
2 -way vs. d -way Branching for CSP

Joey Hwang and David G. Mitchell

School of Computing Science, Simon Fraser University
Burnaby, V5A 1S6, Canada
{jhwang,mitchell}@cs.sfu.ca

Abstract. Most CSP algorithms are based on refinements and exten-
sions of backtracking, and employ one of two simple “branching schemes”:
2-way branching or d-way branching, for domain size d. The schemes are
not equivalent, but little is known about their relative power. Here we
compare them in terms of how efficiently they can refute an unsatisfi-
able instance with optimal branching choices, by studying two variants of
the resolution proof system, denoted C-RES and NG-RES , which model
the reasoning of CSP algorithms. The tree-like restrictions, tree-C-RES
and tree-NG-RES , exactly capture the power of backtracking with 2-way
branching and d-way branching, respectively. We give a family instances
which require exponential sized search trees for backtracking with d-way
branching, but have size O(d2n) search trees for backtracking with 2-
way branching. We also give a natural branching strategy with which
backtracking with 2-way branching finds refutations of these instances
in time O(d2n2). The unrestricted variants of C-RES and NG-RES can
simulate the reasoning of algorithms which incorporate learning and
k-consistency enforcement. We show exponential separations between
C-RES and NG-RES , as well as between the tree-like and unrestricted
versions of each system. All separations given are nearly optimal.

1 Introduction

Most complete algorithms for solving finite-domain constraint satisfaction prob-
lems (CSPs) are based on backtracking, usually refined with various propagation
schemes and sometimes extended with no-good learning. These algorithms are
based on one of two “branching schemes”. Most CSP papers study algorithms
using d-way branching, in which an instance I is solved as follows. Select a
variable x with domain D(x) = {1, 2, . . . , d}. For each a ∈ D(x), we restrict I
by setting x = a, and recursively try to solve the restricted instance. I has no
solution if and only if none of the d restricted versions do. In 2-way branching,
we select variable x and a value a ∈ D(x), and make two recursive calls. The
first is with the restriction x = a; the second with the value a removed from the
domain of x. I has no solution if neither recursive call finds a solution.

It is easy to check that any strategy for d-way branching can be simulated by
a 2-way branching strategy with no significant loss of efficiency. But does the con-
verse hold, or is d-way branching strictly more powerful than 2-way branching?
Many practitioners believe that 2-way branching is more powerful, and several

2

commercial solvers support use of this scheme, but little is known about how
much more power might be available. It was shown in [11] that 2-way branching
with learning is strictly more powerful than d-way branching with learning. In
particular, a family of instances MPHn was given, having the following prop-
erty: Any d-way branching algorithm, even with optimal variable ordering and
optimal learning strategy, cannot solve MPHn in less than nΩ(log n) time, but
there is a 2-way branching algorithm, with fairly simple branching and learning
strategies, that solves MPHn in time O(n3). This leaves open the question of
the relative power of the branching schemes without learning, and also the ques-
tion of whether a true exponential separation can be obtained in the case with
learning.

Here, we answer the first question by giving instances which require expo-
nential size search trees for backtracking with d-way branching, but are solved
in polynomial time by backtracking with 2-way branching. We take a significant
step toward answering the second, by giving instances establish an exponen-
tial separation between two proof systems which can simulate the algorithms of
interest. However, it is an open question whether the classes of algorithms in
question are as powerful as the proof systems. The analogous question in the
context of SAT is whether or not conflict-directed clause learning is as powerful
as unrestricted resolution, and is also open [2]. We also do not give an efficient
strategy for finding the short 2-way branching proofs, although we believe there
is one. Figure 1 summarizes our results on the proof systems.

HHH
HHH

HHH
HHH

HHH
HHH

HHj

simulates

�
exponentially more powerful

?

exponentially
more powerful

?

exponentially
more powerful

C-RES

tree-like C-RES
(2-way backtracking)

NG-RES

tree-like NG-RES
(d-way backtracking)

�
exponentially more powerful

Fig. 1. Relative Efficiency of NG-RES , C-RES and their tree-like variants

A few experimental empirical studies on 2-way and d-way branching strate-
gies have been reported. Park [12] showed that in most cases, with “standard”
variable and value ordering heuristics, 2-way branching ends up simulating d-
way branching. To see why, consider pure 2-way backtracking with branching
based on “smallest domain first”. Once a variable x is branched on, the follow-
ing branches will also be on x. This simple reasoning does not directly generalize

3

to more interesting cases, but does give some intuition. Smith and Sturdy [13]
investigated the effect of changing the value ordering in 2-way branching, com-
paring performance to d-way branching. Their finding was that 2-way branching,
even with the worst value ordering, is not worse than d-way branching. These
studies, combined with our results, suggest that designers of heuristics should
consider the properties needed to take advantage of the extra power available
with 2-way branching.

Formally, we study only unsatisfiable instances, because an optimal strategy
will solve satisfiable instances trivially. However, it would be wrong to think the
results say nothing about satisfiable instances. Any polytime branching strategy
will make bad choices, after which unsatisfiability of a restricted instance must
be proven. Indeed, a reasonable backtracking algorithm can take a non-trivial
amount of time only in this way.

