
Instance Transformation for Declarative Solvers
Or: Instant Model Finders

Megan O’Connor and David Mitchell
Computational Logic Laboratory

School of Computing Science
Simon Fraser University

Burnaby, B.C. V5A 1S6 CANADA
{mitchell,megano}@cs.sfu.ca

Abstract—We describe a method and prototype tool for purely
declarative creation of “solvers” for a wide range of problems
where instances are presented as strings. Examples include model
finders for logics of moderate expressive power. The method
exploits existing specification-based declarative problem-solving
systems (“model-and-solve” systems), adding a front-end tool
to declaratively map problem instances in arbitrary form into
system-specific instance formats. We illustrate application of our
prototype tool with examples including graph problems and non-
classical propositional logics.

I. INTRODUCTION

Systems for solving combinatorial problems based on
declarative specifications are growing in variety, number, and
range of effective application. Examples include systems us-
ing the following specification languages: the Alloy software
modelling language [1], algebraic modelling languages used
in mathematical programming such as Zimpl [2], constraint
modelling languages used in combinatorial optimization such
as MiniZinc [3], and knowledge representation languages such
as used in the IDP System [4], Enfragmo [5], and Answer Set
Programming systems such as clasp [6] and DLV [7].

The specification languages, instance (or data) file formats,
and associated terminology for these tools can differ con-
siderably, depending on the intended application problem,
target user community, or developer community. All, however,
provide users with a similar capability, which is to solve com-
binatorial problems by writing high-level declarative problem
specifications rather than executable code.

Use of this sort of system is conceptually simple, as
illustrated in Figure 1. The user writes a problem specification
in the declarative language of the system, the solver takes as
input the problem specification and a problem instance, and
outputs a solution for the instance (if it can find one). For
example, for the problem of Graph Colouring, the problem
specification says (in syntax of the relevant language) that
every node of the graph must be assigned one of the available
colours, and that no pair of adjacent vertices are assigned the
same colour. Such a specification can easily be written in any
of the languages mentioned above. Then, the specification and
a particular graph are given as input to the system, which will
try to construct a proper colouring.

The declarative nature of these systems suggests they can be
used by workers who are neither programmers nor experts in

Problem Instance
�� �

?

Specification
�� �
- Declarative Solver

?
Solution

�� �

Fig. 1. Declarative Problem Solving Systems

combinatorial problem solving or optimization. Because they
are used without coding, they are sometimes call “model-
and-solve” systems. It is reasonable to expect that, in the
near future, cloud-based model-and-solve systems will provide
practical combinatorial problem solving not only to those
without programming or combinatorial expertise, but also
without local computational infrastructure, and at modest cost.

However, the above description of using such a system left
out an uninteresting but essential step: the problem instance
must be put into the input format for the solver to be used.
With few exceptions, in serious applications this requires
writing a program. Mundane though this coding typically is,
it prevents the system from being purely declarative, and from
being used by non-programmers.

The purpose of this paper is to introduce a method, and a
prototype tool, that addresses this problem. The tool, used as a
front-end for an existing declarative solving system, allows for
purely declarative problem solving, by providing a means of
declaratively mapping instance data from text files, in whatever
form they are obtained, to the instance format of the solver.

As we will see, our solution to the mundane problem will
allow us to do something much more interesting as well.
Suppose that someone has presented us with instances of
a problem described in some unusual logic or specification
language. Or, suppose that we have designed a non-standard
logic which we think will be useful for some application,
and we want to experiment with it. Building a model finder
can take considerable programming effort. With the method
described here, one can turn a general purpose solver, such as
an Integer Programming solver or other constraint solver, into

Instance String
�� �

?Grammar
�� �
-

Vocabulary Map
�� �
-

Solver Format
�� �
-

Instance Translator

?
Solver Instance

�� �

?

Specification
�� �
- Declarative Solver

?
Solution

�� �

Fig. 2. Scheme for using the instance-translation front-end with a general-
purpose declarative specification-based solver.

a model finder for a wide variety of logics with only a page
or so of declarations, and no code. Ergo this paper’s sub-title.

