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Abstract

Development of languages for specifying or modelling problems is an

important direction in constraint modelling. To provide greater abstrac-

tion and modelling convenience, these languages are becoming more syn-

tactically rich, leading to a variety of questions about their expressive

power. In this paper, we consider the expressiveness of Essence, a spec-

ification language with a rich variety of syntactic features. We identify

natural fragments of Essence that capture the complexity classes P, NP,

all levels Σ
p

i of the polynomial-time hierarchy, and all levels k-NEXP of the

nondeterministic exponential-time hierarchy. The union of these classes

is the very large complexity class ELEMENTARY. One goal is to begin

to understand which features play a role in the high expressive power of

the language and which are purely features of convenience. We also dis-

cuss the formalization of arithmetic in Essence and related languages,

a notion of capturing NP-search which is slightly different than that of

capturing NP decision problems, and a conjectured limit to the expressive

power of Essence. Our study is an application of descriptive complexity

theory, and illustrates the value of taking a logic-based view of modelling

and specification languages.

1 Introduction

An important direction of work in constraint-based methods is the develop-
ment of declarative languages for specifying or modelling combinatorial search
problems. These languages provide users with a notation in which to give a
high-level specification of a problem. Examples include EaCl [29], ESRA [8],
Essence [11], NP-Spec [1], OPL [21] and Zinc [28], and the input languages for
the solvers ASPPS [4], DLV [24], MidL [27] and MXG [30], and for the Answer
Set Programming (ASP) grounders lparse [33] and GrinGo [16].

Languages of this sort, if well-designed and supported by high quality tools
for practitioners, have the potential to greatly expand the range of successful
applications of constraint solving technology. By reducing the need for special-
ized constraint programming knowledge they make the technology accessible to
a wider variety of users. They also offer many other potential benefits. One
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example is automated or semi-automated specification-level reasoning, such as
recognition and handling of symmetries or safe-delay constraints (see, for ex-
ample [13, 26, 2]), and other kinds of re-formulation. Another is facilitation of
applying multiple solver technologies to a class of instances, through the use of
translation or “cross-compilation” tools that allow one specification language to
be used as input to different classes of solvers.

A fundamental question one may ask about a formal language is: What
things can it say, or not say? For languages which describe computational prob-
lems, a natural form of this question is: What is the computational complexity
of the problems the language can describe? This question is about the expres-
sive power (or expressiveness) of the language. In this paper, we study the
expressiveness of Essence [11].

There are many reasons, beyond curiosity, for wanting to answer questions
about the expressiveness of specification and modelling languages. These in-
clude:

• At a minimum, a user needs to know that the language they use is suf-
ficiently expressive to model the problem at hand. For example, a user
expecting to solve their favourite NP-complete problem would be very
upset to discover they were using a modelling language that could not
describe it. Designers of languages or systems should be able to assure
a user they can specify their problem — without having to actually pro-
duce a specification. A language or system designer may have some target
class of applications in mind, and would like to be certain their design can
express every application in the target class.

• We may wish to avoid using a language with more expressive power than
required. Since a more expressive language can describe problems of
greater complexity than we need, a solver for this language must im-
plement algorithms which can solve these more complex problems. It is
unlikely that a single solver or solver technology is the most effective both
for these highly complex problems and the target problem class. For a
system designer, choosing a language with limited expressive power may
provide some assurance of “practical implementability”, or that some par-
ticular solver technology is a good choice.

• We may wish to understand the contribution particular language features
make to expressiveness, asking questions like: Would adding (removing)
feature X to (from) language Y change what problems can be specified
by the language, or merely change how easily or naturally some problems
could be specified? Being able to answer such questions may help us choose
the best language for an application. It can also help with selection and
implementation of solver technology. Typically, a feature in-essential to
the expressive power of a language is definable in terms of other features.
As a simple example, we may treat the formula (α ⊃ β) as an abbreviation
of (¬α∨β), thereby reducing the number of connectives to be handled. By
treating many features of a rich language this way, we may obtain a much
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simpler “kernel language” which has the same expressive power, but for
which we may more easily produce an effective and maintainable solver.

Remark 1 In this paper, we distinguish expressive power, or expressiveness,
in the formal sense of what problems can or cannot be specified with a language,
from syntactic richness, by which we mean the variety of features provided for
a user’s convenience. We are focussed on the former; our interest in the latter
relates to the relationship between the two.

Our Methodology

One area that establishes a connection between languages and complexity classes
is descriptive complexity theory [22], which seeks to characterize complexity
classes in terms of logics. The field began with Fagin’s result [7] showing that the
classes of finite structures axiomatizable in existential second order logic (∃SO)
are exactly those in the complexity class NP. This may be viewed as a statement
about the expressive power of ∃SO. Work by others has provided analogous
results for other logics and complexity classes, establishing logics corresponding
to the complexity classes NL, P, all levels of polynomial hierarchy, and others
(see [22, 18], for example). These results show that logics can be regarded,
at least theoretically, as “declarative programming languages” or “constraint
modelling languages” for corresponding complexity classes.

We are interested in the expressive power of languages such as those listed
in the first paragraph of this paper. These languages vary widely in design
philosophy, in syntax, and in the manner in which their semantics is specified.
For example, Essence semantics is a partial truth function recursively defined
on the structure of expressions, while the lparse semantics is described by a
translation to propositional logic programs. Fortunately, it is not hard to see
that most of these languages, while formalized differently by their authors, have
a common underlying logical task which makes application of standard results
and techniques in descriptive complexity theory natural in many cases. The
task in question is that of “model expansion” (MX), which requires finding an
expansion of a given (finite) structure to a larger vocabulary, so as to satisfy
a given formula. (See Section 2 for a precise definition.) Every computational
search problem can be formalized as model expansion for a sufficiently expressive
logic.

To apply results or methods of descriptive complexity to an existing speci-
fication language, we view it as a logic, and take specifications in the language
to be axiomatizations of problems formalized as model expansion. Formally, to
view a language as a logic, we construct an alternate model-theoretic semantics
for the language. This “model expansion semantics” must be equivalent to the
original semantics for the language, in the sense that each specification must
define the same problem under either semantics.

As we will see, some natural fragments of Essence are essentially minor
syntactic variants of classical logic, and are easy to deal with. Further features
can be handled by the notion of logical definability. Some features are more
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nicely handled by other methods, such as extending the formalization to allow
an infinite “background” structure, as we do in Section 5 to deal with arithmetic.

Problems and Instances

Before proceeding, we point out a potential source of confusion regarding termi-
nology. In standard computer science terminology, a “problem” is an infinite set
of instances, together with a question (or task) associated with those instances.
This is the terminology we follow in this paper. For example, we may consider
the set of all graphs and the question “does graph G have a proper 3-colouring”.
By a “specification”, we mean a formal representation of such a problem. We
take the input to a solver to be a specification together with an instance, but
we think of the specification as being fixed (for a problem) while the instance
varies.

In contrast, some constraint programming literature uses the term “model”
where we use specification1 and “data” for a (description of a) problem instance.
When the input for a solver consists of the model and data together, this is
sometimes referred to as “an instance” or even “a problem”.

Remark 2 Sometimes people use a modelling language to describe a problem
which consists of a single instance, for example to answer a question like “is
there a Sudoku board with 16 givens and a unique solution”? Our study does
not address this use.

Why Essence?

Our main goal in this paper is to study the expressiveness of the Essence

specification language, and to learn something about the role its various features
play in this expressiveness. Essence is interesting to us for several reasons. One
is that it is fairly easy to get started: Essence specifications are easily seen
to be specifications of model expansion tasks, and Essence syntax contains a
near-copy of the syntax of classical first order logic. Another is that Essence

gives the user a wide variety of features with which to specify a problem. The
designers of Essence state that one of the goals of designing the language was
to enable problem specifications that are similar to rigorous natural-language
specifications, such as those catalogued by Garey and Johnson [15]. A related
goal was to allow problems to be specified at a higher level of abstraction than
is normally possible when producing models in existing “constraint modelling”,
“constraint logic programming”, or “mathematical programming” languages,
or when designing reductions to SAT or other CSP languages. Essence has
many features specifically intended to support writing abstract specifications.
The consequent syntactic richness of Essence presents us with many questions
about its expressive power, and that of fragments which exclude various features.

1We do not distinguish specification from modelling here. The distinction may be impor-
tant, but is not simple or of particular significance to the work presented in this paper.
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1.1 In This Paper

We use the methodology described above to study the expressive power of sev-
eral interesting and fairly natural fragments of Essence. In particular, we apply
classical results from descriptive complexity theory to show that certain frag-
ments of Essence capture the complexity classes P, NP, Σp

i for i ∈ N — that is,
all the “existential” levels of the polynomial-time hierarchy (PH), and thus all
of PH — and all the levels of the nondeterministic exponential-time hierarchy
(NEXP, 2-NEXP, ...). The union of these classes is the (very large) complexity
class ELEMENTARY. Results about capturing show that a language can ex-
press all and only the problems in a certain complexity class, and are important
in that they exactly characterize the problems expressible in a language. This
makes it possible to determine whether a problem is expressible in a language
based only on a rough estimate of the complexity of the problem. It also pro-
vides valuable information regarding appropriate techniques for implementing
solvers and other tools for using a language. In light of these results, we consider
a number of questions about various features of Essence, and the expressive
power of fragments of Essence that contain them.

Fragments and Features

For simplicity of exposition, the fragments we identify to capture various com-
plexity classes are kept small and simple. However, the fragments are also
“robust”, in the sense that there are many Essence features that can be added
to each of them without affecting the expressive power. It would be a large un-
dertaking to give a full account of all the features, let alone an extensive analysis
of the extent to which each feature contributes to the expressive power. We do
point out, for several fragments we define, a number of Essence features that
could be added to them without increasing expressiveness.

The fragment we study that is of greatest practical interest is one that we de-
note EFO, because it corresponds closely to classical first order logic (FO). The
decision problems EFO can express are exactly the problems in NP. We specif-
ically consider several issues regarding the expressiveness of fragments related
to EFO and NP.

Arithmetic

One of the most useful extensions one might add to a small fragment like EFO is
arithmetic. We consider an extension of EFO with arithmetic, denoted EFO[N ],
where N stands for the natural numbers N with a selection of “built-in” arith-
metic functions and relations, and show how to modify our logic-based formalism
for this extension. Doing this brings to light a subtle, and in some ways sur-
prising, issue. While the resulting language still captures NP, it cannot express
all NP problems which involve numbers in numerical terms, as one would like.
That is, there are problems in NP involving numbers which the language can-
not express by direct use of numbers. To express these problems, the use of
encodings of numbers (say in binary), is necessary. We show that EFO[N ] can
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express exactly the problems in NP that do not contain extremely large (non-
encoded) numbers. The issue involved here is not something specific to EFO,
or to logic-based languages, but is relevant to all languages for NP that contain
arithmetic.

Capturing NP-Search: Finding (only) what you want

A user with a search problem generally has a particular sort of object in mind
as their desired solution. For the Knapsack problem it is a subset of the given
objects; for graph colouring it is a function from vertices to colours, etc. A prob-
lem specification has vocabulary symbols for objects comprising an instance, and
symbols for those comprising a solution. Sometimes, however, when writing a
specification, it is useful to introduce additional “auxiliary” symbols, which de-
note concepts that help in describing properties of a solution. The extension
of an auxiliary symbol is not part of the desired solution, and the solver need
not report it to the user — but needs to construct it nonetheless. This raises
the question: can we always construct an Essence specification for a search
problem in which the only objects that must be found are those the users asks
for? This amounts to a definition of capturing search, that is a bit different
than the usual notion of capturing a class of decision problems. We will show
that, in the case of EFO, the answer is no: it does not capture NP-search in the
desired way. We also describe an extension of EFO for which the answer is yes.

Particular Abstraction Features of Essence

We also consider some features which the designers of Essence have highlighted
as being particularly relevant to Essence supporting the writing of specifica-
tions at a higher level of abstraction than many other current languages [14, 11].
These are: a wide range of basic types; arbitrarily nested types; quantification
over decision variables; and “unnamed” types. We defer discussing particulars
of these to Section 10, but we will see that none of these features per se in-
creases the expressive power of EFO (or any more expressive fragment). Many
of the type constructors in Essence would increase the expressiveness of EFO,
but this is only because they allow construction of very large domains. We
may extend EFO with a rich variety of type constructors without increasing
expressiveness, provided we restrict the size of the domains so constructed.