2 Preliminaries

Constraint Satisfaction Problems A CSP instance I is a triple 〈X,D, Γ 〉
where X is a finite set of variables, D(x) is the domain of a variable x ∈ X,
and Γ is a set of nogoods. A literal is an expression of the form x = a, where
x ∈ X and a ∈ D(x), and a nogood is a set of literals with distinct variables. We
write nogoods as η(x1 = a1, x2 = a2, · · · , xt = at). A (partial) assignment α for
I is a (partial) function from variables to domain values. Assignment α satisfies
a nogood N iff for some literal (x = a) ∈ N , α(x) is defined and α(x) 6= a. A
(total) assignment α satisfies I if there is no nogood N ∈ Γ such that for each
(x = a) ∈ N , α(x) = a. We denote the set of variables occurring in a nogood N ,
set of nogoods Γ , or instance I, by vars(N), vars(Γ) and vars(I), respectively.
We usually assume that all variables of an instance have the same domain, which
is the set [d] = {1, . . . d}.

Our choice to describe the constraints as a set of nogoods, rather than the
usual scope–relation pairs, is purely for convenience. The size of this set as an
encoding of a constraint is not relevant to our results, and we could as well assume
that the encoding of each constraint is of zero size, with nogoods generated
explicitly only as needed.

Propositional Resolution (RES) The resolution rule allows us to derive the
clause A ∨ B from two clauses x ∨ A and x ∨ B. We will usually write clauses
parenthesized and with ∨’s omitted, for example writing (a b c) rather than
a∨ b∨ c. A resolution derivation of clause C from CNF formula φ is a sequence
of clauses C1, C2, · · · , Cm in which each Ci is either a clause of φ or is derived by
the resolution rule from some Cj and Ck with j, k < i, and Cm = C. A resolution
derivation of the empty clause from φ is called a resolution refutation of φ. A
CNF formula φ is unsatisfiable iff it has a resolution refutation.

Nogood Resolution (NG-RES) If the domain of variable x is {1, 2, · · · , d},
the nogood resolution rule allows one to infer a nogood from a set of nogoods by

4

resolving on x:
η(x = 1, N1)
η(x = 2, N2)

...
η(x = d, Nd)

η(N1, N2, . . . Nd)
x ∈ {1, . . . , d}

A nogood resolution derivation of a nogood N from a CSP instance Γ is a
sequence of nogoods N1, N2, · · · , Nm in which each nogood Ni is either in Γ or is
derived from a set of previous nogoods in the sequence by the nogood resolution
rule, and Nm = N . A nogood resolution refutation of I is a nogood resolution
derivation of the empty nogood, �, from Γ . NG-RES is a sound and complete
refutation system, first proposed in [1].

Constraint Resolution (C-RES) Let I = 〈D, Γ 〉 be a CSP instance. We
encode I as a CNF formula, CNF(I), as follows. For each variable x ∈ vars(I)
and each value a ∈ D(x), we introduce a propositional variable x :a asserting that
x takes value a when x :a is true. We have a set of domain clauses, ensuring that
every variable in I is given a value, and a set of unique value clauses ensuring no
variable takes multiple values. For each nogood N ∈ Γ , CNF(I) has a constraint
clause which rules assignment forbidden by N . The CNF encoding of I is:

CNF(I) = domainCls ∪ uniqueValueCls ∪ constraintCls

where domainCls = {(x :a1 · · · x :ad) : x ∈ vars(I),D(x) = {a1, · · · , ad}}
uniqueValueCls = {(x :a x :c) : x ∈ vars(I), a, c ∈ D(x), a 6= c}

constraintCls = {(x1 :a1 · · · xk :ak) : η(x1 = a1, · · · , xk = ak) ∈ Γ}.

There is a one-to-one correspondence between solutions of I and satisfying truth
assignments for CNF(I). A constraint resolution (C-RES) refutation of a CSP
instance I is a RES refutation of CNF(I), and clearly I is unsatisfiable iff it
has a C-RES refutation.

Derivations, Graphs and Tree-like Proofs For T one of the refutation
systems defined above, and π a derivation in T (T -derivation), we define the
graph of π to be the directed acyclic graph (DAG) Gπ in which vertices are
nogoods (or clauses, as appropriate) of π and there is an edge from vertex v
to vertex u if v is a premise for deriving u in π. Derivation π is tree-like if
every vertex in Gπ has out-degree 0 or 1, or equivalently, every derived nogood
or clause is used at most once as a premise to derive another. We denote the
restriction of T to tree-like derivations by tree-T . For example, a tree-C-RES
refutation of I is a tree-like resolution refutation of CNF(I).

5

Proof Complexity Let T be one of the proof systems defined above, and π
be a T -derivation. The size of π, |π|, is the number of clauses or nogoods in π,
as appropriate to T . The width of a clause or nogood C, w(C), is the number
of literals appearing in C and the width of a derivation π, w(π), is the width of
the widest clause or nogood in π. The T -complexity of formula or CSP instance
φ, denoted T (φ), is the size of its smallest T -refutation. tree-T (φ) is the size of
the smallest tree-like refutation.