In the following section, we give some formal preliminaries.
We describe the overall method in Section III, with further
details in Section IV, and give some examples in Section V.
We describe our prototype tool in Section VI and the method
of generating solver-specific inputs in Section VII, with a brief
concluding discussion in Section VIII.

II. PRELIMINARIES

We assume the reader is familiar with basic propositional
and first order logic. Our propositional formulas have atoms
Pi, connectives ∧, ∨, ¬; and parentheses (,). First order
formulas have predicate symbols Pi, functions symbols fi,
variable symbols xi and quantifier symbols ∀ and ∃, as well.
Formulas are defined by the usual inductive construction,
with the standard semantics. The semantics of propositional
formulas are defined in terms of truth assignments to the
propositional atoms. The formal semantics of first order for-
mulas are defined in terms of structures (or interpretations). A
vocabulary is a set of function and relation symbols, each with
an associated arity. (Constant symbols are zero-ary function
symbols.) A structure A for vocabulary τ (a τ -structure) is a
tuple consisting of a set A, called the universe of A, a k-ary
relation over A for each k-ary relation symbol of τ , and a
k-ary function on A for each k-ary function symbol of τ . If
A is a τ -structure, and P a predicate symbol of τ , then we
write PA for the relation in A corresponding to P , called the
interpretation of P by A. A good references for details is [8].

III. METHOD DESCRIPTION

The function of the front-end tool is to map a string, which
describes an instance of a problem, into the instance (or data
file) format for a chosen declarative problem solving tool. A
user should be able to describe this mapping, purely declara-
tively, for a wide variety of languages, including languages

Instance String
�� �

?

Grammar
�� �
- Stage One - Parsing

?
Parse Tree

�� �

?

Vocabulary Map
�� �
- Stage One - Mapping

?
Abstract Structure
�� �

?

Solver Format
�� �
- Stage Two

?
Solver Instance

�� �

Fig. 3. Internal scheme of the instance translator.

and systems the tool developer may not have anticipated.
To support any reasonable level of generality, we require an
abstraction of what a “problem instance” is. Application of
the tool is illustrated in Figure 2. The user must provide the
following four items:

1) A grammar for the language in which problem instances
are described, which the tool uses to parse the input
string.

2) A vocabulary map, which describes a mapping of se-
mantically significant syntactic features to the semantic
vocabulary of the abstract instance representation.

3) A solver format description, which defines a mapping
from the abstract instance representation to a solver-
specific instance format.

4) A problem specification, in the specification language of
the chosen solver.

While superficially very different, all of the specification-
based solvers mentioned above, and many others, can be
seen to solve the same general abstract problem, and thus
formalized in a uniform way. This formalization makes it
possible to separate the problem of recognizing a string as
a description of a problem instance from the presentation of
the instance in a solver-specific format: We translate first from
the string to a generic abstract representation, and then to the
desired solver format. The abstract structure, here, plays the
role of an interlingua in a multi-language translator.

The input instance, for solvers of the sort we are consid-
ering, is always a collection of finite functions and relations.
For example, a graph consists of a unary relation (the set of
vertices) and a binary relation, (the set of edges). A weighted
graph has, in addition, a weight function mapping edges to

numbers. The solution to be output is a related collection of
functions and relations. For example, a sub-set of the edges
of a given graph (e.g., a minimum-weight spanning tree or
matching), or a function from the vertices to colours. The
problem specification describes, in some formal language, the
relationship between the the input relations and the output
relations which constitute solutions. This specification is writ-
ten using a vocabulary of symbols which include symbols
denoting the input and output relations. We may formalize
this quite generally as follows.

Because an instance of a problem is a collection of finite
functions and relations, it can be treated formally as a finite
structure, where “structure” here is used as in mathemati-
cal logic. Similarly, the solution is a structure. To write a
specification for the problem, we use a vocabulary consisting
of function and relation symbols denoting elements of the
instance, and elements of the solution, possibly together with
other symbols having standard meanings such as those used
in arithmetic expressions.

