
Minimum Witnesses for Unsatisfiable 2CNFs

Joshua Buresh-Oppenheim and David Mitchell

Simon Fraser University
jburesho@cs.sfu.ca, mitchell@cs.sfu.ca

Abstract. We consider the problem of finding the smallest proof of un-
satisfiability of a 2CNF formula. In particular, we look at Resolution
refutations and at minimum unsatisfiable subsets of the clauses of the
CNF. We give a characterization of minimum tree-like Resolution refuta-
tions that explains why, to find them, it is not sufficient to find shortest
paths in the implication graph of the CNF. The characterization allows us
to develop an efficient algorithm for finding a smallest tree-like refutation
and to show that the size of such a refutation is a good approximation
to the size of the smallest general refutation. We also give a polynomial
time dynamic programming algorithm for finding a smallest unsatisfiable
subset of the clauses of a 2CNF.

1 Introduction

Two important areas of SAT research involve identification of tractable cases,
and the study of minimum length proofs for interesting formulas. Resolution is
the most studied proof system, in part because it is among the most amenable to
analysis, but also because it is closely related to many important algorithms. The
two most important tractable cases of SAT, 2-SAT and Horn-SAT, have linear
time algorithms that can be used to produce linear-sized Resolution refutations
of unsatisfiable formulas. However, for Horn formulas it is not possible even
to approximate the minimum refutation size within any constant factor, unless
P=NP [1]. Here, we consider the question of finding minimum-size Resolution
refutations, both general and tree-like, for 2-SAT.

The linear-time 2-SAT algorithm of [2] is based on the implication graph,
a directed graph on the literals of the CNF. It seems plausible that finding a
minimum tree-like Resolution refutation would amount to finding shortest paths
in the implication graph. This approach is proposed in [3], but is incorrect. Hence,
while [3] correctly states that finding a minimum tree-like refutation can be done
in polytime, the proof is flawed. We show that a different notion of shortest path
is needed, and give an O(n2(n + m))-time algorithm based on BFS. We also
show that such a refutation is at most twice as large as the smallest general
Resolution refutation and that there are cases where this bound is tight. This
contrasts with the above-mentioned inapproximability in the Horn case.

Since 2-SAT is linear time, the formula itself, or any unsatisfiable subset
of its clauses, is an efficiently checkable certificate of unsatisfiability. For the
question of finding a minimum unsatisfiable subset of a set of 2-clauses, analysis

of certain types of paths in the implication graph again allows us to develop a
polytime algorithm. This is interesting in light the fact that finding a maximum
satisfiable subset of the clauses of a 2CNF is NP-hard, even to approximate.
Perhaps surprisingly, a minimum tree-like Resolution refutation of a 2CNF is
not necessarily a refutation of a minimum unsatisfiable subformula. This also
seems to be the case with minimum general Resolution refutations.

2 Preliminaries and Characterization

Throughout, let C be a collection of 2-clauses over the variables {x1, ..., xn}. Say
|C| = m. As first suggested by [2], C can be represented as a directed graph GC

on 2n nodes, one for each literal. If (a ∨ b) ∈ C for literals a, b, then the edges
(ā, b) and (b̄, a) appear in GC (note that literals a and b can be the same). Both of
these edges are labelled by the clause (a∨ b). For an edge e = (a, b), let dual(e),
the dual edge of e, be the edge (b̄, ā).

Consider a directed path P in GC (that is, a sequence of not-necessarily-
distinct directed edges). Note that in GC even a simple path may contain two
edges with the same clause label. Let set(P) denote the set of clause-labels
underlying the edges of P . We define |P |, the size of the path P , to be |set(P)|.
In contrast, let length(P) denote the length of P as a sequence. Call a path P

singular if it does not contain two edges that have the same clause label. For
any singular path P , |P | = length(P).

For literals a, b, define Pab to be the set of all simple, directed paths from a

to b in GC . If c is also a literal, let Pabc be the set of all simple, directed paths
that start at a, end at c and visit b at some point. Let P ∈ Pab. We say P is
minimum if it has minimum size among all paths in Pab.

Proposition 1 ([2]). If C is unsatisfiable, then there is a variable x such that
there is a path from x to x̄ and a path from x̄ to x in GC . Furthermore, for any
Resolution derivation of the clause (ā ∨ b) (ā and b need not be distinct) there
must a path P ∈ Pab whose labels are contained in the axioms of this derivation.

Let P ∈ Pab. Let IR(P) be the Input Resolution derivation that starts by
resolving the clauses labelling the first two edges in P and then proceeds by
resolving the latest derived clause with the clause labelling the next edge in the
sequence P . This is a derivation of either (ā ∨ b) or simply (b). It is not hard to
see that the size of the derivation IR(P) is 2 · length(P)− 1.

