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Abstract. There are many reasons to think that SAT solvers should be
able to exploit formula structure, but no standard techniques in mod-
ern CDCL solvers make explicit use of structure. We describe modifi-
cations to modern decision and clause-deletion heuristics that exploit
formula structure by using variable centrality. We show that these
improve the performance of Maple LCM Dist, the winning solver from
Main Track of the 2017 SAT Solver competition. In particular, using
centrality in clause deletion results in solving 9 more formulas from the
2017 Main Track. We also look at a number of measures of solver per-
formance and learned clause quality, to see how the changes affect solver
execution.

1 Introduction

Structure seems important in SAT research. Notions of instance structure are
invoked in explaining solver performance, for example on large industrial formu-
las; many empirical papers relate aspects of solver performance to formula struc-
ture; and structure is key in theoretical results on both hardness and tractability.

Despite this, no standard method used in modern CDCL SAT solvers makes
direct use of formula structure. (We exclude local structure such as used in
resolving two clauses or assigning a unit literal.) The heuristics in CDCL solvers
focus on local properties of the computation — what the algorithm has recently
done — ignoring overall structure. The VSIDS and LRB decision heuristics give
strong preference to variables that have been used many times recently, while
clause deletion based on LBD and clause activity selects clauses based on recent
use and an indicator of likelihood of being used again soon.

We present modifications to state-of-the-art decision and clause deletion
heuristics that take structure into account by using variable betweenness cen-
trality. This measure reflects the number of shortest paths through a variable in
the primal graph of the formula. For decision heuristics, we give three different
centrality-based modifications that alter VSIDS or LRB variable activities. For
the clause deletion heuristic, we replace activity-based deletion with deletion
based on clause centrality, a clause quality measure we believe is new.

We demonstrate the effectiveness of the methods by implementing them in
Maple LCM Dist, the winning solver from Main Track of the 2017 SAT Solver
© Springer International Publishing AG, part of Springer Nature 2018

O. Beyersdorff and C. M. Wintersteiger (Eds.): SAT 2018, LNCS 10929, pp. 122-131, 2018.
https://doi.org/10.1007/978-3-319-94144-8_8


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94144-8_8&domain=pdf

Centrality-Based Improvements to CDCL Heuristics 123

competition, and running them on the formulas from that track with a 5000s
time-out. All the modifications increased the number of instances solved and
reduced the PAR-2 scores. While our methods are simple, to our knowledge
this is the first time that explicit structural information has been successfully
used to improve the current state-of-the-art CDCL solver on the main current
benchmark. We also report a number of other measures of solver performance
and learned clause quality, and make some observations about these.

Paper Organization. The remainder of the present section summarizes related
work. Section 2 defines betweenness centrality and describes centrality computa-
tion. Sections 3 describes our modified decision and deletion heuristics. Section 4
gives the main performance evaluation. Section 5 looks at some execution details,
and Sect. 6 makes concluding remarks and mentions work in progress.

Related Work. Several papers have studied the structure of industrial CNF
formulas, e.g., [6,13,29]. “Community structure” (CS) has been shown in indus-
trial formulas [11] and CS quality is correlated with solver run time [2,3,24,25].
CS was used in [4] to generate useful learned clauses. In [20,23] CS was used
to obtain small witnesses of unsatisfiability. [17] showed that VSIDS tends to
choose bridge variables (community connectors), and [14] showed that prefer-
ential bumping of bridge variables increased this preference and improved per-
formance of the Glucose SAT solver. [27] described a method that applies large
bump values to variables in particular communities. Eigenvalue centrality of vari-
ables was studied in [15], and it was shown that CDCL decisions are likely to be
central variables. Betweenness centrality was studied in [14], where it was shown
that a large fraction of decision variables have high betweenness centrality, and
that the performance of Glucose can be improved by preferential bumping of
variables with high betweenness centrality. Some features used in learning per-
formance prediction models, as used in SATzilla [30], are structural measures.
Lower bounds for CDCL run times on unsatisfiable formulas are implied by reso-
lution lower bounds, and formula structure is central to these [8]. Formulas with
bounded treewidth are fixed parameter tractable [1], and also can be efficiently
refuted by CDCL with suitable heuristics [5].