Suppose that vocabulary σ is a proper subset of vocabulary
τ , and A be a σ-structure. If B is a τ -structure which agrees
with A on σ (that is, for every P ∈ σ, PA = PB), then we say
that B is an expansion of A to τ , and A is the reduct of B on
σ. Now, if σ is our chosen instance vocabulary, then instances
are σ structures. If γ is our chosen solution vocabulary, let τ =
σ∪γ. If σ-structure A is a problem instance, then any structure
B that is an expansion of A to the combined instance and
solution vocabulary τ , is a structure consisting of an instance
together with a “possible solution”.

Now, such a specification can be viewed formally as a
sentence, with vocabulary τ , of some quantified logic that
defines solutions to the problem by defining the class of τ -
structures which consist of a problem instance together with
one of its solutions. A problem instance A has a solution
if and only if there is an expansion of A to τ that satisfies
specification formula S. The task of the solver is to find such
an expansion if there is one. (Suppose the specification is
a formula φ. There is an expansion of A that satisfies φ if
and only if A is a model of the (second-order) formula ∃~RS,
where ~R is the vocabulary symbols in τ . Hence [9] used the
term “Model Expansion” for the underlying formal task of
specification-based solvers.)

Example 1: Consider the problem of finding a proper
colouring of a graph G with colours from a set C. An instance
consists of a set of vertices, a set of edges, and a set of
colours. Let our “instance vocabulary” be σ = 〈V,E,C〉,
where V and C are unary relation symbols (they denote sets),
and E is a binary relation symbol. A solution is a function
mapping colours to vertices, and satisfying certain properties.
Let our “solution vocabulary” be γ = 〈Col〉, where Col is a
binary function symbol (which will map vertices to colours).
A specification for the Graph Colouring problem is a formula
φ with the property that a τ -structure satisfies φ if and only

if it is a properly coloured graph. To illustrate:

A︷ ︸︸ ︷
(V,C;EA, ColB)︸ ︷︷ ︸

B

|= φ

(Here,A is the graph and set of colours, and B is the expansion
with a node colouring function.)

The following formula φ has the required property, and thus
constitutes a specification for Graph Colouring.

∀x∃c[Col(x, c)]
∧∀x∀c[Col(x, c) ⊃¬∃k((c 6= k) ∧ Col(x, k))]
∧∀x∀y[E(x, y) ⊃∀c(¬(Col(x, c) ∧ Col(y, c)))]

Several of the specification languages we mentioned in
the introduction are explicitly described as logics, albeit with
non-standard syntax and/or extensions beyond textbook-style
first order logic for practical convenience in modelling real
problems. Others, while normally not thought of or described
as formulas of a logic, are in fact easy to view as syntactic vari-
ants of first order logic, again with an number of extensions,
such as type systems and built-in arithmetic. (Illustrations of
this can be found in [10] and [11].) So, this formalization is
indeed applicable to real systems.

Given this formalization, we may accomplish our translation
of instance description strings to solver input formats in two
stages, as illustrated in Figure 3. Stage one maps the string to
a structure. Stage two maps the structure to the file format
of the desired solver. Stage one requires a grammar for
parsing the strings, and a “vocabulary map”, which defines
the vocabulary of the instance structure, and a map from
semantically meaningful syntactic elements from the parse tree
to the instance structure.

In the following sections, we will describe this process in
further detail, using propositional logic to illustrate. That is, we
suppose we have a general-purpose, declarative-specification
based solver, and want to use it to find satisfying assignments
to formulas of propositional logic. As a running example, we
use the following small formula.

Example 2: Let F be the formula

((p ∨ q) ∧ (¬p))

.