For a path P = (e1, ..., ek) ∈ Pab, let dual(P) ∈ Pb̄ā be the path (dual(ek),
..., dual(e1)). Let suf(P) be the maximal singular suffix of P (as a sequence).
Similarly, let pre(P) be the maximal singular prefix of P . For a simple path P ∈
Pabb̄, let extend(P) be the following path in Paā: let P ′ be the portion of P that
starts at a and ends at b. Then extend(P) is the sequence P concatenated with
the sequence dual(P ′). If P ∈ Paāb, then extend(P) ∈ Pb̄b is defined similarly.

Proposition 2. Let x be a literal and let P ∈ Pxx̄. There is some literal a

(possibly equal to x) such that suf(P) ∈ Paāx̄, pre(P) ∈ Pxaā. If P is minimum,
then extend(suf(P)) and extend(pre(P)) are minimum.

Lemma 1. Assume a clause (a), for some literal a, has a Resolution derivation
from C. Then the size of the smallest Resolution derivation of (a) is 2`−1, where
` = minP∈Pāa

|P |. Moreover, if P is the minimum such path, then IR(suf(P))
is a smallest derivation.

Proof. We first show that there is an input derivation of size at most 2` − 1.
Let P be a minimum path from ā to a. Then length(suf(P)) = |suf(P)| = `

and, by Proposition 2, there is some b such that suf(P) ∈ Pbb̄a. Let P ′ be
the prefix of suf(P) that ends at literal b̄. Then IR(P ′) is a derivation of the
singleton clause (b̄) and IR(suf(P)) is a derivation of (a). This derivation has
size 2 · length(suf(P))− 1 = 2` − 1.

To see that any Resolution derivation of (a) has size at least 2` − 1, assume
otherwise. Any Resolution derivation that uses k axioms has size at least 2k−1,
so (a) is derivable from `′ < ` axioms of C. These axioms cannot form a path
from ā to a by minimality, so (a) cannot be derived from them by Proposition 1.

3 Finding Minimum Tree-Like Refutations

Lemma 1 gives us the size of a minimum tree-like Resolution refutation of any
contradictory C and suggests a way to find one. Let sizegen(C) (sizetree(C))
be the size of a smallest general (tree-like) Resolution refutation of C. Then,
sizetree(C) is 2 mini∈[n]

(

minP∈Pxix̄i
|P | + minP∈Px̄ixi

|P |
)

−1. That is, any min-
imum tree-like refutation of C consists of minimum derivations of xi and x̄i, for
some xi, plus the empty clause. Such derivations of xi and x̄i come from input
derivations along the suffix of minimum paths from xi to x̄i and vice versa.
We search for such suffixes by doing BFS from xi, avoiding already-used clause
labels, until either we reach x̄i or, for some literal y, both y and ȳ are visited
along the same path (the latter case constitutes the prefix of a minimum path
in Pxix̄i

, which defines the suffix to be used in the minimum derivation of x̄i).
The algorithm proceeds as follows. For each literal x, perform a modified

BFS starting at x, except: (1) Whenever y is reached from x, store a list L1(y)
of all clause-labels on the path from x to y and a list L2(y) of all literals on the
path from x to y; (2) If ȳ appears in L2(y), set path(x, x̄) to extend(path(x, y)).
Terminate BFS at this point; Otherwise, (3) when continuing from y, avoid all
edges labelled with clauses in L1(y). When BFS is completed for each literal,
find a literal x such that |path(x, x̄)| + |path(x̄, x)| is minimum. The tree-like
refutation is IR(suf(path(x, x̄))), IR(suf(path(x̄, x))) and the empty clause.

BFS, runs in time O(n+m); Doing it for each literal takes time O(n(n+m)).
Adding the time to check lists L1 and L2, the algorithm takes time O(n2(n+m)).

Theorem 1. For any contradictory 2CNF C, sizetree(C) < 2 sizegen(C).

Proof. Let π be the minimum General Resolution refutation of C. Assume π

ends by resolving variable x with x̄. Assume, wlog, that the minimum Resolution
derivation of x is at least as big as the minimum derivation of x̄, and let ` be
the size of this derivation. Clearly size(π) ≥ ` since π contains a derivation of

x. In fact, size(π) ≥ ` + 1 since π also contains the empty clause (which is not
used in the derivation of x). On the other hand, there is a tree-like refutation of
size at most 2` + 1: use the minimum derivations of x and x̄, which are tree-like
by Lemma 1, and then resolve the two.