How Expressive is Unrestricted Essence?

Because of the rich variety of features, it is not obvious what the expressive
power of Essence is2. Even after the work reported here, we can at best
make a conjecture. Our conjecture is that Essence can express exactly those
combinatorial problems in the complexity class ELEMENTARY. We discuss
this, and present an example of a purely combinatorial problem that, if the
conjecture holds, is not expressible in Essence.

2This is also observed by the Essence designers [10].
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1.2 Structure of the Paper

Section 2 presents some essential background in logic and computational com-
plexity, the formal definition of model expansion, and some related explana-
tory material. In Section 3, we formalize a small but interesting fragment of
Essence, denoted EFO, which corresponds to FO model expansion, and in
Section 4 we show that EFO captures NP. Section 5 shows how to extend EFO

and our logic-based formalization with a limited form of arithmetic, while still
capturing NP. Section 6 examines the question of “capturing NP search”. In
Section 7 we identify natural fragments of Essence that capture the polynomial-
time hierarchy (PH), and specifically each complexity class Σp

i of PH. In Sec-
tion 8 we show how extending EFO instance descriptions with succinct represen-
tations, or EFO specifications with large defined domains, results in fragments
of Essence which can express problems of extremely high complexity — all
problems in the exponential-time hierarchy, and thus the class ELEMENTARY.
In Section 9 we conjecture an upper limit on the expressive power of unrestricted
Essence, and provide an example of a (reasonably natural) purely combinato-
rial problem that we conjecture cannot be specified with Essence. Finally, we
end with a discussion and concluding remarks in Section 10.

2 Background

In this section we review the concepts and terminology from logic and complexity
theory that are needed for this paper. We assume only that the reader is familiar
with the basics of first order logic. For further background on logic, and in
particular finite model theory and descriptive complexity theory, we refer the
reader to [6, 25, 22].

2.1 Logical Structures

A vocabulary is a set σ of relation (a.k.a. predicate) and function symbols.
Each symbol has an associated arity, a natural number. A structure A for
vocabulary σ is a tuple containing a universe A (also called the domain of A),
and a relation (function), defined over A, for each relation (function) symbol of
σ. If R is a relation symbol of vocabulary σ, the relation corresponding to R in
a σ-structure A is denoted RA and may be called the extent of R in A or the
interpretation of R in A. For example, we write

A = (A; RA
1 , . . . R

A
n , f

A
1 , . . . f

A
m , c

A
1 , . . . c

A
k ),

where the Ri are relation symbols, the fi are function symbols, and constant
symbols ci are 0-ary function symbols. We always assume the presence of the
equality symbol =, which is always interpreted as the identity relation on domain
elements. A structure is finite if its universe is finite.

An example of a finite structure for vocabulary {E}, where E is a binary
relation symbol, is a graph G = (V ;EG). Here, V is a set of vertices, EG is a set
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of pairs of vertices which represent edges. An example of an infinite structure for
the vocabulary {s, f, c}, is the structure B = (N; sB, fB, cB) as follows. In this
structure, N is the set of natural numbers; sB is the (unary) successor function;
fB is a (binary) function on domain elements which maps a pair of numbers
to their sum; and cB is the smallest natural number 0. The standard choice
of vocabulary for this structure would, of course, be {succ,+, 0}. We give this
example to illustrate that particular symbols do not mean anything until such
a meaning is provided by a structure.

2.2 Definability in a Structure

Given a structure A, a FO formula φ(x1, . . . , xn) with free variables x1, . . . xn

defines an n-ary relation

{(a1, . . . an) | A |= φ[a1, . . . an]}.

For example, the relation ≤ is defined by the formula ∃z x+z = y. Thus, ≤ can
be seen as an abbreviation of this longer formula, and we say that this relation
is definable with respect to the structure C = (N; succ,+, 0).

2.3 The Task of Model Expansion

An expansion of a σ-structure A = (A;σA) to vocabulary σ∪ε is a structure B =
(A;σA, εB), which has the same domain as A, all the functions and relations of
A, and in addition has functions and relations interpreting ε. Model expansion
(MX) as a task is defined for an arbitrary logic L as follows.

Definition 1 Model Expansion for L (abbreviated L MX).

Given: 1. An L-formula φ, and
2. A structure A for a part σ of vocab(φ).

Find: An expansion B of A to vocab(φ) such that B satisfies φ.

In the definition, vocab(φ) denotes the set of vocabulary symbols used in
φ. Each expansion of A that satisfies φ gives interpretations to the vocabulary
symbols of φ which are not interpreted by A.

As used in this paper, the formula φ plays the role of a problem specifica-
tion, the given structure A is an instance of the problem, and each expansion
satisfying the definition constitutes a solution for the instance A. We call σ, the
vocabulary of A, the instance or input vocabulary, and ε := vocab(φ) \ σ the
expansion vocabulary.

Example 1 [Graph 3-colouring as model expansion] Let the instance vocab-
ulary be {E}, where E is a binary relation symbol. Then the input structure
is a graph A = G = (V ;EA). Let the vocabulary of φ be {E,R,B,G}, where
R,B,G are unary relation symbols. Any expansion of A to this vocabulary
interprets the expansion symbols {R,B,G} as sets of vertices, which we may
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think of as those vertices being coloured Red, Blue and Green. To ensure that
the colouring is total and proper, let φ be:

∀x [(R(x) ∨B(x) ∨G(x))
∧¬(R(x) ∧B(x)) ∧ ¬(R(x) ∧G(x)) ∧ ¬(B(x) ∧G(x))]

∧ ∀x ∀y [E(x, y) ⊃ (¬(R(x) ∧R(y))
∧¬(B(x) ∧B(y)) ∧ ¬(G(x) ∧G(y)))].

A solution is an interpretation for the expansion vocabulary ε := {R,B,G} such
that

A
︷ ︸︸ ︷

(V ;EA, RB, BB, GB)
︸ ︷︷ ︸

B

|= φ.

The expansions of A that satisfy φ, if there are any, correspond exactly to the
proper 3-colourings of G.

The problem can also be axiomatized using a function colour() mapping
vertices to colours. This is a more concise model expansion representation of
the problem, and we invite the reader to complete the details. ♦

In Example 1, formula φ is essentially a specification of the 3-colouring
problem, as it describes exactly the relationship between a graph and its proper
3-colourings. In addition to φ, we need the partition of the vocabulary into
instance and expansion vocabularies.

2.4 Multi-Sorted Logic

In a multi-sorted logic there are different sorts of variables, with each sort having
its own domain. It is natural to use multi-sorted logics in our study of Essence.
Each Essence variable ranges over some finite set, and for the simple fragments
of Essence we study in this paper, we may let these sets correspond to sorts
in logic.

Formally, we have a nonempty set I, whose members are called sorts. For
each sort i ∈ I, we have variable symbols, quantifiers ∀i and ∃i, and an equality
symbol =i. With each predicate and function symbol of a vocabulary, we specify
the sorts of each argument. That is, each k-ary predicate symbol is of some sort
〈i1, i2, . . . , ik〉, where each ij ∈ I, and each k-ary function symbol is of some sort
〈i1, i2, . . . , ik, ik+1〉. Each term has a unique sort, and the sorts of predicate and
function symbols agree with those of the terms they are applied to. A multi-
sorted structure is a structure that has a domain for each sort, and assigns to
each relation and function symbol a relation or function of the correct sort. For
example, consider a vocabulary σ = { ~R} with sorts I = {1, 2, 3}. We may write

a structure for σ as A = (A1, A2, A3; ~R
A).

Multi-sorted logics are sometimes convenient, but do not let us do anything
essential that cannot be done without them. To see this, observe that we can
carry out the following translation from multi-sorted to un-sorted first order
logic. Suppose we have a sentence over a multi-sorted vocabulary σ. Consider
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an un-sorted vocabulary σ′ which has all the symbols of σ, and in addition has a
predicate symbol Di for each sort i of σ. We translate a multi-sorted formula φ
of vocabulary σ to an un-sorted formula φ′ of vocabulary σ′ by re-writing each
sub-formula of the form

∀i x φ(x) or ∃i x φ(x)

where x is of sort i, as (respectively)

∀x (Di(x) ⊃ φ(x)) or ∃x (Di(x) ∧ φ(x)).

We translate a multi-sorted σ-structure A to a σ′-structure A′ by letting the
domain of A′ be the union of the domains A, and the interpretation of each
predicate symbol DA′

i be the domain in A of sort i. Is it easy to show that

A |= φ ⇔ A′ |= φ′.

To continue our example where σ = { ~R}, then σ′ = {D1, D2, D3, ~R}. We write

a structure for σ′ as A′ = (A1 ∪ A2 ∪ A3;D
A′

1 , DA′

2 , DA′

3 , ~RA′

), where each
DA′

i = Ai. Notice that A and A′ are really just two ways of looking at the
same object, except that in A′ the three sorts have been made explicit, and
have associated vocabulary symbols. In fact, it is common to make the natural
and harmless assumption in a multi-sorted logic that we always have vocabulary
symbols associated with each sort, so even this distinction disappears. We will
make this assumption throughout the paper.

The only real difference, then, between the multi-sorted structures for σ
and the un-sorted structures for σ′ is that not all un-sorted structures for σ′

correspond to multi-sorted structures for σ. For example, an un-sorted structure
A for σ′ may have that RA contains both elements from DA

1 and DA
2 . In this

case, if DA
1 and DA

1 are disjoint, A does not correspond to any structure for σ.
However, if we restrict our attention in the un-sorted case to suitably chosen
structures, we can define a translation # from the un-sorted to the multi-sorted
case, with the property that A′# = A, and such that

A |= φ ⇔ A# |= φ#.

In this paper, it is convenient to use multi-sorted logic because sorts corre-
spond roughly to types in Essence. On the other hand, for most purposes it is
simpler to use un-sorted logic. Thus, we will use the sorted version when this
improves clarity, but un-sorted logic otherwise. All results hold in either case,
but may not be equally simple to prove or explain.

2.5 Second Order Logic

Second order logic (SO), in addition to first order quantification (over individual
objects), allows quantification over sets (of tuples) and functions. This is ex-
pressed through quantification over relation and function symbols. An example
of a SO formula is

∃E ∀ f ∀R ∀x ∀ y (R(x, y) ∧ f(x) = y ⇒ E(x)).
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Here, E and R are second order variables ranging over sets (of tuples), f is a
second order function variable, and x and y are first order (object) variables
(those ranging over domain elements). The existential fragment of SO, denoted
∃SO, is the fragment where all second order quantifiers are existential.

2.6 Review of Complexity Classes

We need some background in computational complexity theory, which we give
based on the exposition in [25]. Let L be a language accepted by a halting
Turing machine M . Assume that for some function f : N → N, the number of
stepsM makes before accepting or rejecting a string s is at most f(|s|), where |s|
is the length of s. If M is deterministic, then we write L ∈ DTIME(f); if M is
nondeterministic, then we write L ∈ NTIME(f). In this paper we are primarily
interested in the complexity classes P, NP, Σp

i , NEXP and ELEMENTARY,
which are as follows.

The class P of polynomial-time computable problems is defined as

P =
⋃

k∈N

DTIME(nk),

and the class NP of problems computable by a nondeterministic polynomial-
time Turing machine as

NP =
⋃

k∈N

NTIME(nk).

The polynomial hierarchy (PH) is defined as follows. Let Σp
0 = Πp

0 = P.

Define inductively Σp
i = NPΣp

i−1 , for i ≥ 1. That is, languages in Σp
i are those

accepted by a nondeterministic Turing machine that runs in polynomial time,
but that can also make “calls” to another machine that computes a language
in Σp

i−1. Such a call is assumed to have unit cost. We define the class Πp
i as

the class of languages whose complements are in Σp
i . Notice that Σp

1 = NP and
Πp

1 = co-NP. The union of these is

PH =
⋃

i∈N

Σp
i =

⋃

i∈N

Πp
i .