IV. MAPPING STRINGS TO STRUCTURES

We want to map strings that describe problem instances
to structures. The relations in these structures should make
the semantic content of the strings explicit. Any reasonable
language will have syntactic constructs corresponding to the
semantically meaningful properties of the problem instance.
To identify these syntactic constructs, we need to parse the
formula, and the relevant syntactic constructs will be reflected
in the parse tree produced by the parser. Then, we need to map
the relevant features in the parse tree to the desired structure.

A. Step One: Parsing

In the first step, a parse tree is constructed using a generic
parser, which takes as input the grammar and a string, and
parses the string in accordance with the grammar. For our
example problem of propositional logic, here is a suitable
grammar.

Example 3:

Formula → Atom|“(”And“)”|“(”Or“)”|“(”Not“)”
And → Formula“ ∧ ”Formula

Or → Formula“ ∨ ”Formula

Not → “¬”Formula
Atom → character[lower]

The rule Formula→ Atom|“(”And“)”|“(”Or“)”|“(”Not“)”
describes which strings are considered Formulas, and
indicates that all Formulas (except atoms) are enclosed within
parentheses. The rule for Atom indicates that an atom is a
sequence of lower case characters.

Parsing the instance formula according to the grammar
generates a parse tree for the instance. Each node corresponds
to an application of a grammar rule, and is labelled with that
rule.

Example 4: The parse tree P of F is

Atom
p��

����
Atom

q��
��@@

Atom
p��

��Or��
��!!!!

Not��
��aa

aa
And��

��

B. Step Two: Structure Construction

For our example problem of propositional logic, we want to
map propositional formulas to structures. The relations in these
structures should make the semantic content of the formula
explicit. This semantic content is (in accordance with the usual
recursive definition of satisfaction of a propositional formula),
the relationship between distinct sub-formulas. We will assign
an identifier for each sub-formula, and the elements of the
relations in our structure will be these identifiers. Nodes are
assigned identifiers starting with 1 for the root of the parse tree
and assigned in depth-first-search order incrementally through
the tree, except that leaves, which correspond to terminals
in the grammar are treated differently. If two terminal nodes
correspond to the same semantic element (in this example, they
are atoms) then the nodes are assigned the same identifier.

Example 5: The nodes of parse tree P with unique identi-
fiers assigned.

3
Atom

p��
���� 4

Atom
q��

��@@ 3
Atom

p��
��

2
Or��

��!!!! 5
Not��

��aa
aa

1
And��

��

Mapping the parse tree to a structure amounts, essentially,
to placing semantically similar sub-trees in relations. The
structure for a formula will have a relation for each of the
three connectives ∧, ∨ and ¬, and also a set (unary relation)
identifying the atoms of the formula. Each tuple in the relation
∧ represents a sub-formula which is a conjunction.

We can visualize a structure as a collection of tables, one for
each relation in the structure (and each semantically significant
syntactic structure).

Example 6: In the structure corresponding to F = ((p ∨
q) ∧ (¬p)), the relation for ∧ will have a triple representing
the fact that F consists of conjunction of two sub formulas:
〈F, F1, F2〉, where F1 and F2 are identifiers for the sub-
formulas (p ∨ q) and (¬p). The structure for formula F is:

And

1 2 5

Or

2 3 4

Not

5 3

Atom

3
4

The parse tree is mapped to the abstract structure by
mapping each node of the tree to a row of a table based on
the vocabulary map. Which table a node is mapped to is based
on the type of semantic element the node represents and is
determined by the grammar rule recorded by the node. The
columns of a table contain the identifiers of a node and its
children.

V. EXAMPLES

Our method can be used for a variety of problems ranging
from graph problems to non-classical propositional logics and
beyond. Here we give some simple examples to demonstrate
some features of our method. For each problem, we will
give a small input string as an example, and a grammar for
parsing the strings. We also give a problem specification,
written in first-order logic, which defines solutions to the
problem instances using the vocabulary corresponding to an
actual vocabulary map used for our prototype. (We give the
specifications in a modest extension of first-order logic so
the reader does not have to be familiar with the specification
language of any particular system. Suitable specifications are
easy to write in all the languages mentioned in the introduction
to the paper.)