2 Centrality Computation

The primal graph of a propositional CNF formula ¢ (also called the variable
incidence graph or the variable interaction graph) is the graph G(¢) = (V, E),
with V being the set of all variables in ¢ and (p, q) € FE iff there is a clause C € ¢
containing both p and ¢ (either negated or not). The betweenness centrality of
a vertex v is defined by g(v) = >, (0s,:(v)/0s:), where oy, is the number
of shortest s-t paths and o,4(v) is the number of those that pass through v,
normalized to range over [0,1] [12]. The betweenness centrality of a variable v
in formula ¢ is the betweenness centrality of v in the primal graph G(¢).
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Exactly computing betweenness centrality involves an all-pairs-shortest-
paths computation, and is too expensive for large formulas. We computed
approximate centrality values using the NetworkX [22] betweenness_centrality
function, with sample size parameter n/50, where n is the number of variables.
The parameter sets the number of vertices used to compute the approximation.

For some industrial formulas even this approximation takes too long to be
useful (under SAT competition conditions), but for many formulas the approxi-
mation is fast. With a 300 s time-out, we found approximations for 217 of the 350
formulas from the main track of the 2017 competition. Figure1 is a histogram
of the centrality approximation times for these formulas, showing that a large
fraction required less than 70s.
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Fig. 1. Histogram of centrality approximation times.

3 Modified Decision and Deletion Heuristics

Decision Heuristics. The VSIDS decision heuristic [21], in several variations,
has been dominant in CDCL solvers for well over a decade. Recently, the LRB
(Learning-Rate-Based) heuristic [16] was shown to be effective, and winners of
recent competitions use a combination of VSIDS and LRB. Both employ variable
“activity” values, which are updated frequently to reflect the recent variable
usage. The update involves increasing (or “bumping”) the activity value for a
variable each time it is assigned or appears during the derivation of a new learned
clause. A secondary update in MapleSAT [16] and its descendants involves, at
each conflict, reducing the LRB activity score of each variable that has not been
assigned a value since the last restart. Maple LCM Dist uses both VSIDS and
LRB, at different times during a run, and LRB activity reduction.

In [14] we reported that increasing the VSIDS bump value for high-centrality
variables during an initial period of a run improved the performance of the solver
Glucose. This did not help much in solvers using LRB, but motivated further
study. As in [14] we define “high-centrality” variables to be the 1/3 fraction of
variables with highest centrality values. The modifications reported here are:

HCbump-V: We scale the VSIDS additive bump values for high-centrality
variables by a factor greater than 1. In the experiments reported here, the
factor is 1.15.
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HCbump-L: We periodically scale the LRB activity values of high-centrality
variables by a factor greater than 1. In the experiments reported here, we
scaled by a factor of 1.2 every 20,000 conflicts.

HCnoReduce: We disable the reduction of LRB scores for “unused variables”
that are also high-centrality variables.

Clause Deletion. The Maple LCM Dist clause deletion (or reduction) scheme
was inherited from COMiniSatPS, and is as follows [7,19]. The learned clauses
are partitioned into three sets called CORE, TIER2 and LOCAL. Two LBD
threshold values, 1,9, are used. Learned clauses with LBD less than t; are put
in CORE. t; is initially 3 but changed to 5 if CORE has fewer than 100 clauses
after 100,000 conflicts. Clauses with LBD between t; and t; = 6 are put in
TTIER2. Clauses with LBD more than 6 are put in LOCAL. Clauses in TIER2
that are not used for a long time are moved to LOCAL. Clause deletion is done
as follows. Order the clauses in LOCAL by non-decreasing activity. If m is the
number of clauses in LOCAL, delete the first m/2 clauses that are not reasons
for the current assignment. We report on the following modification:

HCdel: Replace ordering of clauses in LOCAL by clause activity with ordering
by clause centrality. We define the centrality of a clause to be the mean
centrality of the variables occurring in it.