PSPACE is the class of languages accepted by a Turing machine that uses at
most polynomial space. NL is the class of languages recognized by some nonde-
terministic logspace TM. To define NL, we need to talk about space complexity
for sub-linear functions f . To do that, we use a model of Turing machines with
separate input and work tapes. The input tape cannot be modified. We define
NL to be the class of languages accepted by such nondeterministic machines
where at most O(log|s|) cells of the work tape are used.

The relationship between these complexity classes is as follows:

NL ⊆ P ⊆

{
NP

co-NP

}

⊆ PH ⊆ PSPACE.
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None of the containments of any two consecutive classes in this sequence is
known to be proper, but the space classes NL and PSPACE, with which we
have bracketed the time classes defined so far, are distinct: NL $ PSPACE.

We also consider several classes that involve exponential running time. We
have

EXP =
⋃

c∈N

DTIME(2nc

) and NEXP =
⋃

c∈N

NTIME(2nc

).

EXP and NEXP both contain PSPACE, and properly contain NP.
Let 2[k](n) denote

22·
·
·
2

n

where the stack of 2’s is k high. Then we define, for each k ∈ N,

k-EXP =
⋃

c∈N

DTIME(2[k](nc)) and k-NEXP =
⋃

c∈N

NTIME(2[k](nc))

For example, NTIME(2nc

) = NEXP = 1-NEXP; NTIME(2[2](nc)) = 2-NEXP
(doubly-exponential non-deterministic time), etc. These classes define the ex-
ponential hierarchy, where we know that all the inclusions

· · · k-NEXP $ (k + 1)-EXP $ (k + 1)-NEXP · · ·

are proper. The union of all these gives us the class ELEMENTARY:
⋃

k∈N

k-EXP =
⋃

k∈N

k-NEXP = ELEMENTARY.

Beyond elementary we have

TIME(2[n](n)) = ITERATED EXPONENTIAL TIME.

Notice that we do not distinguish deterministic and nondeterministic time 2[n](n).
At this complexity, nondeterminism (and exponents on the argument n) don’t
make any difference. Relating these to some more familiar classes, we have the
following, where all the inclusions are proper.

⋃

k∈N

NTIME(2[k](nc)) =
⋃

k∈N

k-NEXP

= ELEMENTARY

$ ITERATED EXPONENTIAL TIME

$ PRIMITIVE RECURSIVE

$ RECURSIVE.

2.7 Descriptive Complexity Theory

Descriptive Complexity Theory [22] deals with machine-independent character-
ization of complexity classes. In this section, we provide a brief review of the
definitions and results we need.

12



Model Expansion and Model Checking

We will talk about two computational tasks, model checking and model expan-
sion (as a decision problem), associated with each logic L. We reproduce the
definition of model expansion for completeness of the exposition.

1. Model Checking (MC): given (A, φ), where φ is a sentence in L and A is
a finite structure for vocab(φ), does A satisfy φ?

2. Model Expansion (MX): given (A, φ), where φ is a sentence in L and A
is a finite σ-structure with σ ⊆ vocab(φ), is there an expansion of A to
vocab(φ) which satisfies φ?

In model checking, the entire structure is given; in model expansion part of
the structure, which includes the domain, is given. MX for first order logic
is equivalent to MC for ∃SO. That is, there exists a suitable expansion of a
structure A if there exists suitable interpretations for the expansion predicates,
or, equivalently, if A satisfies the ∃SO formula obtained from the FO formula
by preceding it with existential quantifiers for all expansion predicates.

We now generalize this connection between MC and MX. Let L be any logic.
Let ∃SO(L) be the set of formulas of the form ∃P r1

1 . . . ∃P rk

k φ for some k, where
φ ∈ L and each P ri

i is a second order relation or function variable of arity ri.
From the definition of ∃SO(L), we have that MX for L is equivalent to MC for
∃SO(L). The logic ∃SO(L) may or may not be a fragment of ∃SO, depending
on L. When L is FO, ∃SO(L) is precisely ∃SO.

Capturing Complexity Classes

Complexity theory characterizes complexity classes in terms of resources needed
by Turing machines (TMs). In descriptive complexity, we characterize them in
terms of expressive power of logics. To associate structures with TM compu-
tations, we need to represent or encode structures as strings. Let enc() denote
such an encoding. Different encodings are possible, and as with most complex-
ity theory any “reasonable” encoding will do. Here is an example. We assume
that the elements of the universe are associated with an initial segment of the
natural numbers. This allows us to have encodings of the form

000 . . .0
︸ ︷︷ ︸

n

1enc(R1)enc(R2) . . . enc(Rk).

The first n zeros represent the universe, 1 acts as a separator, and each enc(Ri)
represents an encoding of a relation (or function). Such an encoding is a 0-
1 vector, where 1 in the i position indicates that the i-th tuple (according to
lexicographic ordering) is in the relation, and 0 indicates that it is not.

The following notion was introduced in [34].

Definition 2 Let Comp be a complexity class and L a logic. The data com-
plexity of L is Comp if for every sentence φ of L the language {enc(A) | A |= φ}
belongs to Comp.
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Definition 3 A property P of structures is definable in logic L if there is a
sentence φP ∈ L such that for every structure A, we have that A |= φP iff A
has property P .

Definition 4 Let D be a class of finite structures, Comp be a complexity class,
and L be a logic. Then L captures Comp on D (L ≡D Comp) if

(a) for every fixed sentence φ ∈ L, the data complexity of evaluating φ on
structures from D is a problem in the complexity class Comp, and

(b) every property of structures in D that can be decided with complexity Comp
is definable in the logic L.

The following theorem initiated the area of descriptive complexity.

Theorem 1 (Fagin [7]) ∃SO captures NP.

Fagin’s result generalizes to higher levels of polynomial hierarchy, with levels
corresponding to number of alternations of second order quantifiers, and full
second order logic capturing PH (see Section 7). Following Fagin’s theorem,
Immerman [23] and Vardi [34] independently proved that, on ordered structures,
the complexity class P is captured by a fixpoint extension of FO logic. The
restriction here to ordered structures means we consider only structures which
have an explicit ordering relation on the universe.

2.8 Complexity and Descriptions vs Reductions

As is clear from Fagin’s theorem and the definition of capturing a complexity
class, the property of capturing NP is very different from NP-completeness.
Proving NP-completeness of a problem shows us that exactly the problems in
NP can be polynomially reduced to it. Proving a language captures NP shows
that the language is universal for defining the problems in NP.

For example, NP-completeness of SAT tells us that for every problem in NP
there is a polynomial reduction to SAT. When we reduce Graph 3-Colourability
to SAT, we obtain a different propositional formula (SAT instance) for each
graph. Fagin’s theorem tell us that for every problem in NP there is an ∃SO for-
mula that axiomatizes the problem. When we axiomatize Graph 3-Colourability
as ∃SO (or as FO MX), we have one formula which describes the class of all
3-colourable graphs.

3 EFO: A Small Fragment of Essence

In this section, we begin our technical development by introducing a small frag-
ment of Essence, which we call EFO because it corresponds closely to first order
logic. This fragment will be useful to make our logic-based view of Essence

precise, and is a natural fragment with which to begin a study of expressive-
ness. The Essence fragments and examples in this paper are based on Essence

Version 1.2.0, as described in [11].
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given Vertex new type enum

given Colour new type enum

given Edge: rel of (Vertex × Vertex)
find Coloured: rel of (Vertex × Colour )
such that ∀ u : Vertex . ∃ c : Colour . Coloured(u, c)
such that ∀ u : Vertex . ∀ c1 : Colour . ∀ c2 : Colour .

((Coloured(u, c1 ) ∧ Coloured(u, c2 )) → c1 = c2 )
such that ∀ u : Vertex . ∀ v : Vertex . ∀ c : Colour .

(Edge(u, v) → ¬(Coloured(u, c) ∧ Coloured(v , c)))

Figure 1: An Essence specification of Graph Colouring.

A simple Essence specification consist of three parts, identified by the
mnemonic keywords given, find, and such that. The “given” part specifies
the types of objects which comprise problem instances; the “find” part specifies
the types of objects that comprise solutions; and the “such that” part specifies
the relationship between instances and their solutions. To illustrate, we give a
simple example.

Example 2 Figure 1 gives an Essence specification of the Graph Colouring
problem. The computational task described by this specification is as follows.
We will be given a finite set Vertex , a finite set Colour , and a binary relation
Edge ⊆ Vertex × Vertex . Our task is to find a relation Coloured ⊆ Vertex ×
Colour , which, in accordance with the constraints — the formulas of such that

statements — maps each v ∈ Vertex to a unique c ∈ Colour so that no edge
(u, v) ∈ Edge is monochromatic. ♦

An Essence instance may be described by a collection of letting state-
ments, one corresponding to each given statement in the specification. These
identify a concrete set with each symbol declared by a given statement.

Example 3 An example of an instance description for the specification of Fig-
ure 1 is:

letting Vertex be new type enum {v1 , v2 , v3 , v4}
letting Colour be new type enum {Red ,Blue,Green}
letting Edge be rel {〈v1 , v2 〉, 〈v1 , v3 〉, 〈v3 , v4 〉, 〈v4 , v1 〉}

♦

Definition 5 Let EFO denote the fragment of Essence defined by the following
rules.

1. The “given” part of an EFO specification consists of a sequence of state-
ments, each of one of the two forms:

(a) given D new type enum,
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(b) given R: rel of (D1 × . . .×Dn),

where n ∈ N and each Di is a type declared by a previous given

statement of form 1a.

2. The “find” part of an EFO specification consists of a sequence of state-
ments, each of the form

find R: rel of (D1 × . . .×Dn)

where n ∈ N and each Di is a type declared by a given statement of
form 1a.

3. The “such that” part consists of a sequence of statements, each of the form

such that φ

Here, φ is an expression which is syntactically a formula of function-free
first order logic, with one exception: All quantifiers of EFO are of the
form ∃x :D. or ∀x :D., where x is a variable and D is a type declared
by a given statement of form 1a. The vocabulary of φ consists of relation
symbols specified in the “given” and “find” parts, and may also contain
the equality symbol =.

We will call formulas occurring in such that statements constraints.

4. An EFO instance description consists of letting statements which bind
concrete sets or relations to the symbols of the “given” vocabulary. These
are of the forms

(a) letting D be new type enum {new id1 , ...,new idn} ,

(b) letting R be rel {〈id1
1
, . . . , id1

n
〉, 〈id2

1
, . . . , id2

n
〉, . . .},

respectively, for given statements of forms (a) and (b).

Since we make a distinction between instances and specifications, it might
be more appropriate to remove the last item from this definition, and treat the
specification language as independent of the instance representation. However,
in order to analyze complexity or expressiveness, we need to make some as-
sumptions about how instances are represented, and that is the role of item 4
in Definition 5. The primary point is that all elements in the instance are ex-
plicitly enumerated, so that instance descriptions correspond appropriately with
standard encodings of finite structures.

This small fragment of Essence essentially corresponds to function-free
multi-sorted first order logic, and indeed has the same expressive power, so
we denote it by EFO. Within this fragment, we can express the properties ex-
pressed by many other Essence language constructs, such as that a relation is
a bijection or that all elements of a set are different. Thus, EFO may be seen
as a kind of “kernel” of Essence (perhaps of primarily theoretical interest).
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Remark 3 The terminology related to sorts can get confusing. In logic, we have
sorts, which are associated with a vocabulary, and domains, which are concrete
sets assigned to each sort by a structure. Essence has types and domains.
Types are named sets of objects (not necessarily finite). Variables range over
domains, and each domain is a subset of a type. In the context of this paper,
the reader may think of types as corresponding to sorts.

We use the term domain in the logical sense, and also informally to refer to
a set of values over which a variable may range. This use does not correspond
with the technical meaning of domain for Essence, but this is probably harmless
for the reader (until they want to write correct Essence specifications).

3.1 FO Model Expansion and EFO

We now provide the alternate, “model expansion” semantics for EFO. To do
this, we associate with each EFO specification a class of structures, which corre-
spond to the problem being specified. We then construct a mapping from EFO

specifications to FO formulas, with the property that the class of structures
associated with a specification is the same as the class of structures defined by
the formula it is mapped to.

Let Γ be an EFO specification. We associate with Γ the following class KΓ of
multi-sorted structures. We have a sort for each type declared in Γ by a given

statement of form 1a of Definition 5. The vocabulary of KΓ is σ ∪ ε, where σ
has one relation symbol for each symbol declared by a given statement of Γ,
and ε has one relation symbol for each symbol declared by a find statement
of Γ. The sorts of these symbols correspond to the types declared in Γ in the
obvious way. (Of course, σ and ε are our instance and expansion vocabularies.)