A. Graph Problems

Here is an example of a graph G, as represented in the
DIMACS graph format for clique and colouring problems [12].
The first line gives the numbers of edges and nodes. Each line
beginning with an ‘n’ gives a node number and it’s weight.
Each line beginning with an ‘e’ gives an edge.

p edge 4 3
n 1 5
n 2 7
n 3 13
n 4 1
e 3 2
e 2 1
e 1 3

The DIMACS graph format is described by the following
grammar:

Problem → “p”“edge”Num Num Graph

Graph → Edg|Node|Edg Graph|Node Graph
Edg → “e”V tx V tx

Node → “n”V tx Num

V tx → integer[1 : 50]

Num → integer[0 : 100]

With a corresponding vocabulary mapping it can be used to
find a clique of large weight in graph G using the specification:

∀x∀y[(Clique(x) ∧ Clique(y)) ⊃
((x = y) ∨ Edge(x, y) ∨ Edge(y, x))]

∧Sum{w :Weight(v, w)|Clique(v)} ≥ K}

If we want to solve a different problem on node-weighted
graphs, we don’t need to change the grammar, and may not
need to change the vocabulary map. To solve the Graph
Colouring problem on the same set of graphs files, we would
use the same grammar, but we would remove the vocabulary
map rule corresponding to the Node grammar rule, because
we don’t care about the node weights. We can also add a rule
to fix a set of colours. Then the specification formula given in
Example 1 can be used to find proper colourings.

The grammar for DIMACS graph format can be used to
solve many types of graph problems by providing a vocabulary
map and specification for each problem. This is possible
because the grammar is dependant on the format of the input
files but not on the problem to be solved.

B. Propositional Logics

Our grammar for propositional logic is given in Example 3.
For a vocabulary map that maps formulas to structures as
described in Section IV-B, the following first order formula
constitutes a specification of standard propositional logic sat-

isfiability.

∀f, f1, f2[And(f, f1, f2) ⊃
(True(f) ≡(True(f1) ∧ True(f2)))]

∧∀f, f1, f2[Or(f, f1, f2) ⊃
(True(f) ≡(True(f1) ∨ True(f2)))]

∧∀f, f ′[Not(f, f ′) ⊃ (True(f) ≡ ¬True(f ′))]
∧True(F)

Many semantics are possible for the same set of formulas
described by our grammar for propositional logic. The seman-
tics are given by the specification, so we can interpret the
same formulas differently by changing the specification. In
particular, the following specification defines a standard V -
valued propositional logic, for any positive integer V .

∀f∃v[V alue(f, v)]
∧∀f∀v[V alue(f, v) ⊃¬(∃v′ < v(V alue(f, v′)))]

∧∀f, f1, f2[And(f, f1, f2) ⊃(∃v∀v1, v2(V alue(f, v)
∧V alue(f1, v1) ∧ V alue(f2, v2)

∧(v =Min(v1, v2))))]

∧∀f, f1, f2[Or(f, f1, f2) ⊃(∃v∀v1, v2(V alue(f, v)
∧V alue(f1, v1) ∧ V alue(f2, v2)

∧(v =Max(v1, v2))))]

∧∀f, f ′[Not(f, f ′) ⊃ (∃v∀v′(V alue(f, v)
∧V alue(f ′, v′) ∧ (v = (V − v′)))]
∧V alue(F, V)

It is possible to represent formulas in different logics using the
same grammar and vocabulary map because the grammar and
map only define which features are semantically meaningful,
not how those semantics are defined.

C. Integer Difference Logic (a.k.a. Separation Logic)

Syntactically, Difference Logic is essentially propositional
logic except that atoms are arithmetic expressions of the form
x− yOPc, where x and y are (integer valued) variables, c is
an integer constant, and OP is one of =,<,>. For example

(((x− y < 9) ∨ (x− y = 9)) ∧ (¬((y − z > 6)))).