We say that a proof system A p-simulates a proof system B if there is a
function that maps any B refutation of a CSP instance I to some A refutation of
I with at most polynomial blowup in size. We say that A efficiently simulates B if
the degree of the polynomial in the p-simulation is small. There is an exponential
separation of system B from system A if there is an infinite set of instances
{I1, I2, · · ·} such that the smallest B refutation of In is of size exponential in
n, but the smallest A refutation of In is of size polynomial in n. If A efficiently
simulates B and there is an exponential separation of B from A, then A is
exponentially more powerful than B . For example, it is known that unrestricted
resolution is exponentially more powerful than tree-like resolution [4, 3].

Refutations and Algorithms It is straightforward to show that the size of
minimal refutations in tree-RES , tree-NG-RES , and tree-C-RES are the same
as the size of minimal search trees for backtracking for SAT (DPLL), CSP back-
tracking with d-way branching, and CSP backtracking with 2-way branching,
respectively. This remains true when techniques such as unit propagation, for-
ward checking, and conflict-directed backjumping are employed [1, 10, 11].

3 Results

3.1 Separating Instances for tree-NG-RES

Our first result is an exponential separation between tree-NG-RES and NG-RES .
This involves exhibiting instances which require large tree-NG-RES refutations,
but have short NG-RES refutations. The same instances we use for this also have
short tree-C-RES refutations, and thus also provide the exponential separation
between tree-NG-RES and tree-C-RES . The instances are based on directed
acyclic graphs, generalizing the implication graph formulas used in [3] to provide
a near-optimal separation of RES and tree-RES .

Definition 1 (Implication Graph Contradictions (IMPG,S,T,d)). Call a DAG in
which every vertex has in-degree 2 or 0 a circuit. Let G = (V,E) be a circuit
with vertices {v1, . . . , vn}, d ≥ 3 be an integer, S the set of sources of G, and T
the sets targets (sinks) of G. We associate to each vertex vi ∈ V a variable xi.
The implication graph contradiction of G, IMPG,S,T,d, is the CSP instance with
variables x1, · · · , xn, having domain [d], and the following nogoods:

Source axioms: η(xi = 1) for every vi ∈ S
Target axioms: η(xi = a) for every vi ∈ T , and for all a ∈ [d]\{1}

6

Pebbling axioms: η(xi = a, xj = b, xk = 1) for every vk with predecessors
vi and vj, and for all a, b ∈ [d]\{1}

IMPG,S,T,d expresses the following contradiction: Each vertex of G is labeled
with a number in [d]. Sources are not labeled 1, and if neither predecessor of an
internal vertex v is labeled 1 then v is not labeled 1, but targets are labeled 1.

Theorem 1. There exists an infinite family of n-vertex circuits G, with sources
S and targets T , such that for any integer d ≥ 3, tree-NG-RES(IMPG,S,T,d) =
(d− 1)Ω(n/ log n).

The proof is given in Section 4.

Theorem 2. For any n-vertex circuit G, with sources S and targets T , and any
integer d ≥ 3, NG-RES(IMPG,S,T,d) = O(d2n).

The following algorithm constructs such refutations.

Efficient 2-way branching for IMPGn,S,T,d We may use the following 2-
way branching strategy: Pick a variable xi and a value a such that either setting
xi = a or xi 6= a produces an instance which is found to be unsatisfiable by
enforcing arc-consistency, and branch first to the “good” side. (We can replace
arc consistency by other choices here, such as one-variable look-ahead plus for-
ward checking.) If no such a combination exists, use any other scheme desired.
We assume that singleton domains are always eliminated, including at startup.
After startup every variable associated with a source node in G will have domain
{2, · · · , d}, and every variable xt associated with a target node vt would have
been forced to take value 1, so the pebbling axioms for vt with predecessors vj

and vk in effect have become η(xj = a, xk = b), a, b ∈ {2, · · · d}.
At any branching point, the chosen variable must be some xi associated with

a vertex vi where both the variables xj and xk associated with predecessors of
vi have domain {2, · · · , d}. Moreover, ai will be 1. Setting xi = 1 “falsifies” the
literal (x1 = 1), so the pebbling axioms for vi effectively become η(xj = a, xk =
b), a, b,∈ {2, · · · , d}. These are inconsistent, which can easily be established with
a search tree of size d2. For the branch with xi 6= 1, the pebbling axioms for vi

are satisfied and 1 is removed from the domain of xi. Observe that there will
always be a variable satisfying the criteria of our branching scheme, and the
algorithm will effectively work its way from sources to a target, at each vertex
efficiently removing 1 from the domain of a variable, and obtaining a trivial
contradiction at the target. (The algorithm proceeds exactly as we would to
pebble the graph). The total time required is certainly O(d2n2). The instances
can be solved in about the same time by using repeated singleton arc consistency.

Separation of tree-NG-RES from tree-C-RES The implication graph con-
tradictions IMPG,S,T,d have polynomial sized tree-C-RES refutations. Hence,
they also separate tree-NG-RES from tree-C-RES .

7

Proposition 1. For any circuit G with n vertices, tree-C-RES(IMPG,S,T,d) =
O(d2n).

The refutations can be extracted from the algorithm above.

3.2 Separation of tree-C-RES from C-RES

Theorem 3. There is an infinite family of instances {In} such that C-RES(In) =
O(n), and tree-C-RES(In) = 2Ω(n/ log n).

