver (Online-RU-T2Flag) and
its performance are described in Section 4.

3. To aid in understanding the degree to which the particular methods play a
role in solver performance, we present data from a number of experiments
measuring performance or other properties. These appear throughout re-
maining sections.

Our performance evaluations are carried out using the 400 formulas from
the main track of the 2018 SAT Solver Competition, with a 5000 second cut
off. Our baseline solver for performance evaluation is MapleLCMDistChronoBT,
winner of the competition and all other solvers are modified versions of it. The
computations were performed on the Cedar compute cluster [6] on 32-core, 128
GB nodes with Intel “Broadwell” CPUs running at 2.1Ghz.
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1.1 MapleLCMDistChronoBT Clause Database Management

Many top-performing solvers in recent SAT Solver Competitions have been vari-
ants or derivatives of MapleSAT [11]. For simplicity, we focus on the first-place
solver from the 2018 competition, MapleLCMDistChronoBT [12], which uses the
deletion scheme introduced in COMiniSatPS [14,15].

This scheme has three clause databases, called Core, Tier2 and Local. The
decision of where to store a newly learned clause in is based on its LBD: Core if
LBD ≤ 3, Tier2 if 4 ≤ LBD ≤ 6 and Local if 6 < LBD. If after 100,000 conflicts
there are not enough clauses in Core, the core threshold is changed from 3 to 5.
A clause may be moved from one DB to another based on LBD or usage. The
LBD of each clause is recomputed whenever it is used in conflict analysis or the
clause simplifying procedure [3]. If the LBD of a clause is sufficiently reduced,
it is moved from Local to Tier2 or Core, or from Tier2 to Core. Every 10,000
conflicts, every clause in Tier2 that has not been used during the last 30,000
conflicts is moved to Local. Every 15,000 conflicts, all the clauses in Local are
sorted by their activity and MapleLCMDistChronoBT deletes half of the clauses
with lower activities. Clauses that are a reason for a current assignment and
clauses with recent improvement in LBD are saved from deletion [3,14]

2 Online Clause Deletion

Our online clause deletion scheme is as follows. The clauses of Local are main-
tained in a circular list L with an index variable i that traverses the list in
one direction. The index identifies the current “deletion candidate” Li. We have
a clause quality measure Q, and some threshold quality value q. When a new
learned clause C needs to be stored in Local, we select a “low quality” clause in
the list to be replaced with C by sequential search. As long as Q(Li) ≥ q, we
increment i (“saving” clause Li for one more “round”); The first time Q(Li) < q,
we replace Li with C (deleting the “old” Li). The clause quality measure thresh-
old must be chosen so that there are always sufficiently many “low-quality”
clauses in the list. There are algorithmic methods to ensure this (for example,
using a feedback control mechanism) but it is not hard to obtain good practical
performance without them.

Relating Delete-Half and Online Deletion Consider a Delete-Half scheme
with a sort-and-reduce phase every k conflicts. Roughly speaking (ignoring some
details for simplicity) each clause is inspected every k conflicts, deleted if its
quality is below the median of the current clauses in Local. If we instantiate
our online scheme with S = 2k, and keep q sufficiently close to the median, we
expect each clause to be inspected every k conflicts and deleted if its quality is
below the median of the current clauses in Local. In this sense, the two schemes
can be made quite close: we trade off sorting for dynamically estimating the
median. In doing so, we get a clause database of uniform size, rather than one
that significantly grows and shrinks.
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Age-Based Deletion A trivially implemented version of our scheme assumes
Q(C) < q for every clause C. This results in a pure age-based scheme: Each new
learned clause replaces the oldest clause in Local. This very low-cost scheme
works surprisingly well. Figure 1 shows a “cactus-plot” comparison of default
MapleLCMDistChronoBT with 3 variants using online deletion. (The Local size
limit is set to 80,000 clauses in all solvers using online deletion reported here.)
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Fig. 1. Simple Online Deletion Performance.

Online Age-Only - No Core, No Tier2 This has no permanent store at
all, just pure age-based deletion of all learned clauses.

Online Age-Only - No Tier2 This version keeps clauses with LBD ≤ 3 or
Size ≤ 4 permanently in Core, and uses pure age-based deletion from Local.