We can produce a grammar for this logic by modifying our
grammar for propositional logic, replacing the Atom rule of
Example 3 with the following rules for the more complex
atoms:

Atom → “(”LessThan“)”|“(”Equal“)”|
“(”GreaterThan“)”

LessThan → V ariable“− ”V ariable“ < ”Constant

Equal → V ariable“− ”V ariable“ = ”Constant

GreaterThan → V ariable“− ”V ariable“ > ”Constant

V ariable → character[lower]

Constant → integer[IntMAX : IntMIN]

Given a similar extension of the vocabulary map, the
following formula is a specification for integer difference logic
satisfiability.

∀v∃n[V alue(v, n)]
∧∀v∀n[V alue(v, n) ⊃ ¬∃n′ < n(V alue(v, n′))]

∧∀f, f1, f2[And(f, f1, f2) ⊃
(True(f) ≡(True(f1) ∧ True(f2)))]

∧∀f, f1, f2[Or(f, f1, f2) ⊃
(True(f) ≡(True(f1) ∨ True(f2)))]

∧∀f, f ′[Not(f, f ′) ⊃ (True(f) ≡ ¬True(f ′))]
∧∀f, v1, v2, n1, n2, c[LessThan(f, v1, v2, c) ⊃

(True(f) ≡ V alue(v1, n1)∧
V alue(v2, n2) ∧ (n1 − n2 < c))]

∧∀f, v1, v2, n1, n2, c[Equal(f, v1, v2, c) ⊃
(True(f) ≡ V alue(v1, n1)∧
V alue(v2, n2) ∧ (n1 − n2 = c))]

∧∀f, v1, v2, n1, n2, c[GreaterThan(f, v1, v2, c) ⊃
(True(f) ≡ V alue(v1, n1)∧
V alue(v2, n2) ∧ (n1 − n2 > c))]

∧True(F)

VI. A PROTOTYPE SYSTEM

We have implemented a prototype system in Python. For
mapping the input string to a structure, it requires two speci-
fication files, a grammar file and a vocabulary map file.

A. Parsing

The prototype uses NLTK: the Natural Language ToolKit
[13], a natural language processing toolkit for Python, as the
parser for instance strings. The form of the grammars is a
natural ASCII version of that used in our examples.

The parser constructs a parse tree where each node of the
tree corresponds to an application of a grammar rule. This
parse tree contains nodes which do not correspond to any
semantically meaningful feature. For example, the parse tree
for a formula of propositional logic contains many Formula
nodes, but these serve no semantic purpose, so we remove
these nodes. The vocabulary map tells the system which kinds
of nodes are needed, and which can be removed.

B. Mapping Parse Tree to Structure

The vocabulary map file specifies how to map the parse tree
to an abstract structure. In particular, it fixes the vocabulary
of the instance structure, and identifies which kind of node
in the parse tree corresponds to which vocabulary symbol. A
predicate tag, of the form <predicate>, is used for this.
The vocabulary symbol is given by the name attribute, and
the corresponding node type is given by a grammar tag. For
example, the following predicate tag is used for the connective
∧ in propositional logic.

Example 7: The predicate tag
<predicate name="And">

<grammar>And</grammar>
<type>number_children</type>

</predicate>
The type tag specifies how the arity of the corresponding
relation, and the contents of its tuples, are determined. In the
example for ∧, keyword number_children indicates that
the first column (argument) is the identifier of the node rep-
resenting the element and the remaining columns (arguments)
are the identifiers of its children.

Terminal nodes are identified by the terminal tag,
<terminal/>, appearing in the predicate tag.

Example 8: The predicate tag
<predicate name="Atom">

<grammar>Atom</grammar>
<type>number</type>
<terminal/>

</predicate>
represents the atoms of a formula.
The table identifying the atoms of the formula has only one
column which is the identifier of the node representing the
element that is an atom. This is indicated in the type tag using
the keyword number.