Hence, the algorithm for finding the shortest tree-like refutation is an efficient
2-approximation for computing sizegen. In fact, this algorithm cannot do better
than a 2-approximation in the worst-case.

Theorem 2. For any ε > 0, there exists a contradictory 2CNF Cn such that
sizetree(C) ≥ (2 − ε) · sizegen(C).

Proof. Choose n such that 2εn ≥ 9. C will be a formula over n + 1 variables
{a, x1, . . . , xn} with the following clauses: (ā∨x1), {(x̄i∨xi+1)}

n−1
i=1 , (x̄n∨ ā), (a∨

x1), (x̄n ∨ a). It is not hard to verify that ∀y, P ∈ Pyȳ, P ′ ∈ Pȳy, |P | + |P ′| ≥
2n + 2. Any refutation must consist of a derivation of y, a derivation of ȳ and
the empty clause, for some variable y. By Lemma 1, the size of a derivation for
y plus the size of a derivation for ȳ must be at least 2(2n + 2) − 2 = 4n + 2, so
any tree-like refutation has size at least 4n + 3.

On the other hand, there is a general Resolution refutation that proceeds as
follows: derive the clause (x̄1∨xn) using an input derivation of size 2(n−1)−1 =
2n − 3. Using also (ā ∨ x1) and (x̄n ∨ ā), derive ā. Likewise, using (a ∨ x̄n)
and (x1 ∨ a) and the already-derived (x̄1 ∨ xn), derive a. Finally derive the
empty clause. This derivation has size 2n − 3 + 4 + 4 + 1 = 2n + 6. Certainly
4n + 3 ≥ (2 − ε)(2n + 6).

4 Finding Minimum Unsatisfiable Subformulas

Any unsatisfiable subformula of C must have a variable x for which there is a
path from x to x̄ and a path from x̄ to x in GC . However, each of these paths
might use the same clause twice and the two paths may share clauses. Therefore,
we are searching for the set of clauses that comprise the paths that minimize the
expression minx minP1∈Pxx̄,P2∈Px̄x

|set(P1)∪ set(P2)|. Call two such paths joint-
minimum. Define the cost of any two paths P1 and P2 to be |set(P1) ∪ set(P2)|.

Proposition 2 states that if P is minimum path, then extend(suf(P)) is
minimum. We can say a similar thing about joint-minimum paths: If P1 and
P2 are joint-minimum, then extend(suf(P1)) and extend(suf(P2)) are joint-
minimum, and cost(suf(P1), suf(P2)) = cost(P1, P2). Therefore, we need to
find not-necessarily distinct literals x, a, b and singular paths P1 ∈ Paāx̄ and
P2 ∈ Pbb̄x of minimum cost.

A segment of a path is a consecutive subsequence of the path’s sequence. For
two singular paths P1 and P2, a shared segment is a maximal common segment.
A dual shared segment of P1 with respect to P2 is a maximal segment t of P1

such that dual(t) is a segment of P2. For two disjoint segments s and t of P , say
s ≺P t if s appears before t in P .

Consider the following properties of two paths P1 and P2.

Property I: Let s1 ≺P1
· · · ≺P1

sk be the shared segments of P1 and P2. Then
sk ≺P2

· · · ≺P2
s1.

Property II: Let t1 ≺P1
· · · ≺P1

t` be the dual shared segments of P1 with
respect to P2. Then dual(t1) ≺P2

· · · ≺P2
dual(t`).

Property III: Let s1 ≺P1
· · · ≺P1

sk be the shared segments of P1 and P2 and
let t1 ≺P1

· · · ≺P1
t` be the dual shared segments of P1 with respect to P2. For

any i, j, ti ≺P1
sj if and only if dual(ti) ≺P2

sj .

Lemma 2. There are joint-minimum paths P1 and P2 such that suf(P1) and
suf(P2) satisfy Properties I-III.

Proof. Consider Property I. If suf(P1) and suf(P2) violate the property, then
there is some i < j such that si ≺P2

sj . Let P ′
1 be the segment of P1 starting at

the beginning of si and ending at the end of sj . Likewise, let P ′
2 be the segment

of P2 that starts at the beginning of si and ends at the end of sj . Assume, wlog,
that length(P ′

1) ≤ length(P ′
2). Let P ′′

2 be the path P2 with P ′
2 replaced by P ′

1.
Certainly P1 and P ′′

2 are still joint-minimum. Property II follows in the same
way by looking at P1 and dual(P2).

Consider Property III. If suf(P1) and suf(P2) violate the property, then
there is some i, j such that, wlog, ti ≺P1

sj , but sj ≺P2
dual(ti). Let a, b be the

endpoints of ti. Then there is a cycle that includes a and ā that uses a strict
subset of the edges of P1 and P2.