Proof. A family of CNF formulas {φn} such that |φn| = O(n),RES (φn) = O(n)
and tree-RES (φn) = 2Ω(n/ log n) is given in [3]. Let In = 〈{0, 1}, Γn〉 be the trans-
formation of φn to CSP, as follows. The variables of I n are just the variables
in φn. For each clause C in φn, there is a nogood η(α) in Γn if and only if α is a
minimal size truth assignment that makes C false. It is not hard to show that,
if I is the transformation of φ as just described, then RES (φ) ≤ C-RES (I) ≤
3 · RES (φ), and tree-RES (φ) ≤ tree-C-RES (I) ≤ 3 · tree-RES (φ) [10, 8]. The
result follows.

3.3 Separation of NG-RES from C-RES

The family of CSP instances MGT ′
n that separates NG-RES from C-RES is

based on the unsatisfiable CNF formula GTn introduced by [9]. For each n ∈ N,
GTn encodes the negation of the fact that every loop-less transitive directed
graph with n vertices and with no 2-cycles must have a source. The contradic-
tory statement can be stated as a CNF formula containing the following clauses:

(1) xj,j j ∈ [n]
(2) xi,j ∧ xj,k → xi,k i, j, k ∈ [n], i 6= j 6= k
(3) xi,j → xj,i i, j ∈ [n], i 6= j
(4)

∨
i∈[n]

xi,j j ∈ [n]

where xi,j takes value 1 if and only if there is an edge from i to j. The first three
sets of clauses ensure that the graph is loop-less, transitive, and free of 2-cycles,
respectively. The clauses in (4) assure that for each vertex j, there exists some
vertex i such that there is an edge from i to j, i.e., there is no source. There are
O(n3)-size RES refutations of GTn[14].

Bonet and Galesi [5] gave a modified version of GTn, called MGTn. For each
j ∈ [n], they introduce n + 1 new variables y0,j , . . . , yn,j and replace the set of
clauses (4) by:

(4∗) y0,j ∧
∧

i∈[n]

(yi−1,j ∨ xi,j ∨ yi,j) ∧ yn,j j ∈ [n]

The total number of variables is still O(n2) but MGTn has constant width
clauses. It is easy to see that we can derive the clauses in (4) from those in (4*)
by resolving on the y variables and this takes O(n2) steps. Then, by applying

8

the O(n3)-size refutation of GTn, we obtain an O(n3)-size RES refutation of
MGTn.

Our instances, MGT ′
n, have the same set of variables as MGTn but the do-

main for each variable is D = {1, 2, 3, 4}. If α is an assignment for MGT ′
n, then

α(xi,j) =
{

1 or 2 means there exists an edge from i to j
3 or 4 means there is no edge from i to j.

So, every total assignment for the variables in MGT ′
n corresponds to a di-

rected graph with n vertices. To encode the contradictory statement, MGT ′
n

consists of the following nogoods:

(1′) η(xj,j = 1), η(xj,j = 2) j ∈ [n]
(2′) η(xi,j = a, xj,k = b, xi,k = c) i, j, k ∈ [n], i 6= j 6= k,

a, b ∈ {1, 2}, c ∈ {3, 4}
(3′) η(xi,j = a, xj,i = b) i, j ∈ [n], i 6= j, a, b ∈ {1, 2}
(4′) for each i ∈ [n],

η(y0,j = 1), η(y0,j = 2)
η(yi−1,j = c, xi,j = a, yi,j = b) j ∈ [n], a, b ∈ {1, 2}, c ∈ {3, 4}
η(yn,j = 3), η(yn,j = 4)

Theorem 4. Any NG-RES refutation of MGT ′
n must have size 2Ω(n).

The proof of this is given in Section 5.

Theorem 5. C-RES(MGT ′
n) = O(n3).

Proof. Derive the clauses (xi,j :a xj,k :b xi,k :1 xi,k :2), i, j, k ∈ [n], i 6= j 6=
k, a, b ∈ {1, 2}, using the CNF encoding of (2’) and the domain clauses of the x
variables. Define

A(i, j, k) def=
∧

a,b∈{1,2}

(xi,j :a xj,k :b xi,k :1 xi,k :2).

Now, derive the clauses
Pm(j) def=

∨
i∈[m]
i6=j

X(i, j)

where
X(i, j) def= (xi,j :1 xi,j :2)

by resolving clauses in the CNF encoding of (4′) together with the domain clauses
of the y and x variables, and unit clauses from (1’). Define B(m, j) as

B(m, j) def=
∧

a,b∈{1,2}

(xm,j :a xj,m :b)

which is just the clauses in the CNF encoding of (3′). Now, for each m < n
and j ≤ m, we can derive Pm(j) from Pm+1(j), A(i, m + 1, j), and B(m + 1, j).
Once we get P2(1) and P2(2), the empty clause can be derived in six steps. The
C-RES derivation of Pm(j) is of size O(n). Therefore, we need O(n3) steps in
total to derive the empty clause.

9

3.4 Separation Upper Bounds

Having provided some exponential separations between systems, it seems natural
to ask how big the separations can be. For example, if we know that the smallest
NG-RES refutation of a CSP instance I is of size S, then what is the upper limit
for the size of the smallest tree-NG-RES refutation of I in terms of S? Here, for
each of the separations we have provided, we give an upper bound on the best
possible separation which might be obtained. These are only slightly larger than
the lower bounds we give, so those results are nearly optimal.