VII. MAPPING STRUCTURES TO SOLVER INSTANCES

In the prototype system, the mapping of an instance struc-
ture to an instance file for a specific solver is determined by
at solver format file. We will illustrate this using our running
example, formula F , and the IDP System.

Example 9: Assume we have an IDP System specification
for semantics of propositional logic equivalent to our speci-
fication in Section V. The IDP System instance file for our
formula F is:
structure Formula:Propositional {
Formula = {1..5}
And = {(1,2,5)}
Or = {(2,3,4)}
Not = {(5,3)}
Atom = {(3);(4)}

}
The line Formula = {1..5} gives the list of domain

elements corresponding to sub-formulas, and the following
lines give the relations of the structure as lists of tuples. These
correspond directly to the abstract structure, as described in
Example 6.

The solver format file must specify how to generate this
presentation of the structure.

Example 10: Here is a solver format file for the IDP System.
<idp>

<structure>
structure $name$:$vocabulary$ {\n
$domains$$relations$}\n

</structure>
<domain>

$name$ = { $lower$..$upper$ }\n
</domain>
<relation separator=";">

$name$ = { $tuples$ }\n
</relation>

</idp>
The <structure> tag describes the overall format: the

structure name and vocabulary name (which come from the
vocabulary map), followed by (enclosed in braces) the descrip-
tions of the domains and then the relations, as indicated by the
order of $domains$ and $relations$. The <domain>
tag gives the format of an IDP System domain description
(of the sort we need here), which consists of the name
followed by an appropriately formatted list of elements, in this
case those in the range between $lower$ and $upper$.
The <relation> tag specifies the format of descriptions
of relations. In this case, it is the name followed by an
appropriately formatted list of tuples.

VIII. DISCUSSION

Systems that allow users to solve combinatorial problems,
including optimization problems and problems that arise in
software and hardware design and verification, are becoming
more powerful, and more practical. For the most part, users can
apply these by writing high-level declarative specifications,
rather than writing code. We have described here a method and
a prototype tool that addresses the remaining non-declarative
aspect of using these tools: mapping problem instances from
their application-dependant native format to the instance (or
data) format of a particular solver. The tool is fairly general,
and can handle a wide range of instance description languages.
As a result, it can be used to declaratively turn model-and-
solve systems into special purpose solvers, for example model
finders for a variety of logics, in very little time.

Representation of syntactic objects in structures has been
used at least since the 1970s in meta-programming schemes,
such as that in the Prolog programming language. It is used
in the area of linguistics known as model theoretic syntax
[14]. The first use we are aware of in model-expansion based
problem solving is in [9], where propositional logic, constraint
satisfaction problems, and answer set programs are represented
as structures. The IDP system for knowledge representation
and reasoning has a very powerful “bootstrapping” facility
[15], which operates by transforming formulas in its represen-
tation language to structures, and operating on those structures.
It can also be used to produce ”instant model finders” for
many logics, provided they are syntactically fragments of the
IDP system language, but the facility is primarily a tool for
IDP system developers. Our tool is intended as a front-end,
for users of a variety of solving systems, and, as far as we
understand, is more flexible regarding input syntax.

Our tool and method both have many limitations at this
point. The parser currently used imposes inconvenient restric-
tions and causes major performance problems, presumably
because it was not designed to parse the sort of inputs we
face, such as large CNF formulas or graphs. For serious
use, we need to extend the tool design with a proper type
system. Currently, the method for mapping structures to solver
instances does not have the generality that might be desired.

Nonetheless, our experience in designing and building the
tool suggests the approach is potentially very useful. In partic-
ular, as we move from tools for combinatorial problem solving
being only for specialists to being usable by a wide range of
workers, and from only a few examples of web-based public
access to such tools to serious high-performance cloud-based
services, a tool such as this should be a standard part of the
cloud-based service.

REFERENCES

[1] D. Jackson, Software Abstractions - Logic, Language, and Analysis.
MIT Press, 2006.