Online Age-Only In this version we use Core and Tier2 just as in MapleL-
CMDistChronoBT, but use age-based online deletion from Local. If a clause
is moved from Tier2 to Local, it replaces the oldest clause in Local.

Figure 1 shows that Core and Tier2 are important to the performance of
MapleLCMDistChronoBT. It also shows that in the presence of Core and Tier2
a simple pure age-based deletion scheme for Local gives quite good performance.

We make two observations regarding this second point. First, in online dele-
tion with Local of size S, if the probability of saving a clause is as most 0.5 (see
Figure 4), then every learned clause is kept for at least S/2 conflicts, giving it
substantial time to be used. Delete-Half schemes generally do not ensure this.
Second, age is highly correlated with usage rate, and can account for a large
fraction of decisions that would be made based on clause activities. This is il-
lustrated by Figure 2, which shows the average usage rates of clauses that have
been in Local for at least 10K conflicts, at different ages. The usage rate of most
clauses drops very quickly.
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Fig. 2. Rate of use of clauses in Local at different ages.

3 Clause Usage

MiniSAT and many of its successors, including MapleLCMDistChronoBT, use
clause “activity” scores in their clause deletion schemes [8,11,15]. If a clause is
used in conflict analysis, its activity is “bumped”, meaning it’s activity score is
increased by a reward value. The reward is initialized to 1 and divided by 0.999
(the decay factor) at each conflict, to similate decay of activities. To prevent
activity overflow, when the activity of any clause reaches 1e20, all activity values
and the reward value are divided by 1e-20 [8,5].

This scheme, with many variations, has been widely used, but it also has
inconvenient aspects as discussed above. We anticipated that, in the presence
of Core, much simpler usage measures might be effective. Here we report two
that we have considered. Both are extremely simple to implement. We follow
their descriptions with reports of three experiments that may shed light on the
performance of the RU measures.
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M-OnlineDel-RU In this version, the measure Q of quality (or activity) is
just the number of times the clause was used in conflict analysis during the
last “round”. That is, we count uses and reset the count to zero if the clause
becomes the candidate for deletion but is saved. We denote this measure RU,
for Recently-Used. If the threshold value is q (denoted RU = q), a clause
will be saved if it was used q or more times in the last round.

M-OnlineDel-RUD This is similar to M-OnlineDel-RU, but instead of reset-
ting RU to 0 when a clause is saved, we decay it by dividing it by a constant.
We call this measure RUD.

Figure 3 shows the performance of M-OnlineDel-RU with threshold RU=2
and M-OnlineDel-RUD with RU=2 and Decay constant 4. Both versions perform
quite well, the decay version being almost as good as MapleLCMDistChronoBT.
This suggests that online deletion using simple measures might compete effec-
tively with Delete-Half using traditional activities.

To understand the effectiveness of RU versus traditional activities, we created
a solver M-Sort&Delete By RU that is identical to MapleLCMDistChronoBT
but does sorting and deletion from Local based on RU instead of activity. Fig-
ure 3 shows the performance is slightly inferior to MapleLCMDistChronoBT on
our benchmark, lying between the performance of the two versions with online
deletion. This suggests that we pay no penalty for using online deletion instead
of the Delete-Half scheme, and confirms that in the presence of Core and Tier2
a simple usage measure can be almost as useful as traditional clause activities.
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Fig. 4. Fraction of saved clauses in different online deletion schemes

Fraction Saved by RU Here we examine the fraction of clauses in Local that
become candidates for deletion but are saved based on the RU measure. Figure 4
shows this value for several variations. In each pair of bars, the right bar (orange)
shows the fraction of clauses with RU ≥ q; the left bar (blue) shows the fraction
of clauses saved based on either RU or because of being “locked” [8].

With q = 1, the probability of deletion is less than 1/2, and the performance
of the solver is poor. In contrast, with q = 2, about three quarters of clauses
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are deleted, and the performance is quite good as shown in Figure 3. In the
remainder of the paper, all solvers using RU have q is set to 2.