Theorem 6. For any n-variable CSP instance I with domain size d ≥ 2,

1. tree-NG-RES(I) = dO(d2S log log S
log S), where S = NG-RES(I);

2. tree-C-RES(I) = 2O(S log log S/ log S), where S = C-RES(I),
3. tree-NG-RES(I) = dO(nd3S log log S/ log S), where S = tree-C-RES(I).
4. NG-RES(I) = 2O(S log log S/ log S), where S = C-RES(I),

Proof. In [3] it is shown that for any unsatisfiable CNF formula φ, if S = RES (φ),
then tree-RES (φ) = 2O(S log log S/ log S), from which 2 follows easily. 1 can be
proven by adapting the technique from [3] to NG-RES . 3 is obtained by using
1 and a direct simulation of tree-C-RES by NG-RES . 4 follows from 2 and the
fact that NG-RES efficiently simulates tree-C-RES .

4 Lower Bounds for tree-NG-RES(IMPG,S,T,d)

This section comprises the proof of Theorem 1. The tree-NG-RES complexity of
IMPG,S,T,d depends on the pebbling number of G. Roughly speaking, if G has
large pebbling number, tree-NG-RES refutations of IMPG,S,T,d must be long.

Definition 2. The pebbling number of T on a DAG G = (V,E) from S, de-
noted PG(S, T), where S, T ⊆ V , is the minimal number of pebbles needed to
pebble some vertex in T by following the rules below.

1. A pebble can be placed on a vertex in S.
2. A pebble can be removed from any vertex.
3. If a vertex is not in S, then it can only be pebbled if all its immediate prede-

cessors have a pebble on them.

Lemma 1 ([3]). Let G = (V,E) be a DAG. For any v ∈ V and any sets
S, T ⊆ V , PG(S, T) ≤ max{PG(S, T ∪ {v}), PG(S ∪ {v}, T) + 1}.

Proof. To pebble T from S, we can first pebble T∪{v} from S with PG(S, T∪{v})
pebbles. If some vertex in T is pebbled, then we are done. Otherwise, only v is
pebbled. Leave the pebble on v and try to pebble T from S ∪ {v}. This requires
PG(S ∪ {v}, T) + 1 pebbles.

10

Note that for a DAG G with n vertices, PG(S, T) = O(n) since we can always
use n pebbles and thus do not need to remove pebbles from vertices. What we are
interested is a lower bound on the number of pebbles needed. A family of DAGs
Gn with n vertices, each of in-degree 2 or 0, for which PGn

(S, T) = Ω(n/ log n)
where S and T are the sets of sources and targets in Gn, was given in [7].

The implication graph instance based on Gn is hard for tree-NG-RES . In
particular, every tree-NG-RES refutation of IMPGn,S,T,d must be of size (d −
1)Ω(n/ log n). We show this using a modified version of the game from [3], as
follows. Let I = 〈[d], Γ 〉 be an unsatisfiable CSP instance. The game involves
two players: Prover and Delayer. In each round, Prover picks a variable from
vars(Γ). Then, Delayer can choose 1 or *. If 1 is chosen, the variable is set
to 1. Otherwise, Prover can pick a value from {2, · · · , d} and assign it to the
variable. Delayer scores one point if he chooses *. The game ends when the
current assignment falsifies at least one of the nogoods in Γ .

Here is a rough idea of the proof. We first show that any tree-NG-RES
refutation of IMPG,S,T,d is of size at least exponential in the number of points
Delayer can score. Then, we prove that there is a good strategy for Delayer to
win at least Ω(PG(S, T)) points. So, every tree-NG-RES refutation of IMPG,S,T,d

must be of size exponential to Ω(PG(S, T)). We call the above Delayer’s strategy
superstrategy.

Lemma 2. For I an unsatisfiable CSP instance with domain size d, if I has a
tree-NG-RES refutation of size S, then Prover has a strategy where Delayer can
win at most dlogd−1 Se points.

Proof. Suppose I has a tree-NG-RES refutation π of size S. We will give a
strategy which allows Prover to bound the number of points Delayer can win
and show that as long as Prover follows the strategy, the following invariant will
be maintained after each round: If p is the current points Delayer has scored,
then there is a nogood N in π such that N is falsified by the current partial
assignment and the sub-tree rooted at N in Gπ is of size at most S/(d− 1)p.

At the beginning, Delayer has no points and the only nogood that is falsified
is the empty nogood. So, the invariant holds. Consider the i-th round. Let pi−1

be the number of points Delayer has scored after the previous round and Ni−1 be
the nogood satisfying the invariant at the previous round. If Ni−1 is a leaf in Gπ,
then Ni−1 is a nogood in Γ that is falsified by the current partial assignment and
hence the game ends. Otherwise, Prover picks the variable x which is resolved
on to derive Ni−1 from nogoods N1, N2, · · · , Nd in π. W.L.O.G., suppose (x =
1) ∈ N1, (x = 2) ∈ N2, and so on. If Delayer assigns 1 to x, then N1 is falsified
and it becomes the new nogood for the invariant. In this case, Delayer does
not score any points and the sub-tree rooted at N1 is obviously smaller than
the one rooted at Ni−1. Thus, the invariant holds. If the Delayer chooses *, then
Prover assigns x the value j ∈ {2, · · · , d} which will falsify the nogood Nj , among
N2, · · · , Nd, with the smallest sub-tree. The sub-tree rooted at Nj is of size at
most 1/(d − 1)pi−1+1, and the number of points Delayer has scored after this
round is pi−1 + 1. Therefore, the invariant is maintained.