[2] T. Koch, “Rapid mathematical prototyping,” Ph.D. dissertation, Technis-
che Universität Berlin, 2004.

[3] N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, and
G. Tack, “Minizinc: Towards a standard cp modelling language,”
in Proceedings of the 13th International Conference on Principles
and Practice of Constraint Programming, ser. CP’07. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 529–543. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1771668.1771709

[4] J. Wittocx, M. Marien, and M. Denecker, “The IDP system: a model
expansion system for an extension of classical logic,” in Proc., LaSh
2008, 2008.

[5] A. Aavani, X. N. Wu, S. Tasharrofi, E. Ternovska, and D. G. Mitchell,
“Enfragmo: A system for modelling and solving search problems with
logic,” in Logic for Programming, Artificial Intelligence, and Reasoning
- 18th International Conference, LPAR-18, Mérida, Venezuela, March
11-15, 2012. Proceedings, ser. Lecture Notes in Computer Science,
N. Bjørner and A. Voronkov, Eds., vol. 7180. Springer, 2012, pp. 15–
22. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-28717-6

[6] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub, Answer Set
Solving in Practice, ser. Synthesis Lectures on Artificial Intelligence
and Machine Learning. Morgan and Claypool Publishers, 2012.

[7] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scar-
cello, “The dlv system for knowledge representation and reasoning,”
ACM Trans. Comput. Log., vol. 7, no. 3, pp. 499–562, 2006.

[8] H. B. Enderton, A mathematical introduction to logic. Academic Press,
1972.

[9] D. G. Mitchell and E. Ternovska, “A framework for representing and
solving NP search problems,” in Proceedings, The Twentieth National
Conference on Artificial Intelligence and the Seventeenth Innovative
Applications of Artificial Intelligence Conference, July 9-13, 2005,
Pittsburgh, Pennsylvania, USA, M. M. Veloso and S. Kambhampati,
Eds. AAAI Press / The MIT Press, 2005, pp. 430–435. [Online].
Available: http://www.aaai.org/Library/AAAI/2005/aaai05-068.php

[10] ——, “Expressiveness and abstraction in ESSENCE,” Constraints, vol.
13(2), pp. 343–384, 2008.

[11] S. Tasharrofi, X. N. Wu, and E. Ternovska, “Solving modular model
expansion: Case studies,” in Applications of Declarative Programming
and Knowledge Management - 19th International Conference, INAP
2011, and 25th Workshop on Logic Programming, WLP 2011, Vienna,
Austria, September 28-30, 2011, Revised Selected Papers, ser. Lecture
Notes in Computer Science, H. Tompits, S. Abreu, J. Oetsch, J. Pührer,
D. Seipel, M. Umeda, and A. Wolf, Eds., vol. 7773. Springer, 2011,
pp. 215–236.

[12] D. S. Johnson and M. A. Trick, Cliques, coloring, and satisfiabil-
ity: second DIMACS implementation challenge, October 11-13, 1993.
American Mathematical Soc., 1996, vol. 26.

[13] E. Loper and S. Bird, “NLTK: the natural language
toolkit,” CoRR, vol. cs.CL/0205028, 2002. [Online]. Available:
http://arxiv.org/abs/cs.CL/0205028

[14] J. Rogers, “A model-theoretic framework for theories of syntax,” in
34th Annual Meeting of the Association for Computational Linguistics,
24-27 June 1996, University of California, Santa Cruz, California,
USA, Proceedings., A. K. Joshi and M. Palmer, Eds. Morgan
Kaufmann Publishers / ACL, 1996, pp. 10–16. [Online]. Available:
http://aclweb.org/anthology-new/P/P96/

[15] B. Bogaerts, J. Jansen, B. De Cat, G. Janssens, M. Bruynooghe, and
M. Denecker, “Meta-level representations in the IDP knowledge base
system: Towards bootstrapping inference engine development,” 2014,
2014 Workshop on Logic and Search (LaSh ’14).