Instances for Γ are exactly the (multi-sorted) finite σ-structures. If we take a
σ-structure, and expand it by adding interpretations for ε, we have a structure of
vocabulary σ∪ε, consisting of an instance together with a “candidate solution”.
KΓ contains exactly those structures consisting of an instance for Γ expanded
with a (real, not candidate) solution. The role of the constraints of Γ is to
distinguish real solutions from candidate solutions.

Example 4 The specification of Graph Colouring in Figure 1 is an EFO speci-
fication. The instance vocabulary is σ = {Vertex ,Colour ,Edge}, where Vertex
and Colour are unary relation symbols denoting sorts, and Edge is a binary
relation symbol. An instance structure A gives interpretations to the sym-
bols of σ, that is, the sets VertexA and ColourA and the binary relation
EdgeA ⊆ VertexA × VertexA:

A = (VertexA ∪ ColourA;VertexA,ColourA,EdgeA).

An example of a σ-structure is given by:

A = {1, 2, 3, 4} ∪ {R,B,G},
VertexA = {1, 2, 3, 4},

ColourA = {R,B,G},

EdgeA = {(1, 2), (1, 3), (3, 4), (4, 1)}.
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This corresponds to the EFO instance of Example 3. ♦

We will now show that, corresponding to Γ, there is a formula φΓ of (un-
sorted) first order logic whose finite models are exactly the (un-sorted versions
of the) structures in KΓ. The formula φΓ is over vocabulary σ ∪ ε, and will be
constructed from two sets of formulas, φΓ,C and φΓ,T, reflecting the constraint
and the type information of Γ.

The constraints are, except for a small syntactic change, formulas of multi-
sorted first order logic. For example, a constraint of the form ∀ x : D . φ(x ) can
be mapped to the formula ∀Dxφ(x) of our multi-sorted logic, which we can then
re-write in un-sorted logic as described in Section 2.4. Thus, our formula will be
obtained in part by applying the following rules to each constraint, translating
all “Essence quantifiers” into standard un-sorted FO quantifiers:

• Rewrite ∀ x : D . φ(x ) as ∀x (D(x) ⇒ φ(x)),

• Rewrite ∃ x : D . φ(x ) as ∃x (D(x) ∧ φ(x)).

We call such quantification guarded, and we call D a guard for the corresponding
quantified variable. For EFO specification Γ, denote by φΓ,C the set of first order
formulas produced by applying this translation to all of the constraints of Γ.

The guards in φΓ,C ensure that the formulas playing the role of constraints
only “talk about” things of the right sorts. In our un-sorted logic, expansion
predicates may contain elements of any sort, and it remains to restrict them to
the intended domains. In Γ, this is the role of the type declarations in the find

statements. In particular, an expression of the form

R: rel of (D1 × . . .× Dn)

in a find statement indicates that the interpretation of R is a subset of the
cross-product of the indicated Di. We can enforce this requirement with the
following first order formula.

∀x1, . . . ∀xn (R(x1, . . . , xn) → D1(x1) ∧ . . . ∧Dn(xn)) (1)

Let us denote by φΓ,T the set containing one formula of the form (1) for each
find statement in Γ. We call the formulas of φΓ,T upper guard axioms.

Now, let φΓ denote the conjunction of the formulas in φΓ,C ∪ φΓ,T and we
have the following.

Proposition 1 Let Γ be an EFO specification and KΓ the associated class of
σ ∪ ε-structures. Then B ∈ KΓ if and only if B |= φΓ.

A rigorous proof of Proposition 1 requires establishing the relationship be-
tween the truth conditions of the property B |= φΓ, and those of the property
B ∈ KΓ. This entails a precise definition of the class KΓ, which in turn relies
on the formal semantics of Essence. A formal semantics for a fragment of
Essence is given in [10]. While this fragment does not fully contain EFO, the
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intended semantics of those parts which are not specified, but which are part of
EFO, are obvious.

The Essence semantics is a partial function [[P ]]Ω ∈ {true, false,⊥} (where
⊥ denotes undefined), specified recursively. Here, P is an Essence expression
and Ω is a mapping. We are not concerned here with the details of Ω in the
general case. For the case we need, P is a complete EFO specification Γ, and
Ω is an assignment to the set of decision variables (i.e., the “find” or expansion
symbols).

The semantics is defined for “instantiated specifications”, i.e., where the
given statements have been replaced by letting statements specifying ex-
actly an instance. Let Γ be an Essence specification, A an instance struc-
ture for Γ, and E a candidate assignment for the decision (expansion) vari-
ables of Γ. Denote by letting(A) a representation of instance structure A by
letting statements, as described in the definition of EFO (Definition 5), and
let Γ(letting(A)) denote the instantiation of specification Γ with instance
letting(A). Then the truth of Proposition 1 is immediate from the following
fact.

[[ Γ(letting(A)) ]]E = true iff (A;E) |= φΓ

where (A;E) is the structure A expanded by the relations of E.

4 EFO Captures NP

In this section, we consider the question: How expressive is our fragment EFO?
The answer is given by the following theorem.

Theorem 2 Let K be a class of finite σ-structures. The following are equivalent

1. K ∈ NP ;

2. There is a first order formula φ with vocabulary vocab(φ) ⊃ σ such that
A ∈ K if and only if there exists a structure B which is an expansion of
A to vocab(φ) and satisfies φ;

3. There is an EFO specification Γ with instance vocabulary σ and expansion
vocabulary ε such that A ∈ K if and only if there is structure B which is
an expansion of A to σ ∪ ε and satisfies the formula φΓ.

Proof: The equivalence of 1 and 2 are by Fagin’s Theorem [7]. The implication
from 3 to 2 is immediate from the Proposition 1 above. Notice that in 2 we are
viewing the structures of K as un-sorted, and in 3 we are viewing them (the
very same structures) as being multi-sorted. To go from 2 to 3, consider an
arbitrary FO formula φ as in 2. Construct an EFO specification as follows.

1. The “given” part consists of a sequence of statements as follows:

(a) given D new type enum

where D is the domain of A,
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(b) given R: rel of (D × . . .×D)

for each relation R (with corresponding arity) occurring in φ.

2. The “find” part consists of a sequence of statements each of the form

find R: rel of (D × . . .×D)

for each R in vocab(φ)\σ.

3. The “such that” part is just

such that φ′

where φ′ is identical to φ except each ∀x is replaced by ∀x : D. , and each
∃x is replaced by ∃x : D. .

To verify that this EFO specification satisfies the condition in item 3, let φ be the
original formula, and Γ be the EFO specification produced as described. Now,
consider the formula φΓ as defined in Section 3.1. The formulas are identical,
except that all quantification in φ has turned into guarded quantification in
φΓ. That is, any sub-formula of φ of the form ∀x ψ(x) appears in φΓ as a
sub-formula of the form ∀x (D(x) ⇒ ψ(x)). This reflects the translation of
views from un-sorted to sorted and back. The models of φ are un-sorted. If we
view them as multi-sorted models with a single sort, then we see that φ and
φΓ have exactly the same models, which are those in K. The guard D in φΓ is
superfluous, because D is the entire domain.

The theorem tells us that the search problems definable by EFO are ex-
actly those definable by FO model expansion, and that the decision problems
associated with search problems specifiable in EFO are exactly those in NP.

Remark 4 There are two related claims which are tempting to make. One
could be expressed as “EFO can express all and only the NP-search problems”, or
“EFO captures NP-search (a.k.a. FNP)”. The other might be expressed as “We
may specify decision problems in EFO by writing specifications in which there is
just one find statement, and the object found is a Boolean value denoting ‘yes’
or ‘no’. The decision problems we can specify this way in EFO are exactly those
in NP.” The results of Section 6 show why both of these claims would be false.

4.1 Extending EFO

EFO is a nearly minimal fragment of Essence that captures NP. Smaller frag-
ments are of marginal interest. For example, one could restrict the constraint
formulas to be in CNF, but it is not clear why we would study this case. It is
more interesting to ask what sorts of features of Essence we could extend EFO

with, without increasing its expressive power. Here are some examples:

• Functions: We made EFO function-free to keep the fragment small
and the proofs simple. Extending EFO to allow use of functions in the
“given” and “find” vocabularies does not increase expressiveness, since
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unrestricted FO has no more expressive power than function-free FO. (In
EFO, as well as function-free FO, we can always represent functions by
their graphs.)

• Arithmetic: We show, in Section 5, how to extend EFO with a limited
form of arithmetic, while still capturing NP.

• User defined types and domains: In EFO, if the specification or
solution requires a domain larger than any instance domain, it must be
“simulated”, for example with tuples of instance domain elements. It is
not hard to extend EFO with the ability to define larger domains which
are either fixed or are a function of the instance. To do this, we extend the
formalization with an infinite “background” structure that provides access
to an unlimited number of “reserve” elements. This is a simplified version
of the method we use to handle arithmetic in Section 5. The only source
of difficulty is that, to retain capturing of NP, defined domains must be
of size polynomial in the instance size. We want the method of specifying
them to be as generous as possible, while ensuring this restriction.

• Domain modifiers: Essence contains many useful domain modifiers
for restricting sets, functions, and relations. Many of these, such as those
requiring a function to be a bijection, and those which bound the size of a
set or relation, are definable in FO MX (and thus EFO). Extending EFO

with syntax for these is easy and does not affect expressiveness.

5 Extending EFO with Arithmetic

In EFO specifications (and their associated structures) numbers must be en-
coded using non-numeric domain elements. It is desirable to have a language in
which numbers and numeric variables can be used directly. Here we consider an
extension of EFO to a language we denote EFO[N ], with “built-in” arithmetic
over the natural numbers. It has domains which are sets of natural numbers,
the arithmetic operations + and ×, sum and product operators

∑

x∈D
.F (x )

and
∏

x∈D
.F (x ), and the standard order relation <.

We formalize EFO[N ] by applying the notion of “metafinite” structures,
introduced in [19], which consist of a finite structure together with an infinite
“secondary” structure. The structures associated with EFO[N ] are arithmetical
meta-finite structures, where the secondary structure is the natural numbers
with arithmetic. To obtain a capturing result for EFO[N ], we restrict our
attention to classes of arithmetical structures which do not have extremely large
numbers. We call these “small cost structures”. The restriction ensures that
encodings of domain elements are never super-polynomial in the domain size.
Our definitions and methods adapt and generalize some from [19, 18].

Intuitively, EFO[N ] seems “more powerful” than EFO, but it is easy to verify
that EFO[N ] cannot specify any problem beyond NP. The hard part of obtaining
a capturing result is to show it is sufficiently expressive. EFO[N ] can express
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every problem in NP using encoded numbers, just as EFO can. We need also
to show that it can express every problem when using built-in numbers. The
difficulty here stems from the fact that complexity is measured with respect to
encoding size, and in adding built-in arithmetic to EFO, we have changed the
relationship between the objects the language talks about and their encodings.

The size of the encoding of a (standard) structure as a string (see Section 2.7)
is polynomial in the number of domain elements. When domain elements are
abstract, as in EFO, numbers must be encoded, and encoding a large number
requires having a sufficient number of domain elements. As a consequence,
there is always a large enough domain that any NP property of (the encodings
of) structures can be described by an ∃SO formula. However, in EFO[N ] an
individual domain element may be an arbitrary number, and the polynomial
relationship between domain size and encoding size is lost. For example, a
structure may have a domain of size one, but this one element may be an
arbitrarily large number. It may no longer be possible for an ∃SO formula to
describe every NP property of a class of such structures, because the variables
in this formula range only over the domain of size one, but the encodings it
must talk about are arbitrarily large, depending on the size of the number.
The restriction to small cost structures limits our attention to those classes of
arithmetical structures where the polynomial relationship between domain size
and encoding size is retained.

5.1 EFO[N ]

Let EFO[N ] denote the following extension of EFO.