11

When the game halts, the size of the sub-tree is 1. If Delayer scores p points at
the end of the game, then 1 ≤ S/(d−1)p. This implies p ≤ logd−1 S ≤ dlogd−1 Se.
So, if Prover follows the above strategy, Delayer wins at most dlogd−1 Se points.

Corollary 1. For unsatisfiable CSP instance I with domain size d, if Delayer
has a strategy which always scores r, then tree-NG-RES(I) ≥ (d− 1)r−1.

Proof. Suppose the Delayer has a strategy which always scores r points on I.
Toward a contradiction, suppose tree-NG-RES (I) < (d−1)r−1. Then, by Lemma
2, the Prover has a strategy where the Delayer can win at most dlogd−1(d −
1)r−1e = r − 1 < r points. This contradicts that the Delayer can always scores
r points.

The superstrategy for Delayer is simple. Before each game, Delayer sets S′ =
S and T ′ = T . Then, in each round, if Prover asks about variable xi, i ∈ [n],
Delayer responds as follows:

1. If vi ∈ T ′, assign 1 to the variable.
2. If vi ∈ S′, respond *.
3. If vi 6∈ S′ ∪ T ′ and PG(S′, T ′ ∪ {i}) = PG(S′, T ′), assign the variable 1 and

add vi to T ′.
4. If vi 6∈ S′ ∪ T ′ and PG(S′, T ′ ∪ {i}) < PG(S′, T ′), respond * and add vi to

S′.

We will prove that PG(S′, T ′) can decrease by at most the number of points
Delayer scores and it is at most 3 at the end of the game. This implies the
superstrategy guarantees Delayer to earn at least PG(S, T)− 3 points.

Lemma 3. After each round, if Delayer has scored p points, then PG(S′, T ′) ≥
PG(S, T)− p.

Proof. Let S′
i and T ′

i be the sets S′ and T ′ respectively in Delayers superstrat-
egy after round i. Let pi be the number of points Delayer has scored after
round i. We show that the invariant PG(S′

i, T
′
i) ≥ PG(S, T) − pi will be main-

tained after each round. At the beginning, p0 = 0, S′
0 = S and T ′

0 = T . So,
PG(S′

0, T
′
0) = PG(S, T) − 0 and the invariant holds. Now consider round i. For

case 1, 2, and 3, PG(S′
i−1, T

′
i−1) = PG(S′

i, T
′
i) and pi ≥ pi−1. So, PG(S′

i, T
′
i) =

PG(S′
i−1, T

′
i−1) ≥ PG(S, T)− pi−1 ≥ PG(S, T)− pi. For case 4, PG(S′

i−1, T
′
i−1 ∪

{v}) < PG(S′
i−1, T

′
i−1), pi = pi−1+1, S′

i = S′
i−1∪{v}, and T ′

i = T ′
i−1. By Lemma

1, we have PG(S′
i−1 ∪ {v}, T ′

i−1) ≥ PG(S′
i−1, T

′
i−1) − 1. Hence, PG(S′

i, T
′
i) =

PG(S′
i−1∪{v}, T ′

i−1) ≥ PG(S′
i−1, T

′
i−1)−1 ≥ PG(S, T)−pi−1−1 = PG(S, T)−pi

Therefore, the invariant is maintained after each round.

Lemma 4. At the end of the game, PG(S′, T ′) ≤ 3.

Proof. When the game ends, some nogood N must be falsified since IMPG,S,T,d is
unsatisfiable. N cannot be a Source axiom for some source vi because vi ∈ S ⊆ S′

and thus it can only be assigned values from {2, · · · , d} through case 2. This

12

assignment does not violate the Source axiom. Similarly, N cannot be a Target
axiom either. Hence, N must be a Pebbling axiom for some vertex vk with
predecessors vi and vj . To falsify N , xk must be set to 1 and both xi and xj

must be set to some values from {2, · · · , d}. So, vk ∈ T ′ (via case 1 or case 3)
and vi, vj ∈ S′ (via case 2 or case 4). Therefore, to pebble T ′ from S′, we can
first pebble vi and vj , then vk. This only requires three pebbles.

Corollary 2. Following the superstrategy described, Delayer can score at least
PG(S, T)− 3 points at the end of the game.

Proof. This is an immediate consequence of Lemmas 3 and 4.

Lemma 5. tree-NG-RES(IMPG,S,T,d) = (d− 1)Ω(PG(S,T)).

Proof. Corollary 2 shows that Delayer has a superstrategy to score at least
PG(S, T)− 3 points on IMPG,S,T,d. So, by Corollary 1, tree-NG-RES (IMPG,S,T,d)
≥ (d− 1)PG(S,T)−4. Hence, tree-NG-RES (IMPG,S,T,d) = (d− 1)Ω(PG(S,T)).