4 Performance Evaluation

We implemented each of our centrality-based heuristics in Maple LCM Dist
[19], the solver that took first place in the Main Track of the 2017 SAT Solver
Competition [26]. We compared the performance of the modified versions against
the default version of Maple LCM Dist by running them on the 350 formulas
from the Main Track of the 2017 solver competition, using a 5000s time-out.
Computations were performed on the Cedar compute cluster [9] operated by
Compute Canada [10]. The cluster consists of 32-core, 128 GB nodes with Intel
“Broadwell” CPUs running at 2.1GHz.

We allocated 70s to approximate the variable centralities, based on the cost-
benefit trade-off seen in Fig.1: Additional time to obtain centralities for more
formulas grows quickly after this point. If the computation completed, we used
the resulting approximation in our modified solver. Otherwise we terminated the
computation and ran default Maple LCM Dist. The choice of 70s is not crucial:
Any cut-off between 45 and 300s gives essentially the same outcome. Centrality
values were obtained for 198 of the 350 formulas. Our 5000s timeout includes
the time spent on centrality computation, whether or not the computation
succeeded.

Table 1 gives the number of instances solved and the PAR-2 score for each
method. All four centrality-based modifications improved the performance of
Maple LCM Dist by both measures.
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Table 1. Number of formulas solved (out of 350) and PAR-2 score, for default Maple
LCM Dist and our four modified versions.

Maple LCM Dist | HCbump-L | HCbump-V | HCnoReduce | HCdel

Number solved | 215 219 218 221 224
PAR-2 score 4421 4382 4375 4381 4242
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Fig. 2. Cactus plot comparing performance of default Maple LCM Dist and our four
modified versions.

Figure 2 gives the “cactus plot” (inverse cumulative distribution function) for
the runs. All four modifications result in improved performance. HCdel, which
uses centrality-based clause deletion, is the best, and also out-performs default
Maple LCM Dist for almost all smaller cut-off time values. The other methods,
which modify the decision heuristic, improve on the default for all times longer
than 3300s. The two methods that modify LRB under-perform the default on
easy formulas, but catch up at around 3200s.

Families Affected. It is natural to wonder if these improvements are due to
only one or two formula families. They are not. Table2 shows, for each of our
four modified solvers, how many formulas it solved that default Maple LCM Dist
did not, and how many families they came from.

5 Performance Details

Reliability. There is an element of happenstance when using a cut-off time.
For example, the “best” method would be different with a cut-off of 2800, and
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Table 2. Number of families involved in formulas solved by our modified solvers by
not by default Maple LCM Dist.

Solver HCdel | HCnoReduce | NCbump-L | HCbumpt-V
Number of formulas | 11 10 8 5
Number of families | 5 6 5 3

the “worst” would be different with a cut-off of 2200s. Run-time scatter plots
give us an alternate view. Figure 3 gives scatter plots comparing the individual
formula run-times for each of our four modified solvers with the default Maple

LCM Dist. We observe:
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Fig. 3. Comparison of run-times of default Maple LCM Dist with each of our modified
versions. Each plot shows all instances that were solved by at least one of the two solvers
represented. Satisfiable formulas are denoted with o, unsatisfiable formulas with x.

— In each plot many points are lined up just below the main diagonal. These
are the formulas without centralities, for which we pay a 70-s penalty.

— The most reliable method is HCdel. It solved the most, was faster on 70% of
formulas with centralities and had significant slow-down for only 4 formulas.

— HCbump-V caused the least variation: it solved more formulas, but gave
significant speedups on only a few others.
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— The two LRB modifications, HCbump-L and HCnoReduce, were very “noisy”,
speeding up many formulas but also slowing down quite a few.

— It is very interesting that very large differences in run-time were mostly for
satisfiable formulas.