1. The “given” part may contain statements of the forms allowed for EFO,
and also may have one or more declarations of the forms

• given D: set of int (∗ 0.. ∗),

• given C: int (∗ 0.. ∗),

• given F: function (∗ total ∗) tuple 〈D1, . . . , Dk〉 −→ Dk+1

These declare D to be a domain of non-negative integers; C to be a con-
stant symbol denoting a non-negative integer; and F to be a k-ary func-
tion, respectively. Each Di in the specification of function F must have
been declared by a given statement. If the arguments of F include both
sets of integers and enumerated types, we call F a “mixed” function. We
also extend the “given” relations for EFO to mixed relations.

2. There is a required pair of letting statements. The first is

letting Size be (|Di| + . . .+ |Dj ∪ . . . |),

which sets Size to be the number of distinct elements in the instance
structure. (We compute this by summing the sizes of enumerated domains
and adding the size of the union of the integer domains.)

The second is
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letting Bound be 2 ∗∗(Size ∗∗ k)

for some natural number k. This sets Bound to be the upper bound on
values allowed in the instance by the small-cost criteria.

3. There is a required “where” part consisting of one statement:

where ∀x ∈ Di. x < Bound

for each “given” domain Di which is a subset of N, and one statement:

where C < Bound

for each “given” integer C.

A where statement is an Essence statement that places a constraint on
the allowed values in an instance. The where statements here ensure that
no number in the instance is larger than Bound , so that instances which
violate the small-cost condition will be “rejected”.

4. The “find” part is as in EFO, extended with:

find F : function (∗ total ∗) tuple 〈D1, . . . , Dk〉 −→ Dk+1

where each Di has been declared by a given statement. F may be over
enumerated types, or sets of integers, or may be mixed. We also extend
the “find” relations of EFO to mixed relations.

5. The “such that” part is the same as in EFO, but with the following ex-
tensions to the syntax of formulas:

• we have constant symbols {0, 1, 2, . . .}, which always denote the nat-
ural numbers;

• we have arithmetic operations +, ×, and the sum and product oper-
ators

∑

x∈D
.F (x ) and

∏

x∈D
.F (x ), where F denotes an expression

with free variable x that evaluates to a natural number;

• the standard order relation < may be used, applied to the natural
numbers (≤,>, ≥, etc., are definable.);

• quantifiers over numeric domains are of the form ∀ x ∈ D . and ∃ x ∈ D .
(to conform with Essence syntax rules);

• we allow function symbols that have been defined by given or find
statements.

6. We also are allowed the following letting statements defining new do-
mains:

letting Dom be {0 ..Size − 1},

and

letting BigDom be {0 .. (Size ∗∗ k)− 1},
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given U new type enum $ The set of objects.
given w: function (∗ total ∗) tuple 〈U〉 −→ int (∗ 0.. ∗) $ weights.
given v: function (∗ total ∗) tuple 〈U〉 −→ int (∗ 0.. ∗) $ values.
given B: int (∗ 0.. ∗) $ The weight bound.
given K: int (∗ 0.. ∗) $ The value target.
letting Size be (|U |)
letting Bound be 2 ∗∗(Size ∗∗ k) $ for some k ∈ N.
where ∀ x : U . w(x ) < Bound
where ∀ x : U . v(x ) < Bound
where B < Bound
where K < Bound
find U ′ : rel of (U) $ The objects in the knapsack.
such that

∑

u∈U ′ . w(u) ≤ B
such that

∑

u∈U ′ . v(u) ≥ K

Figure 2: Specification of Knapsack in EFO[N ].

where k is the same value used in computing Bound . These letting state-
ments are not necessary in all EFO[N ] specifications, but they are used in
our proof of capturing NP.

Example 5 Figure 2 gives an EFO[N ] specification of the KNAPSACK prob-
lem. The specification is almost the same as the Essence specification for
KNAPSACK given in [11], except for the addition of the letting and where

statements enforcing the small-cost condition on instances. ♦

EFO[N ] is not a fragment of Essence, primarily because Essence does not
(so far) have a product operator. We may obtain a true fragment of Essence

from EFO[N ] by deleting the product operator and addressing some minor
syntactic issues. We include the product operator in EFO[N ] because our proof
of capturing NP, in Section 5.3, uses this operator.

We now need to formally extend the underlying task of model expansion to
account for a logical treatment of arithmetic. We do it along the lines of the
metafinite model theory of Grädel and Gurevich [19].

5.2 Metafinite Model Expansion with Arithmetic

A metafinite structure, as defined by Grädel and Gurevich [19, 18], is a two-
sorted structure consisting of a finite primary structure, a (typically infinite)
secondary structure (such as the structure of the natural numbers), and func-
tions from primary to secondary part. That definition is too restrictive for our
purposes since it does not allow mixed predicates where elements of both pri-
mary and secondary structures may occur as arguments. For this reason, we
introduce the following definition.
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Metafinite Structures with Mixed Relations

Definition 6 A metafinite structure with mixed relations (mixed structure, for
short), is a tuple D = (A,R), where

(i) A = (A;M) is a finite two-sorted structure, called the primary part of D.

(ii) R is a finite or infinite structure, called the secondary part of D. R always
contains two distinguished elements, 0 and 1, and may contain multi-set
operations.

(iii) The domain of R is called the secondary domain. The two sorts of A
are called the primary domain and the active domain (denoted adom(A)).
The active domain is a finite subset of the secondary domain. |A| denotes
the size of the combined domain of A, that is, the total number of elements
in both primary and active domains.

(iv) M is a set of finite relations and functions such that each relation Ri ∈M

satisfies Ri ⊆ U1 × U2 × . . . × Uk, and each function fi ∈ M satisfies
fi : U1×U2× . . .×Uk −→ Uk+1, where each Uj is either A\adom(A) (the
primary domain) or R (the secondary domain). If a function or relation
has arguments of both kinds, we call it “mixed”.

Typically, we are interested in studying the class of metafinite structures
obtained by taking R to be a fixed infinite structure, such as the natural numbers
or integers with standard arithmetic operations. We may view the secondary
structure as describing “built-in” functions and relations.

The term “active domain” comes from constraint databases, and denotes
the set of elements from a potentially infinite set (such as the natural numbers)
which actually occur in relations of the database. Here, the active domain
consists of the elements of the secondary domain, for example numbers, which
appear in an instance.

First Order Logic for Metafinite Structures

Logics for metafinite structures are an essential component of metafinite theory.
These are two-sorted logics, interpreted over combined two-sorted structures.
In our case, the logic is essentially standard two-sorted first order logic, which
we interpret over metafinite structures with mixed relations as defined above,
but with all quantification guarded.

We extend first order logic to include the characteristic function χ[φ](x̄),
which maps a formula φ and an assignment of domain elements to its free
variables x̄ to 0 or 1 (the distinguished elements of the secondary structure).
That is, in our formulas we may use χ[φ](x̄) as a term, where φ is any formula.
The semantics is that, for any structure A, χ[φ] is always interpreted by the
characteristic function of the relation defined by φ in A. We also have active
domain quantifiers, ∃(∀)x ∈ adom.
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Our main goal here is to ensure that in the presence of infinite secondary
structures, the property of capturing NP is preserved. While in the correspond-
ing theorem for EFO we could translate an arbitrary FO formula it into an
Essence specification, here we need to impose restrictions on these formulas to
avoid infinite interpretations for expansion relations. This is because expansion
relations may be mixed, and since the secondary domain is infinite they may be
given infinite interpretations.

Fortunately, we don’t need anything new to address this issue. In Essence,
all decision variables are restricted to be from finite sets, and all quantification
is guarded by finite sets. We do the same with our logic, and require that all
quantification is guarded, and that all expansion predicates have upper guards,
as in the axioms φΓ,C and φΓ,T of Subsection 3.1. Thus, the restriction to the
formulas of our logic is:

• All quantification is guarded;

• For every expansion predicate or function there is an upper guard axiom;

• All guards are instance relations.

Predicates from the instance vocabulary don’t need to be guarded from above
since their interpretations are already given.

Strictly speaking, the logic is parameterized by the vocabulary of the sec-
ondary structure and the instance vocabulary. For the remainder of this section,
we will denote the logic L, with a subscript to denote the secondary structure
used. The instance vocabulary will be clear from the context.

Arithmetical Structures with Mixed Relations

Arithmetical structures with mixed relations are mixed structures D = (A,N ),
where N is a structure containing at least (N; 0, 1, <,+, ·,

∑
,
∏

), with the nat-
ural numbers N as its domain, and where

∑
,
∏

are multi-set operations. Other
functions, predicates, and multi-set operations may be included, provided every
function, relation and operation of N is polytime computable. The first order
logic for this metafinite structure will be denoted LN .

Small Cost Arithmetic Structures

For a version of capturing NP with arithmetical structures, we need to restrict
the range of numbers that can appear in a structure, as follows. Define |D|, the
size of a metafinite structure D = (A,R), to be the total number of elements
of both primary and secondary sort occurring in the finite structure A. That is
|D| = |A|.

Definition 7 For a mixed arithmetical structure D = (A,N ), define cost(D),
the cost of D, to be ⌈log(l)⌉, where l is the largest number in adom(A).

That is, the cost of a mixed structure is the size of the binary encoding of its
largest number. If adom(A) is empty, the cost is zero.
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Definition 8 A class K of mixed arithmetical structures has small cost if there
is some k ∈ N such that cost(D) < |D|k, for every D ∈ K.

For structures in a small-cost class, each number is encoded by a number of
bits which is polynomial in the size of the domain of the structure, and so has
a value no larger than 2poly(|D|).

5.3 Capturing NP with EFO[N ]

Theorem 3 Let K be a class of small-cost arithmetical mixed metafinite struc-
tures over vocabulary σ. Then the following are equivalent:

1. K ∈ NP ;

2. There is a first order formula φ of logic LN with vocabulary σ′ % σ, such
that D ∈ K if and only if there is an expansion D′ of D to σ′ with D′ |= φ;

3. There is an EFO[N ] specification Γ with instance vocabulary σ and vocab-
ulary σ′ % σ, such that D ∈ K iff there is an expansion D′ of D to σ′ with
D′ |= φΓ.

Proof: First we show the equivalence of 1 and 2. Suppose 2 holds. Observe
that upper guards ensure interpretations of expansion predicates are of size
polynomial in |A|, and the small cost condition ensures that encodings of struc-
tures are of size polynomial in |A|. Checking the truth of the formula in the
expanded structure is polytime, since lower guards ensure that quantification is
always over a number of elements that is polynomial in |A|, and every opera-
tion of N is polynomial-time computable. Thus, we can guess the extensions of
our expansion predicates and check the truth of our formula in that expanded
structure in polynomial time. Membership in NP follows.
For the other direction, from 1 to 2, assume K is in NP. We will show that
we can construct the formula φ described in item 2 of the theorem. We use a
generalization of a method used by Grädel and Gurevich in [19].
We first outline the proof idea. Let K be a class of mixed metafinite structures
D = (A;M,N ), where the primary structure is A = (A;M), for a setM of mixed
functions and relations. We will expand each structure D ∈ K with several new
relations. In particular, for each relation (or function) R ∈ M , we will add
new relations {IR, PR, {Sl

R}1≤l≤r}. We will construct these new relations to
encode exactly the same information as is represented in M , but using domain
elements only as abstract objects, never as numbers. We call the resulting class
of structures K′. We then apply Fagin’s theorem, in the following way. We
write a first order formula

∧

R φR that defines the correspondence between the
relations and functions of M and the new relations encoding them. We then
assume K ∈ NP and perform the following reasoning. K ∈ NP iff K′ ∈ NP (by
construction of K′) iff there is a formula ψ constructed as in Fagin’s theorem
(by observing that structures in K′ can be viewed as standard, not metafinite
structures) iff the formula φ = ψ∧

∧

R φR is the required formula demonstrating
statement (2) of the theorem.
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Now we give the details. For simplicity, we give the proof for the relational case
only. We may think of functions as being represented by their graphs. Consider
a mixed relation R(x, s), where x denotes the tuple of arguments of primary
sort, and s = s1s2 . . . sr denotes the tuple of arguments of secondary sort. For
each such relation, we will introduce expansion relations IR, PR, and S1

R, . . .Sr
R

where:

• IR(i) denotes that there is an i
th

tuple in R.

• PR(i, x) denotes that, if there is an i
th

tuple in R, the tuple of primary
elements in that tuple is x.

• Sl
R(i, j) denotes that, if there is an i

th
tuple in R, the j

th
bit of the binary

representation of the secondary structure element sl is 1.