Proof. (Theorem 1) Let d ≥ 3 be an integer. Let {Gn} be an infinite fam-
ily of circuits such that |V (Gn)| = n and PGn

(S, T) = Ω(n/ log n) where S
and T are the sets of sources and targets in Gn [7]. By Lemma 5, we have
tree-NG-RES (IMPGn,S,T,d) = (d− 1)Ω(PG(S,T)) = (d− 1)Ω(n/ log n).

5 Lower Bounds for NG-RES(MGT ′
n)

This section comprises a proof of Theorem 4, which states that any NG-RES
refutation of MGT ′

n must have size 2Ω(n). The proof approach is inspired by
[6]. We show that if there is a short NG-RES refutation of MGT ′

n, then we can
construct a narrow RES refutation of MGTn, which contradicts the following
property of MGTn.

Theorem 7 ([5]). Any RES refutation of MGTn has width Ω(n).

Definition 3. A restriction for a CSP instance I = 〈D, Γ 〉 forbids some vari-
ables to take some domain values. A restriction ρ is written as a set of variables
with the forbidden values. For example, the restriction ρ = {x 6= 2, x 6= 3, y 6= 1}
disallows x to take 2 and 3, and y to take 1.

Let ρ = {x1 6= a1, x2 6= a2, · · · , xk 6= ak} be a restriction. Define Ndρ as the
result of applying ρ to a nogood N where

Ndρ
def= (· · · (Ndxa 6=a1)dx2 6=a2) · · · dxk 6=ak

),

and for x a variable, a ∈ D(x),

Ndx6=a
def=

{
1 if (x = a) ∈ N
N otherwise.

We define Idρ
def= 〈Ddρ, Γ dρ〉, where

Γ dρ = {N : N ∈ Γ and Ndρ 6= 1}
vars(Idρ) = vars(I)
Ddρ(x) = D(x) \ {a : (x 6= a) ∈ ρ} for all x ∈ vars(Idρ).

13

For π = (N1, · · · , NS) an NG-RES derivation, define πdρ to be (N1dρ, · · · , NSdρ),
but with any Nidρ that is identical to 1 removed. Note that πdρ is actually a
subsequence of π.

Lemma 6. If π is an NG-RES refutation of a CSP instance I and ρ is a re-
striction, then there is an NG-RES refutation of Idρ of width at most w(πdρ).

Proof. Let I = 〈D, Γ 〉 be a CSP instance and ρ = {x 6= a} be a unit restriction.
Let π be an NG-RES refutation of I. Transform πdρ inductively to an NG-RES
refutation π′ as follows. Consider a nogood Ni in πdρ. (x=a) must not appear in
Ni since Nidx6=a 6= 1. If Ni ∈ Γ , then Ni ∈ Γ dρ. (Note that πdρ is a subsequence
of π.) Otherwise, Ni must be derived, in π, by resolving some previous nogoods
Ni1 , · · · , Nid

on some variable v. If v 6= x, then (x = a) does not appear in
any of Ni1 , · · · , Nid

because (x = a) /∈ Ni. So, Ni1 , · · · , Nid
must be in πdρ and

they can be resolved to derive Ni in πdρ. If v = x, then there is a nogood
Nia

∈ {Ni1 , · · · , Nid
} such that Nia

= η(x = a,Na) and thus Nia
dρ is not in

πdρ since Nia
dρ= 1. But, all the nogoods in {Ni1 , · · · , Nid

} \ {Nia
} are in πdρ.

So, we can resolve them on x, over the new domain of x, to get a sub-nogood
of Ni, which is sufficient to produce the desired refutation. The general case for
non-unit restriction follows easily.

Lemma 7. If there is an NG-RES refutation of MGT ′
n of size at most S, then

there is a RES refutation of MGTn of width at most w, for any w > log S.

Proof. Let π be an NG-RES refutation of MGT ′
n of size at most S. Let w >

log S. Define that a nogood is wide if its width is greater than w. Define a random
restriction ρ as follows. For each variable vi,j , v ∈ {x, y}, ρ randomly picks a
value a from {1, 2} and a value c from {3, 4}, and restricts that vi,j 6= a and
vi,j 6= c. So, for every variable, a domain value is prohibited by ρ with probability
1/2. We say that a restriction is bad if not all wide nogoods in π are set to 1 by
ρ. A wide nogood would be set to 1 by ρ if there is some literal, (x = a), in it
such that (x 6= a) ∈ ρ. The probability that this is not the case is at most 1/2w.
Since there is at most S nogoods in π, the probability that ρ is bad is at most
S/2w which is less than 1 as we have w > log S. Therefore, there must exist at
least one good restriction which would set all wide nogoods in π to 1.

Apply a good restriction ρ to π. By Lemma 6, there is an NG-RES refutation
π′ of MGT ′

ndρ of width at most w. After we apply ρ to MGT ′
n, some initial

nogoods disappear. For example, for each j, two of the nogoods in (1′) are set
to 1 by ρ and thus not included in MGT ′

ndρ. Moreover, the domain size of each
variable becomes 2.