Clauses saved by RU and Activity We examined the clauses in Local just
before the 10th clause deletion in MapleLCMDistChronoBT, and measured their
RU and activity values to see what fraction of clauses would be saved by our
RU-based schemes. Table 1 shows the results for one formula from each of 10
families. The first column is the number of clauses in Local just before deletion.
Other columns show the number of clauses that would be saved due to RU ≥ q,
and the fraction (in per cent) of these clauses that have high enough activity to
be saved by Delete-Half. On average this fraction is between 87 and 97 percent,
suggesting that simple RU counters can account for a significant fraction of
decisions based on activities.
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Fig. 5. Online Deletion With Usage and LBD

Table 1. Commonality among High-Activity Clauses and Recently-Used Clauses.

Formula Local Size RU ≥ 1 (%) RU ≥ 2 (%) RUD ≥ 2 (%) RUL ≥ 2 (%)

201 28470 12150 (100) 2162 (100) 2265 (97) 3591 (100)

CNP-5-200 28699 13177 (98) 4122 (100) 4923 (87) 2915 (99)

Karatsuba 25251 11091 (86) 1730 (90) 2111 (80) 5571 (89)

T62.2.0.cnf 7097 2474 (100) 521 (100) 618 (86) 1574 (100)

ae rphp 30535 12586 (87) 6575 (94) 8004 (78) 7278 (94)

apn-sbox6 29422 15459 (87) 6423 (92) 7129 (85) 6282 (90)

cms-scheel 21828 8602 (100) 2454 (100) 2698 (92) 3752 (100)

courses 13869 3241 (100) 854 (100) 1092 (83) 1610 (100)

cz-alt-3-7 26577 11276 (99) 2346 (100) 2639 (93) 7247 (99)

dist9.c 26274 15150 (84) 4182 (92) 4614 (87) 6651 (90)

Average 23802 10521 (93) 3137 (97) 3609 (87) 3395 (96)
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4 Clause LBD and Tier2

LBD is used in MapleLCMDistChronoBT for initial placement of a learned
clause, and to move clauses between stores if the LBD changes. Here we re-
port two simple methods to take into account LBD changes in a solver with
online deletion and no Tier2. Figure 5 show the resulting performance.

M-OnlineDel-RU-T2Flag Here we replace Tier2 with a rough simulation,
by adding a “Tier 2 flag” to clauses in Local. We set the flag true if MapleL-
CMDistChronoBT would move it from Local to Tier2, and false for the reverse
direction. Clauses with this flag true are always saved. This is not an accurate
Tier2 simulation, because the size of the clause DB does not change appropri-
ately. Nonetheless, the resulting performance is very close to the original solver.

M-OnlineDel-RUL Here we take LBD into account by modifying the usage
scoring. Instead of incrementing RU by 1 each time a clause is used, we increment
by c/LBD, for a constant c. We call this RUL, for RU with LBD. The RUL values
are re-set to zero when a clause is saved. The curve in Figure 5 is the performance
with c = 20.

Table 2. Performance on Satisfiable vs Unsatisfiable Formulas.

Solver # Solved SAT UNSAT

MapleLCMDistChronoBT 241 138 103

M-OnlineDel-RU 230 132 98

M-OnlineDel-RUL 237 140 97

M-OnlineDel-RUD 238 141 97

M-OnlineDel-RU-T2Flag 238 139 99

5 Discussion

We introduced a new, simple online clause deletion scheme, and reported the
performance of instantiations of the scheme using clause age, LBD and very
simple measures of usage. An implementation of the online scheme in MapleL-
CMDistChronoBT, the winning solver from the main track of the 2018 SAT
Solver Competition, has performance almost as good as the original.

Online deletion requires less computation time than the Delete-Half scheme.
However, the fraction of run time consumed by deletion in MapleLCMDistChronoBT
is small, so this is not a major performance factor.

The online deletion schemes in this paper use age or age modified by a fixed
quality threshold. A dynamic threshold may be more desirable, in which case
we may use a feedback control scheme to ensure the threshold is such that the
fraction of saved clauses is suitable (cf Figure 4).
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We continue to investigate more refined versions of our scheme, in particular
with regard to clause quality measures and clause database size. Table 2 shows
that our modified solvers are biased toward Satisfiable instances, and we will
work on shifting this bias.

Acknowledgement This research was supported and enabled in part by the
Natural Sciences and Engineering Research Council of Canada (NSERC), West-
Grid (www.westgrid.ca) and Compute Canada (www.computecanada.ca)[7].

References

1. The international SAT competitions web page. http://www.satcompetition.org
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