For each relation R with arguments of secondary sort, we have one relation Sl
R

for each argument to R of secondary sort, where l is the index of the argument.
The role of Sl

R is to encode the binary representation of each number occurring
in position l of some tuple of R. Argument i indexes the possible tuples of R
while j indexes the possible bits in a binary representation of a number. The

Sl
R s do not distinguish absence of the i

th
tuple from R from the bits in the i

th

tuple being all zero, so we use IR to indicate which of the nk possible tuples for
R are actually present.
Now, we must write a first order formula, over the vocabulary of K plus the
expansion to the IR, PR and S1

R, . . . , Sr
R, that says that these encode R correctly.

Our formula is

φR = ∀x ∀ s1 . . . ∀ sr [R(x, s) ↔ ∃ i (IR(i) ∧ PR(i, x)
∧

∧

l (Σj̄(χ[Sl
R(̄i, j̄)] × Πy(2 : y < value(j̄))) = sl ))],

where value(j̄) is j0n
0 + · · · + jmn

m, where n is the size of the domain and m

is the length of the tuple j̄, i.e., j̄ is an encoding of that number in n-ary.
For each particular l and i, the term

Σj̄(χ[Sl
R(̄i, j̄)] × Πy(2 : y < value(j̄)))

computes the value of a secondary element sl from its representation in Sl
R(̄i, j̄).

Recall that the number sl is represented in Sl
R (̄i, j̄), which is true (for a fixed i)

on those tuples j̄ which encode numbers of positions which are 1 in the binary
representation of sl. We have such a formula φR for each R.
Let K be a class of small-cost arithmetical mixed metafinite structures over
vocabulary σ. Assume K ∈ NP. Now, we construct our formula φ which is
required in item 2 of the theorem. Let K′ be the class of structures B consisting
of (A, {IR, PR, {Sl

R}1≤l≤r}R∈M ,N ) for each (A,N ) ∈ K. That is, for each
R ∈ M , we add the new relations {IR, PR, {S

l
R}1≤l≤r}R∈M to each structure

in K. Now, K is in NP if and only if K′ is, if and only if there is a first order
formula ψ in the vocabulary of B such that:
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Every structure B is in K′ if and only if there is an expansion B′ of
B to the vocabulary of ψ so that B′ |= ψ.

We take the conjunction of ψ with all the φR, and we have a first order formula
φ such that:

Every structure D is in K if and only if there is an expansion D′ of
D to σ′ with D′ |= φ.

The formula φ is not a formula of LN , because it is not guarded. We can
rewrite it in guarded form, to produce a formula of LN , as follows. Considering
the φR, we first rewrite the biconditional into a conjunction of two material
implications. In the ⇒ direction, the upper guard for R suffices as the guard.
In the ⇐ direction, we use the active domain quantifiers, which suffice as guards.
In ψ, all quantification is over the primary domain, so is trivially guarded.
Finally, we need to show the equivalence of items 1 and 3 in the theorem. To
do this, we execute a proof just like the one showing equivalence of items 1
and 2, but we must construct an EFO[N ] specification rather than a formula of
logic LN . To show we can do this, we sketch how to modify the formulas φR to
produce EFO[N ] constraints, as follows.

1. Rewrite the quantifiers over the variables x̄ and si as Essence quantifiers.
(The domain for each of these quantifiers is either adom(A) or the primary
domain, and we have vocabulary symbols for each.)

2. The variable tuple ī indexes possible bits in a binary encoding of a number
in adom(A), so ranges over Domk = {0, . . . , Size− 1}k. So we rewrite ∃ī
as ∃i1∈Dom. ∃i2∈Dom. . . . ∃ik∈Dom.

3. Σj̄ is an abbreviation for Σj1Σj2 . . .Σjk
where the ji range over Dom. The

Essence function toInt() maps Booleans to {0, 1}. So, we rewrite

Σj̄(χ[Sl
R (̄i, j̄)] × . . .)

as
Σj1∈Dom.(Σj2∈Dom.(. . .Σjk∈Dom.(toInt(S

l
R (̄i, j̄)) × . . .).

4. We rewrite Πy(2 : y < value(j̄))) as Πy∈BigDom(2×toInt(y < value(j̄))),
where value(j̄) is rewritten as (j0× Size∗∗0 + . . . + jm× Size∗∗m).

Completing the EFO[N ] specification is straightforward.
This formalization of arithmetic is rather limited, in the following sense.

The numbers that may be explicitly quantified over, including those that may
appear in any solution, consist exactly of those that occur in the instance. This
is because upper guards on expansion predicates must be instance predicates.
Even with this restriction we can naturally specify many problems (see, e.g.,
Example 5). More importantly, it is possible to extend the formalization to
allow a more general class of upper guards. We do not do this here to keep the
presentation simple.
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Small Cost Structures: Discussion

Every EFO[N ] specification requires letting and where statements enforcing
the small-cost condition. A solver could easily detect instances violating the
condition, and inform the user, who then would have the option of revising the
specification.

If we removed the requirement in EFO[N ] for statements enforcing the small-
cost condition, some axiomatizations would be correct on many instances but
incorrect when instances contained sufficiently large numbers. The same proba-
bly holds for all existing languages which are intended to capture NP and which
have built-in arithmetic.

The difference between our specification of Figure 2 and the specification in
[11] deserves remark. There are instances of KNAPSACK with large numbers on
which they will disagree: there is a solution, which will be found according to the
specification of [11], but not according to the specification of Figure 2, because
one of the where statements is violated. Both specifications are correct, but
they specify slightly different problems. One specifies KNAPSACK restricted
to small-cost structures; the other specifies the KNAPSACK problem. In the
case of KNAPSACK, the specification without enforcing cost bounds is correct.
Intuitively, this is because all computation with numbers is done by the summa-
tion operators. But there are other problems where a specification (using only
the first-order features of Essence) without cost bound enforcement would be
incorrect.

Extending EFO[N ]

We could add the following to EFO[N ] without increasing expressiveness:

• Any polytime function or multi-set operation on natural numbers.

• Any feature that can be added to EFO without increasing its expressive-
ness.

• User-defined domains consisting of natural numbers not in the instance
structure, provided the structure that results from expanding the instance
with these new domains is still a small-cost structure. These domains can
also be used as guards.

6 Capturing NP-Search

Complexity theory primarily studies decision problems. A decision problem
is formalized as the set of “yes” instances. The use of the keyword find in
Essence and similar languages reflects the fact that, for many applications, we
are interested in search problems. That is, given an instance we want to find an
object of a certain sort — called a solution — not just answer a yes-no question.

A search problem is formalized as a binary relation R, such that the solutions
for instance x are the elements of {y : R(x, y)}. An NP-search problem is a
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polytime binary relation R(x, y) such that there is some polynomial p such that
R(x, y) ⇒ |y| ≤ p(|x|). The set {x : ∃ y R(x, y)} is in NP, and R is sometimes
called an “NP checking relation”. The class of NP-search problems is also called
Functional NP (FNP).

Now, suppose you are faced with an NP-search problem R(x, y). You have a
specific notion of what constitutes an instance and a solution, which determines
your instance vocabulary σ, and a solution vocabulary ε. Theorem 2 tells us
that there must be some EFO specification Γ, with “given” vocabulary σ, which
specifies the set {x : ∃ y R(x, y)}. It does not tell us that there is such an Γ
which has find (expansion) vocabulary ε. Indeed, there are cases for which
there is no such Γ. For these problems, an EFO specification will have “given”
vocabulary σ and find vocabulary ε ∪ α, where α is a set of “auxiliary” vo-
cabulary symbols. These are symbols for relations or functions that are used in
writing the specification, but are not part of the desired solution. Intuitively,
we need them because one cannot write the “such that” conditions in a FO for-
mula using only the “given” and “find” vocabulary — it requires that additional
concepts be represented explicitly, for which the auxiliary vocabulary symbols
are needed.

We say a search problem R is representable in a language L iff there is an L
specification Γ such that for all x and y, x is a Γ-instance with Γ-solution y iff
R(x, y). Here, x is over vocabulary σ, and y is over vocabulary ε. We say that
L captures NP-search if it can represent exactly the NP-search problems.

From the point of view of logic, we can understand a search problem R(x, y)
as a class of σ ∪ ε-structures KR. Each σ ∪ ε-structure B in this class expands
a σ-structure A. Then we can talk about axiomatizing the class of structures
KR by L-sentences. Logic L captures NP-search iff it can axiomatize KR for
exactly those R in FNP.

To capture NP-search, we need to use a logic for which model checking
captures exactly the complexity class P. Model expansion for this logic will
then capture NP-search. Examples of logics that capture P are the least fixed
point logic FO(LFP) and FO(IFP), first order with iterated fixed points [23, 34].
These logics augment FO with a construction to represent induction. The details
of the logics are not important, and can be found in, for example, [25]. The
important point is that there are properties which are expressible in the logics
with fixpoint constructions, but not expressible in FO. An example is graph
connectivity. This fact gives us the following theorem.

Theorem 4 EFO, even if extended with the features listed in subsection 4.1,
does not capture NP-search.

In our opinion, constructs to represent induction are an important feature
missing from most constraint modelling languages.

Theorem 5 EFO, when extended by allowing FO(LFP) formulas in such that

statements, captures NP search over ordered structures.

Proof: Follows from the fact that FO(LFP) captures P on ordered structures
[23, 34].
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Remark 5 The requirement for ordered structures in the theorem indicates that
every domain must have a linear order. This is essential to the proof, and thus
one would be restricted in the use of the so-called “unnamed types” of Essence.

7 ESO and The Polynomial-Time Hierarchy

So far, we have considered Essence specifications when the constraints are
essentially first order formulas. We called the corresponding fragment EFO.
Essence has many features which are not first order. Here we consider an
extension of EFO with second order quantification. This gives constraints the
power of second order logic (over finite domains). Together with this comes the
power to express any problem in the polynomial-time hierarchy (PH).

7.1 ESO: Second Order Essence

Define ESO to be just as EFO, but with constraints (formulas of the “such that”
part) extended to be those obtained as follows:

• every EFO constraint is an ESO constraint;

• if φ is an ESO constraint, P a relation symbol, and D1, . . . Dn, for n ∈ N,
are types specified by given statements in accordance with Definition 5,
then:

∀P : rel of (D1 × . . . ×Dn). φ

and
∃P : rel of (D1 × . . . ×Dn). φ

are ESO constraints.

We call quantifiers of the form Q P : rel of (D1 × . . . ×Dn)., where Q is ∀
or ∃, second order quantifiers. Here, P must be a relation symbol. That is,
P can occur in φ in the form P (~x), but not in the form R(P ), where R is a
relation symbol. An example of an ESO constraint is in the following such that

statement.

such that ∃R : rel of (V ). ∃B : rel of (V ). (∀x : V. (R(x) ∨B(x)) ∧
(∀x : V. ∀ y : V. (E(x, y) → ¬((R(x) ∧B(y)) ∨ (B(x) ∧R(y))))))

It states that there are two sets R and B which constitute a proper two-colouring
of edge relation E. Here, R and B are bound variables, not decision variables
(expansion symbols): they are not declared by find statements, and a solver
would not report their values.

7.2 Obtaining the Polynomial Hierarchy

With EFO, we can express exactly the problems in NP. We are at Σp
1 with no

second order quantifiers because the expansion (find) relations are implicitly
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existentially quantified. If we allow second order quantification, each alternation
of SO quantifiers gives us a jump in the polynomial hierarchy. If the specifica-
tion contains only universal (∀) second order quantifiers, then we can express
problems in Σp

2, or NPNP. If the quantification pattern is ∀∃, then we have Σp
3,

or NPNPNP

, etc. This way, all Σ levels of the polynomial hierarchy are precisely
captured by Essence specifications with second order quantification.

Definition 9 Let ESO[Πi], where i ≥ 1 denote the fragment of ESO where sec-
ond order quantification in any such that statement has at most i alternations
of second order quantifiers, counting from the first block of ∀s. In counting,
we disregard existential second order quantifiers before the first block of ∀s be-
cause they don’t give us any additional expressive power — we already have the
implicit existential second order quantifiers given by the “find” part.

Theorem 6 ESO specifications in the fragment ESO[Πi] capture the complexity
class Σp

i+1.