The algorithm will search for the suffixes guaranteed by Lemma 2. More
generally, given two pairs of endpoints (and possibly two intermediate points),
we will find a pair of (not necessarily singular) paths P1 and P2 that obey
Properties I-III, that have the specified endpoints (and perhaps intermediate
points) and that have minimum cost over all such pairs of singular paths. The
fact that P1 and P2 themselves may not be singular is not a problem since they
will achieve the same optimum that singular paths achieve.

The algorithm uses dynamic programming based on the following idea. The
reason joint-minimum paths P1 and P2 may not each be of minimum length
is that, while longer, they benefit by sharing more clauses. If we demand that
P1 and P2 have a shared segment with specified endpoints, then that segment
should be as short as possible; likewise, for any segment of, say, P1 with speci-
fied endpoints that is guaranteed not to overlap any shared segment. By doing
this, we isolate segments of P1 and P2 that we can locally optimize and then
concentrate on the remainder of the paths.

We will compute a table A[(a1, b1, c1), (a2, b2, c2), k, `] which stores the mini-
mum of cost(P1, P2) over all paths P1 ∈ Pa1b1c1

and P2 ∈ Pa2b2c2
such that: (1)

We recognize at most k shared segments between P1 and P2; (2) We recognize
at most ` dual shared segments of P1 with respect to P2; and (3) P1, P2 obey
Properties I-III. By “recognizing” k shared segments, we mean that if there are
more shared segments, their lengths are added twice to the cost of P1 and P2,
with no benefit from sharing. If we omit b1, respectively b2, as a parameter in
A[], then P1, respectively P2, comes from Pa1c1

.

To begin, for all literals a, b, set B[a, b] to the length of a shortest path
in Pab. Likewise, set B[a, b, c] to the length of a shortest path in Pabc. For
all a1, b1, c1, a2, b2, c2, set A[(a1, b1, c1), (a2, b2, c2), 0, 0] equal to B[a1, b1, c1] +
B[a2, b2, c2]. Set A[((a1, c1), (a2, c2), 0, 0] to B[a1, c1] + B[a2, c2].

To compute a general entry in A where ` is nonzero, let P1 and P2 be the
paths that achieve the minimum corresponding to the entry in question. By
Properties II and III, there are two cases. (1) The first shared segment of any
kind in P1 (in order of appearance) is a dual shared segment t1 and dual(t1) is
the first shared segment of any kind in P2. (2) The last shared segment of any
kind in P1 is a dual shared segment tk and dual(tk) is the last shared segment
of any kind in P2.

Suppose we are in Case 1 (Case 2 is similar). We try placing b1 before, in,
or after t1 in P1 (likewise for b2, dual(t1), P2) and we try all endpoints for t1.
For example, in the case where we try placing b1 before t1 in P1 and b2 before
dual(t1) in P2, we take the minimum over all literals u, v, of

B[a1, b1, u] + B[a2, b2, v̄] + B[u, v] + A[(v, c1), (ū, c2), k, ` − 1].

Then we assign A the minimum over all nine placements of b1 and b2. Finally,
if A[(a1, b1, c1), (a2, b2, c2), k, ` − 1] is less than the calculated value, we replace
the current entry with that.

If ` = 0 and k is nonzero, we proceed similarly except that the first shared
segment in P1 is the last shared segment in P2 by Property I. Therefore (placing
b1 before s1 and b2 before sk), we take the minimum over all u, v of

B[a1, b1, u] + B[v, c2] + B[u, v] + A[(v, c1), (a2, b2, u), k − 1, 0].

Again, minimize over all b1 and b2, then check A[(a1, b1, c1), (a2, b2, c2), k− 1, 0].
The size of the joint minimum paths will finally be stored in A[(a, ā, x),

(b, b̄, x̄), n, n] for some literals a, b, x; we simply find the smallest such entry. We
can recover the actual set of edges comprising these paths using the standard
dynamic-programming technique of remembering which other entries of A were
used to compute the current entry. The algorithm is clearly polynomial time,
since there are polynomially-many entries in A and each one is computed as the
minimum of polynomially-many expressions.

References

1. A. Alekhnovich, S. Buss, S. Moran, and T. Pitassi. Minimal propositional proof
length is NP-hard to linearly approximate. In Proc., MFCS’98, pages 176–184,
1998. (Also LNCS 1450).

2. Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time algorithm
for testing the truth of certain quantified boolean formulas. Information Processing

Letters, 8(3):121–123, March 1979.
3. K. Subramani. Optimal length tree-like resolution refutations for 2SAT formulas.

ACM Transactions on Computational Logic, 5(2):316–320, April 2004.