Therefore, the CNF encoding of MGT ′
ndρ consists of the following clauses:

(1′′) (xj,j :aj,j) j ∈ [n]
(2′′) (xi,j :ai,j xj,k :aj,k xi,k :ci,k) i, j, k ∈ [n], i 6= j 6= k
(3′′) (xi,j :ai,j xj,i :aj,i) i, j ∈ [n], i 6= j

(4′′) (y0,j :b0,j)∧
i∈[n]

(yi−1,j :ci−1,j xi,j :ai,j yi,j :bi,j) j ∈ [n]

(yn,j :dn,j)

14

Domain clauses: (xi,j :ai,j xi,j :ci,j)
(yi,j :bi,j yi,j :di,j)

where each of ai,j ’s and bi,j ’s is equal to either 1 or 2 and each of ci,j ’s and di,j ’s
is equal to either 3 or 4.

Rename the variables xi,j :ai,j , xi,j :ci,j , yi,j :bi,j , and yi,j :di,j as xi,j , xi,j ,
yi,j , and yi,j , respectively. Now the constraint clauses of CNF(MGT ′

ndρ) are
exactly the clauses in MGTn and the NG-RES derivation steps
η(xi,j = ai,j , N1) η(yi,j = bi,j , N1)
η(xi,j = ci,j , N2)

η(N1, N2)
xi,j ∈ {ai,j , ci,j} and η(yi,j = di,j , N2)

η(N1, N2)
yi,j ∈ {bi,j , di,j}

in π′ can be transformed into the following RES derivation steps
(xi,j X1) (xi,j X2)

(X1 X2)
and

(yi,j X1) (yi,j X2)
(X1 X2) .

The resulting RES refutation has the same width as π′. Hence, there is a
RES refutation of MGTn of width at most w.

Proof. (of Theorem 4) Let π be an NG-RES refutation of MGT ′
n. Let S be the

size of π. Pick w = log S + ε, ε > 0. It follows from Lemma 7 that MGTn has a
RES refutation π′ of width at most log S + ε. We know that any RES refutation
of MGTn must have width Ω(n) (Theorem 7). Therefore, log S + ε ≥ Ω(n), and
thus S ≥ 2Ω(n). Hence, any NG-RES refutation of MGT ′

n must be of size 2Ω(n).

6 Conclusion and Future Work

We have shown that 2-way branching is much more powerful than d-way branch-
ing, for backtracking. It remains to establish an efficient strategy for 2-way
branching with learning for the instances separating NG-RES from C-RES , to
establish the analogous fact for the case with learning. The question of whether
nogood learning algorithms are as powerful as these proof systems is an impor-
tant open problem.

The algorithm suggested for efficiently solving the instances which separate
tree-NG-RES and tree-C-RES are simple enough that they certainly will be
faster, at least for large enough instances, than any d-way branching algorithm.
However, developing good heuristics which take advantage of the extra power of
2-way branching in practical algorithms is an important remaining task.

References

[1] Andrew B. Baker. Intelligent Backtracking on Constraint Satisfaction Problems:
Experimental and Theoretical Results. PhD thesis, University of Oregon, 1995.

[2] Paul Beame, Henry Kautz, and Ashish Sabharwal. Towards understanding and
harnessing the potential of clause learning. Journal of Artificial Intelligence Re-
search, 22:319–351, 2004.

15

[3] Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. Near-optimal separa-
tion of treelike and general resolution. Technical Report TR01-005, Electronic
Colloquium on Computational Complexity (ECCC), 2000.

[4] M. L. Bonet, J. L. Esteban, N. Galesi, and J. Johansen. Exponential separations
between restricted resolution and cutting planes proof systems. In Proc. of the
39th Annual IEEE Symposium on Foundations of Computer Science (FOCS’98),
pages 638–647. IEEE Press, 1998.

[5] M. L. Bonet and N. Galesi. A study of proof search algorithms for resolution
and polynomial calculus. In Proc. 40th Symposium on Foundations of Computer
Science, pages 422–432, 1999.

[6] J. Buresh-Oppenheim, D. Mitchell, and T. Pitassi. Linear and negative resolution
are weaker than resolution. Technical Report TR01-074, Electronic Colloquium
on Computational Complexity (ECCC), 2001.

[7] J.R. Celoni, W.J. Paul, and R.E. Tarjan. Space bounds for a game on graphs.
Mathematical Systems Theory, 10:239–251, 1977.

[8] Cho Yee Joey Hwang. A theoretical comparison of resolution proof systems for
csp algorithms. Master’s thesis, Simon Fraser University, 2004.

[9] B. Krishnamurthy. Short proofs for tricky formulas. Acta Informatica, 22:253–274,
1985.

[10] David G. Mitchell. The Resolution Complexity of Constraint Satisfaction. PhD
thesis, University of Toronto, 2002.

[11] David G. Mitchell. Resolution and constraint satisfaction. In Lecture Notes in
Computer Science, LNCS 2833, pages 555–569. Springer, 2003.

[12] V. Park. An empirical study of different branching strategies for constraint satis-
faction problems. Master’s thesis, University of Waterloo, 2004.

[13] B. M. Smith and P. Sturdy. An empirical investigation of value ordering for finding
all solutions. Presented at the ECAI 2004 workshop on Modelling and Solving
Problems with Constraints.

[14] G. Stalmarck. Short resolution proofs for a sequence of tricky formulas. Acta
Informatica, 33:277–280, 1996.