That is, every ESO[Πi]-definable class of finite structures is in the complexity
class Σp

i+1, and every class of finite structures in Σp
i+1 is ESO[Πi]-definable.

Proof:(Sketch) Since a similar theorem holds for model expansion for the cor-
responding fragments of second order logic, it is sufficient to establish a corre-
spondence between ESO[Πi] specifications and SO. We already saw that ESO

specifications amount to model expansion for SO where an arbitrary depth of
quantifier alternations is possible.
We also need to show that every SO model expansion axiomatization with i

alternations of quantifiers (counting from the left-most universal), can be repre-
sented by an ESO[Πi] specification. The idea is that we include all the predicates
from the expansion vocabulary ε in the “find” part of our Essence specifica-
tion. Then we replace QP with QP : rel of (D × · · · ×D) where Q is either
∀ or ∃, and where D is precisely the universe of the structure in our model
expansion task. The resulting formula becomes a constraint in a such that

statement. Capturing follows immediately because it holds for model expansion
for the corresponding fragment of SO (see [30] for details).

Corollary 1 ESO captures the polynomial hierarchy.

Proof: It is enough to recall that PH =
⋃

i∈N
Σp

i .

Theorem 6 identifies an Essence fragment capturing every Σ level of the poly-
nomial hierarchy except for P = Σp

0 = Πp
0.

Definition 10 Call an EFO constraint universal Horn if it consists of a block
of universal (first order) quantifiers, followed by a conjunction of clauses in
which each clause has at most one positive occurrence of a relation of the “find”
vocabulary.

Theorem 7 EFO, restricted to universal Horn constraints, captures P on or-
dered structures.
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Proof: Follows immediately from the fact that ∃SO universal Horn captures P
on ordered structures [17].

8 The Exponential Hierarchy

In this section, we show that very simple extensions to EFO give it very high
expressive power — far beyond that obtained by adding second order quantifi-
cation. The extensions simply give us the ability to define domains with size
larger than any polynomial in the instance size. This has the same effect on ex-
pressiveness whether done in the problem specification, the instance description,
or both.

The special case when the instance description language allows a domain to
be expressed simply as its size or — equivalently for our purposes — as a range of
integers, is of particular interest. We present that case as an illustrative example
in Section 8.1. Then, we devote the remainder of this section to presenting the
more general case of producing very large domains by composing large types, or
by expressing their size with arithmetic expressions. We do this in the context
of simple extensions to the problem specification language.

8.1 NEXP-time with Succinct Domains

Recall that, in an EFO instance, domains must be given by enumeration. (Equiv-
alently, for current purposes, we could give them by their size expressed in
unary.) If we extend the instance description language to allow domains to be
specified by their size expressed in binary, then we may express problems of
much higher complexity. The same results hold if we express sizes in decimal,
or if we may specify them as a range of integers in decimal.

Intuitively, the situation is as follows. Giving a domain of size n as its size
expressed in unary requires n bits. Similarly, an enumerated set of size n requires
at least n logn bits to describe. On the other hand, if we allow features in the
instance description language to describe a set by a range of integers (expressed
in binary or decimal), or as a size expressed in binary or decimal, we require
only logn bits to describe the same set. This is an exponentially more succinct
representation, and increases the complexity of the problems specifiable in the
problem specification language by an exponential.

Suppose we extend EFO specifications with given statements of the form

given D: set of int (∗ 0.. ∗)

and EFO instance descriptions with corresponding letting statements of the
form

letting D be {0..n},

for any n ∈ N. These allow us to specify a domain of size n by giving the
range {0..n} in the instance description. Call a domain D specified in this way
a “succinct instance domain”.
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given Index : set of int (∗ 0.. ∗)
given Tiles new type enum

given t : Tiles
given H : rel of (Tiles × Tiles)
given V : rel of (Tiles × Tiles)
find f : function (∗ total ∗) tuple 〈Index , Index〉 −→ Tiles
such that f (〈1 , 1 〉) = t ∧

∀ i : Index . ∀ j : Index . (i < n → H (f (〈i , j 〉), f (〈i + 1 , j 〉))) ∧
∀ i : Index . ∀ j : Index . (j < n → V (f (〈i , j 〉), f (〈i , j + 1 〉))]

Figure 3: An Essence specification of a Tiling problem.

Theorem 8 There is an NEXP-complete class K of finite structures that can be
expressed by the fragment of Essence consisting of EFO extended with succinct
instance domains.

Proof: We demonstrate the claim by providing a specification of the required
form for the following Tiling problem. We are given a set of square tile types
T = {t0, . . . , tk}, together with two relations H,V ⊆ T × T (the horizontal and
vertical compatibility relations, respectively). We are also given an integer n
(in decimal). An n× n tiling is a function f : {1, . . . , n} × {1, . . . , n} → T such
that

1. f(1, 1) = t0, and

2. for all i < n and j ≤ n (f(i, j), f(i+ 1, j)) ∈ H , and

3. for all i ≤ n and j < n (f(i, j), f(i, j + 1)) ∈ V .

Given T , H , V and n, deciding whether an n×n tiling exists is NEXP-complete.
(This is Problem 20.2.10 (a) in [32].) We exhibit the required Essence specifi-
cation in Figure 3. For convenience and readability we use an extension of EFO

with arithmetic and function symbols (much as in Section 5). We can easily
write this specification without either feature, by replacing functions with their
graphs, and defining an ordered set with successor to use in place of integers.
An instance description for the specification could, in part, look like this:

letting Index be {0..n}
letting Tiles be {t0, t1, . . . , tk}
letting t be t0
...

NEXP is known to properly contain NP, and thus this problem is provably
not in NP, and not expressible in EFO without succinct domain representation.
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8.2 Large Domains in Essence Specifications

Essence allows defining new domains as a function of what is given, and these
domains can be extremely large — much larger than the single exponential that
is demonstrated in Section 8.1. We show here that, when definition of large
domains is allowed, even fragments of Essence which are otherwise very lim-
ited can specify problems of extremely high complexity. Indeed, every problem
within the exponential time hierarchy can be expressed in the fragment that
consists of EFO extended with a very simple form of letting statement.

There are at least two ways to construct very large domains in Essence.
Suppose we are given an instance domain D of size n. Then, using Essence

type constructors and letting statements, we may construct new domains such

as set of D, which is of size 2n; rel of (D × . . .×D), which is of size 2nk

,
where k is the arity; and function tuple 〈D, . . . ,D〉 −→ D, etc. We can also
define an Essence type in terms of its size, and since Essence includes an
exponentiation operator, given n we can define a type of size 2n. Recall that
2[k](n) denotes the value

22·
·
·
2

n

where the stack of 2’s is k high. Since both type constructors and exponentiation
can be composed to arbitrary depth, using either feature we can write a letting

statement that defines a domain of size 2[k](n), for any k ∈ N.
An example using type composition could look like this:

given D new type enum

letting Big be set of set of . . . set of set of D

find f : function (∗ total ∗) Big −→ Big
such that . . .

An example using exponentiation could look like this:

given n int (∗ 0.. ∗)
letting Big be new type of size 2 ∗∗ (2 ∗∗ (2 ∗∗ (. . . (2 ∗∗n) . . .)))
find f : function (∗ total ∗) Big −→ Big
such that . . .

8.3 EFO with Large Domains

Let EFO[big] be the fragment of Essence consisting of EFO extended with
letting statements of the form

letting B be new type of size expr

where expr is 2 ∗∗ (2 ∗∗ (. . . (2 ∗∗ |D|) . . .)), for D a domain declared in a given

statement.
Recall that, for each k ∈ N, the complexity class k-NEXP is defined to be

⋃

c∈N
NTIME(2[k](nc)). For notational simplicity, it is common to leave the

union over c ∈ N implicit, and write this as k-NEXP = NTIME(2[k](nc)).
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Theorem 9 For every k, c ∈ N, and every problem Π in the complexity class
NTIME(2[k](nc)), there is an EFO[big] specification defining Π.

Proof:(Sketch) Theorem 2 states that every NP class of finite structures has
an EFO specification. This follows from Fagin’s theorem, which states in part
that every NP class of finite structures consists of the models of a sentence of
∃SO or, equivalently, has a representation as FO model expansion. To prove
the theorem, suppose that a class of structures is in NP. Then it can can be
recognized by a time nc-bounded non-deterministic Turing machine, for some
c ∈ N, where n is the universe size. We must exhibit an ∃SO sentence which
defines our class of structures. Let the formula be of the form ∃T φ, where T
is of arity 2c + 1. We write φ so that T encodes the execution of the Turing
machine. The first c places are used to index the nc tape cells needed; the second
c places index the nc possible time steps; the remaining place records the tape
symbol. That is, T (s1, . . . , sc, t1, . . . , tc, a) denotes that at time t̄, tape cell s̄ has
symbol a. Additional predicates are useful (but not strictly necessary) to encode
the machines state, head position, etc. Any book containing an introduction to
finite model theory, including [25, 22, 5], will have details of a proof along these
lines.
Suppose that, given an instance with universe of size n, we may construct a
domain of size f(n) and quantify over its elements. Now, the same formula
as above but with variables ranging over this larger domain describes (non-
deterministic) computations of length f(n)c. In our fragment EFO[big] we may
construct domains of size 2[k](n), for any k ∈ N , so we can describe any nonde-
terministic computation with time bounded by 2[k](nc), and thus may specify
any problem in NTIME(2[k](nc)).

By fixing the depth of composition of exponentiation in EFO[big] to a con-
stant, we can obtain a language capturing k-NEXP for any k. The nondeter-
ministic exponential time hierarchy is the collection of all the classes k-NEXP.
NEXP = 1-NEXP properly contains NP, and all the inclusions k-NEXP $
(k+1)-NEXP are proper. Thus, Essence can express problems that are widely
considered hopelessly intractable.

Example 6 For illustrative purposes, consider that the number of elementary
particles in the known universe has about 85 digits, whereas 2[3](5) and 2[2](32)
completely dwarf this number with more than 1.2 million digits. Problems
requiring this many steps to solve are certainly intractable. ♦

Remark 6 The ability to define large domains gives much more expressive
power than second order quantification. This does not imply that second or-
der quantification is pointless, as it is certainly more natural to describe some
problems with second order quantifiers than with only first order quantifiers and
a large defined domain.
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9 On The Expressive Limit of Essence

In Section 8, we showed that Essence can express problems of quite high com-
plexity: every problem in the very large class ELEMENTARY has an Essence

specification. This brings us to one of the questions which first motivated our
study: What is the upper limit on what Essence can express? The answer
could be viewed as informing two particular concerns. One relates to imple-
mentability, because a complete solver for Essence must have running time
at least that required for the “hardest” problem Essence can specify. On the
other side of this coin, it is our understanding that the Essence designers were
aiming high in terms of expressiveness, and would be interested in understand-
ing what problems cannot be expressed with an Essence specification. We
believe we know the answer to the question, but here must restrict ourselves to
making two related conjectures.

9.1 Conjecturing a Limit

Our conjecture is that the results of Section 8 account for all the expressive
power of unrestricted Essence.

Conjecture 1 For every Essence-specifiable problem P , there exists k, c ∈ N
such that P is in NTIME(2[k](nc)).

If the conjecture is correct, then unrestricted Essence can express exactly
the problems in ELEMENTARY. One obstacle to proving an upper bound on
the expressiveness of Essence is that it is not easy to be sure that all the many
features of Essence — and their interactions — are accounted for. A more
serious one is that, as of time of writing, we know of no published complete
formal semantics for the language.

9.2 Problems Beyond Essence

Suppose that our conjecture on the expressive limit of Essence is correct. Then
the answer to the question “Are there problems Essence cannot specify” is
clearly yes. ELEMENTARY relates to some other familiar classes as follows.

⋃

k∈N

NTIME(2[k](nc)) =
⋃

k∈N

k-NEXP

= ELEMENTARY

$ ITERATED EXPONENTIAL TIME

$ PRIMITIVE RECURSIVE

$ RECURSIVE

Notice that the inclusions here are all proper. Thus, there would seem to be
a vast number of problems, even of decidable problems, that Essence cannot
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specify. However, most known problems in this category are word or language
problems, which can justifiably be said to be outside the class of problems
targeted by Essence. The papers on Essence explicitly describe the language
as targeting combinatorial problems.