Reasoning Rates. Here, we look at measures of the rate of solver reasoning
or search (as distinct from, for example, quality of reasoning or total time).
Table 3 shows, for each method, the mean decision rate, the mean conflict pro-
duction rate, the mean unit propagation rate, and the mean Global Learning
Rate (GLR). GLR, defined as the ratio of the number of conflicts to the number
of decisions, was introduced in [18], where it was observed that decision heuristics
producing a higher GLR had reduced solving times. We observe:

— Consistent with the observations in [18], decision heuristic changes that
improved performance increased GLR, though only slightly;

— The fastest of our methods, HCdel, did not have a higher GLR, suggesting
that it learned or kept “better” clauses, rather than more clauses.

Table 3. Measures of search or reasoning rate for the four solvers. Conflicts, Decisions
and Propagations are in thousands of events per second.

Solver Conlflicts | Decisions | Propagations | GLR
Maple LCM Dist | 8.25 23.7 1,452 0.623
HCdel 8.43 25.2 1,493 0.623
HCbump-L 8.52 26.3 1,530 0.626
HCbump-V 8.15 23.5 1,432 0.625
HCnoReduce 8.02 21.0 1,420 0.629

Learned Clause Quality. Measures of “clause quality” that have been stud-
ied or used in solver heuristics include size, literal block distance (LBD) and
activity. Here we add clause centrality to these. Small clauses are good because
they eliminate many truth assignments and facilitate propagation. Literal Block
Distance is defined relative to a CDCL assignment stack, and is the number of
different decision levels for variables in the clause. Small LBD clauses are like
short clauses relative to assignments that are near the current one [6]. Clause
activity is an analog of VSIDS activity, bumped each time the clause is used in
a learned clause derivation [28]. Intuitively, clauses with low centrality connect
variables “on the edge of the formula”’, and a long clause with low centrality
connects many such variables, so is likely hard to use.

To see the effect of centrality-based deletion on clause quality, we measured
the quality of learned clauses kept in LOCAL for three deletion schemes: Activ-
ity based deletion (default Maple LCM Dist); Centrality-based deletion (HCdel);
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and LBD-based deletion (implemented in Maple LCM Dist for this study).
Table4 shows the results. Reported numbers are the mean of measurements
taken just after each clause deletion phase. We observe:

— Centrality-based deletion keeps better clauses than activity-based deletion,
as measured by both size and LBD, and also performs better.

— LBD-based deletion keeps the “best” clauses measured by LBD and size, has
the worst performance and keeps the worst clauses measured by centrality.

— Centrality is the only clause quality measure that perfectly predicts ordering
of the deletion methods by solving speed.

Table 4. Measures of quality for clauses in the LOCAL clause set, for three deletion
schemes. (Centralities are scaled by 10,000).

Deletion method Clause centrality | Clause LBD | Clause size  Solving time
Activity-based deletion |106 24 56 401
Centrality-based deletion | 182 15 36 347
LBD-based deletion 80 9 24 446

6 Discussion

We introduced four centrality-based modifications to standard CDCL decision
and deletion heuristics, and implemented these in Maple LCM Dist, first-place
solver from the Main Track of the 2017 SAT Solver Competition. All four changes
improved the performance on the formulas from this track.

The centrality-based deletion scheme, HCdel, solved the most formulas, pro-
duced the smallest PAR-2 scores, and also gave the most reliable speed-ups. This
deletion scheme is based on clause centrality, a new measure of clause quality
introduced here. We presented other evidence that clause centrality is an inter-
esting clause quality measure, and we believe that further study of this measure
will be productive.

The decision heuristic modifications performed less well than HCdel, but
confirm the importance of variable centrality, and are interesting because they
seem to work for different formulas. For example, among 26 formulas that at
least one method solved and at least one did not, there are 12 formulas that are
either solved by HCbump-L and no other method, or not solved by HCbump-L
but solved by all other methods.

Work in progress includes more in-depth study of the roles of variable and
clause centrality in solver execution, and development of a centrality-based
restart strategy.
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