It is therefore interesting to ask a more focused question3: Are there (nat-
ural) purely combinatorial problems that are not expressible in Essence? If
Conjecture 1 is correct, there are some. Friedman [9] has exhibited natural com-
binatorial problems that are complete for ITERATED EXPONENTIAL TIME,
and indeed for even higher complexity classes. ITERATED EXPONENTIAL
TIME is TIME(2[n](n)). Here the height of the stack of exponentials grows with
the instance size, so this is significantly beyond problems in the class we conjec-
ture Essence to capture. (At this complexity, non-determinism and exponents
on n don’t make any difference.)

Here is an example, from [9], of a problem that is complete for ITERATED
EXPONENTIAL TIME. We will call it the Maximum Omitted Function prob-
lem.

Instance: Integer k ≥ 1; two finite sets K, S of finite k-ary functions.
Find: A largest k-ary function omitting K but not omitting S.

The size of a finite function is the size of its domain. We say that a function
f omits a finite set K of finite functions if no function g ∈ K is isomorphic to
any restriction of f . The function asked for, if it exists, is finite — but may be
exceedingly large.

Conjecture 2 There is no Essence specification for the Maximum Omitted
Function problem.

Conjecture 1 clearly implies Conjecture 2, but Conjecture 2 may be true
even if Conjecture 1 is false.

10 Discussion

In this paper, we adopted a descriptive complexity theory viewpoint to study the
expressive power of the specification language Essence and several fragments
of it. Our study brings to light several points worthy of further discussion.

10.1 High expressiveness of simple languages

The Essence designers, in our understanding, set out to produce a very general
and feature-rich language for defining combinatorial problems. It is therefore
not surprising that the language is highly expressive. Perhaps more surprising
is the fact that, insofar as we are able to determine, very tiny fragments of the
language account for all of the expressive power. In particular, we need only
extend EFO, our fragment of Essence that captures NP, with type constructors

3At least one main Essence designer has expressed interest in this question.
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that produce large domains to give it what we conjecture to be the full expressive
power of Essence.

Turning to more practical examples than EFO, a claim is made in [12] that
every Essence specification can be refined to an equivalent one in Essence

′, a
much smaller language which could be seen as a “kernel” of Essence. Essence

′

is a very simple language but, like Essence, can express every problem in
the complexity class ELEMENTARY. Indeed, the proof of this property for
Essence (see Section 8) adapts almost trivially to Essence

′.
We are not sure if Essence

′ has exactly the same power as Essence, because
we are not certain of an upper bound on the expressiveness of Essence. The
question of expressive equivalence of the two languages is important because
Essence

′ is very close to many other existing constraint languages which have
been designed with very limited features to “ensure implementability”. In fact
every reasonable constraint language which allows arrays as decision variables
(i.e., in an equivalent of find statements), and which allows those arrays to have
indices in the range 1 . . . 2n (where n is the size of an instance domain), can
express NEXP-complete problems. If the exponentials can be stacked, then we
get ELEMENTARY, as for Essence and Essence

′.
Even languages which have been designed specifically to capture NP often

express much more than that. This is because they allow succinct representa-
tions of instance domains, for example by allowing an instance domain to be
expressed as a range of integers {1 . . . n}. Our proof in Section 8.1 that EFO

extended with succinct domain representations expresses NEXP can be trivially
adapted to the (actual, not extended) language NP-Spec [1], the input languages
for the solvers MXG [30] and ASPPS [4], and other languages that specifically
target NP-search problems.

Should we be concerned?

The tools that have been designed primarily to solve NP-search problems, in
many respects, do an admirable job. There is a simple reason that, most of the
time, we should not worry about the fact that they can express exponentially
harder problems. Consider, for example, a problem where the input is a graph
G = 〈V,E〉. If, by convention, we number the vertices of each n-vertex graph
{1, . . . n}, requiring the user to enumerate the n numbers explicitly rather than
give the range is an inconvenience, whereas allowing them to be stated as a range
is typically of no computational significance. The reason is that the “hardness”
of a graph problem is captured in the set of edges, which will be given explicitly,
and has size Ω(n) in almost every application. From this point of view, nothing
is amiss, but the formal properties do not exactly match “normal use”.

However, there are dangers. One requirement the Essence designers set
for themselves is that an Essence specification, together with an instance, can
be reduced — not necessarily efficiently — to standard finite-domain CSP lan-
guages. Let us call this reduction “grounding”. Almost all solvers for constraint
modelling languages involve some form of grounding. If we want to ground
Essence to an NP-complete language or problem, the grounding algorithm is
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of very high complexity. In particular, for every k ∈ N, there are Essence

specifications for which the grounder takes time 2[k](n).
Now, a reasonable Essence grounder will ground many Essence specifica-

tions for NP-complete problems in polynomial time. But, it will not be able
do this with all specifications for NP-complete problems. (Consider this fact,
which we will not prove here: given an Essence specification, it is undecidable
what the complexity of the specified problem is.) Therefore, it is not possible
to rule out the case that a user writes a perfectly reasonable (at least to them)
specification for an NP-complete problem, but the grounding time itself is not
only super-polynomial, but super-exponential.

10.2 Abstraction and Expressiveness in Essence

Several features of Essence are highlighted in [14, 11] as setting it apart from
most other languages in the level of abstraction at which it can specify problems.
Since these features seem to be of particular importance in meeting the goals of
Essence, it is natural to ask whether their presence has significant implications
in terms of expressiveness. We may address this question by considering the
effect of adding these features to EFO, our fragment for capturing NP.

Wide range of types

The types and type constructors of Essence include enumerated and integer
types along with sets, multi-sets, functions, relations, partitions, and others.
Having such a variety of types does not, in itself, contribute significant expressive
power. That is, all of these types can be added to EFO without changing its
expressive power, provided that the sizes of the domains that variables may
range over is limited to a polynomial in the instance size. In practice, these
constructors are used in ways that violate this condition, but they are also often
used in ways that do not. For example, many Essence specifications involving
sets include explicit constant size bounds on those sets.

Nested Types

The Essence type constructors may be composed to arbitrary depth. For
example, given a domain D, one may construct a domain which contains all
functions mapping sets of matrices of partitions of D to sets of sets of sets of
triples of elements of D. Even decision variables may be of such types. This
feature immediately leads to extremely high expressive power, but this power
is associated with the resulting size of objects so defined. If we restrict this
size to be polynomial in the instance size, then such complex types do not give
expressive power beyond that of EFO.
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Quantification over Decision Variables

For EFO, and most existing constraint modelling languages, in any constraint
of the form

∀x : D φ(x)

(or some equivalent), the domain D over which x ranges must be given by the
instance. In Essence, this is not necessary, and D may in fact be a decision
variable. BecauseD is declared elsewhere to be a subset of some finite domain, x
still ranges over a finite set. In the case of EFO, this set is given by the instance,
and it is easy to check that our proof that EFO captures NP remains correct if
we extend the syntax to allow D to be a decision variable. The expressiveness
also remains unaltered if the domain D may be constructed, as in the Essence

complex type constructors, provided the size of D is polynomially bounded.

Unnamed Types

In many constraint modelling languages, all variables are integers, or of some
other “structured” type. That is, domains are not just sets of values but sets of
values with operations and properties such as ordering. A consequence of this
(see, e.g., [13]) is the introduction of symmetries. Essence “unnamed indis-
tinguishable types” are domains consisting of abstract objects which have no
properties other than identity. That is, they can be distinguished by an equality
test, but in no other way. When such domains are used in the specification, sym-
metries that occur in a ground instance as a result of ordering these values can
be automatically detected and eliminated with symmetry-breaking constraints
[12]. To see that this feature does not add expressiveness, one need only ob-
serve that all EFO domains are abstract sets, and thus are unnamed types. To
see that eliminating them does not reduce power, one need only observe that
making all domains ordered does not reduce the expressive power of EFO.

10.3 Toward a Theory of Declarative Languages

We believe there is a need for development of a logic-based theory for con-
straint modelling languages, and in particular a model-theoretic foundation for
the study of these languages and the tools that use them. Fagin’s theorem sug-
gested the possibility of viewing logics as declarative languages for problems in
interesting complexity classes, but this idea was widely considered of little prac-
tical value. As our work here illustrates, researchers in constraint modelling
have essentially been executing this idea for some years now, although often
implicitly.

Cadoli and Mancini [26, 2] have argued that “∃SO can be considered as the
formal logical basis for virtually all available languages for constraint modelling,
being able to represent all search problems in the complexity class NP”. This
view is certainly in line with our own. Indeed, we have previously proposed that
starting with ∃SO(L), for some suitable logic L, is a desirable way to construct
modelling languages and tools [31, 30]. However, as our work here shows, much
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more power than ∃SO is required to account for the power of Essence, and
in fact most existing modelling languages. Further, although arithmetic over
bounded domains can be axiomatized in ∃SO (as is pointed out, for example,
in [26, 2]), the question of whether specifications using this axiomatized arith-
metic are equivalent to those in a language with built-in arithmetic may not be
trivial. In our view, arithmetic is one of several aspects of constraint modelling
languages that should be the subject of a more rigorous treatment than it gen-
erally receives. We think that a general, logic-based theory of such languages
would support such work.

In Section 6 we have shown that EFO does not capture NP-search. A way
to extend EFO to capture NP-search would be to add a least-fixpoint operator,
or other form of inductive definition. In our opinion, inductive definitions (or
other forms of fixpoint operators) are an important element missing from al-
most all constraint modelling languages, and not only because of the capturing
results. Induction is an extremely useful tool in natural and effective modelling,
for example in describing important properties like reachability, and can also
provide computational benefits. Languages created outside of the constraint
programming community often have a construct to represent induction. For
example, the database query language SQL has been extended with induction,
and fixpoints are fundamental in the semantics of ASP languages. In [31], we
argued for using model expansion for FO(ID), an extension of FO with induc-
tive definitions (see [3]) as the basis of a language for modelling problems in
NP. We might speculate that one reason induction has, by and large, not been
included in constraint modelling languages, is that deciding on the exact form
and semantics is non-trivial. Much relevant work has been done in logic.

The idea of viewing constraint languages as logics specifying model expansion
tasks gives us a uniform logic-based view on constraint modelling languages. As
we have shown, it provides a basis for the exploration of language expressiveness
through the application of tools of descriptive complexity theory. While there
are many questions about such languages that descriptive complexity does not
answer, having a uniform formal view of many languages should provide a basis
for development and application of a variety of theoretical tools that can answer
questions about families of languages and their relationships, not just individual
languages. We also strongly believe that there will be many practical benefits of
having such theory. Consider, in analogy, the fields of databases and compilers.
There is much in the practice of each area that is not application of theory, but
there can be little doubt that the fields and the practical tools they produce
are much stronger than they would have been without development of their
underlying theories.

10.4 Concluding Remarks

We consider development of Essence and related languages an extremely im-
portant direction for the constraints field. Like the Essence designers, we think
a good industrial modelling language should support a rich type system, and
that an industrial worker with basic discrete math background, but little train-
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ing specific to constraint modelling, should be able to specify problems in such
a language.4

We also strongly believe that the languages used in practice to specify or
model problems should have expressive power commensurate with the complexity
of the problems being specified. This is, in our view, important to producing high-
quality and high-performance tools. In this paper, we have shown that a number
basic features of Essence lead to extremely high expressive power. This does
not constitute a criticism of the design of Essence. Expressive power is, in and
of itself, neither good nor bad. As with other things, any notion of “too much”
or “too little” must be related to particular goals. However, we do believe there
are potential negative consequences of extremely high expressiveness in contexts
where it is not necessary and where its sources may not be fully understood.

Thus, we believe it is useful to understand the expressive power of languages
we design and use, and to be able to control as well as effectively exploit this
power. For languages, like Essence, that are very expressive, we think it is
useful to identify the largest possible fragments with limited expressive power.
Modellers may choose to remain within the smallest fragment that can spec-
ify their problem, or not, depending upon their priorities. But, we also think
that, with well designed languages, users should not find the need to use a
more expressive language than required. Therefore, we consider it a challenge
to researchers in the area to find ways to incorporate the kind of features that
Essence provides in such a way that expressiveness and complexity can be
constrained and controlled without sacrificing ability to write natural specifica-
tions.
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