
Resolution and Clause-Learning with
Restarts for Signed CNF Formulas

David Mitchell
Simon Fraser University

mitchell@cs.sfu.ca

Abstract
Motivated by the question of how to e�ciently do model finding or theorem

proving for multi-valued logics, we study the relative reasoning power of reso-
lution proofs and a natural family of model-finding algorithms for Signed CNF
Formulas. The conflict-driven clause learning (CDCL) algorithm for SAT is
the basis of model finding software systems (SAT solvers) that have impressive
performance on many families of propositional formulas. CDCL with restarts
(CDCL-R) has been shown to have essentially the same reasoning power as un-
restricted propositional resolution. More precisely, they p-simulate each other.
We show that this property generalizes to two families of Signed CNF formulas,
those with unrestricted signs, and those where the truth value set is a lattice
and all signs are regular. We show that a natural generalization of CDCL-R to
these formulas has essentially the same reasoning power as natural generaliza-
tions of resolution found in the literature. Moreover, the algorithm e�ciently
simulates bounded width resolution in these systems. These families of signed
formulas are possible reduction targets for a number of multi-valued logics, and
thus this algorithm has potential as a basis for e�cient implemented reasoning
systems for many multi-valued logics.

1 Introduction
Multi-valued logics are among the most established and widely studied formalisms
for reasoning with uncertainty. In this paper we consider Signed CNF formulas, as
defined, for example, in [10, 6], and study the relative reasoning power of resolution
proofs and a natural class of algorithms to decide their satisfiability.

The dominant algorithm in modern implemented model-finders for propositional
satisfiability (SAT solvers) is the conflict-driven clause learning algorithm (CDCL)

This research was supported in part by a Natural Sciences and Engineering Research Council of
Canada (NSERC) Discovery Grant.

Vol. 4 No. 7 2017
IFCoLog Journal of Logics and Their Applications

Mitchell

introduced in [15], with restarts [13], here denoted CDCL-R. Good solvers based on
CDCL-R have remarkable performance on many families of formulas. Consequently,
many practical reasoning tasks are carried out by reduction to propositional CNF,
or by adaptation of CDCL to other families of formulas. This leads us consider
whether we could best obtain e�ective model finders or theorem provers for multi-
valued logics by reduction to SAT or by adapting the CDCL algorithm to a multi-
valued context. The goal of this paper is to contribute to our understanding of the
potential of adaptations of CDCL-R to the multi-valued case.

Validity or satisfiability of many multi-valued and fuzzy logics (as well as anno-
tated logics, and others) can be reduced naturally to satisfiability of signed CNF
formulas [9]. Natural versions of resolution for signed CNF formulas have been pre-
sented in the literature, and it is possible to produce natural variants of the CDCL
algorithm for these formulas as well. We study two particular families of signed for-
mulas. One family, denoted here MV-CNF, is a very slight restriction on signed CNF
formulas with unrestricted signs; the other family consists of Regular CNF formu-
las with a domain that is a lattice, here denoted Reg-CNF. Corresponding versions
of binary resolution give us proof systems for each family, here denoted MV-RES
and Reg-RES, respectively. We give an abstract signed version of the CDCL-R algo-
rithm, denoted MV-CDCL-R, which can be instantiated for either family of formulas
and many others.

Here, as is generally the case in proof complexity, we measure the reasoning power
of a system in terms of minimum proof length. For an algorithm such as CDCL-R,
the corresponding notion is minimum length of execution given optimum decision
and restart policies. It has been shown that CDCL-R with unlimited restarts has, up
to a small polynomial factor, the same reasoning power as unrestricted propositional
resolution [18]. (It is not currently known whether restarts are essential or not.
See the brief discussion in Section 7.) In [2] it was shown that that CDCL-R can
e�ciently refute CNF formulas that have bounded-width refutations.

The main purpose of this paper is to show that these properties generalize to
the multi-valued systems in question. The main result is that MV-RES and the
MV-CDCL-R algorithm for MV-CNF formulas are of essentially the same e�ciency:
For unsatisfiable MV-CDCL-R formulas, the minimum size proofs of unsatisfiability
in the two systems di�er in size by at most a small polynomial. Formally, the
two systems are said to p-simulate each other, meaning there are polynomial-time
functions mapping any proof in one system to a proof in the other. The same
property is shown for Reg-RES and the corresponding Reg-CNF version of MV-
CDCL-R.

The largest part of the proof consists of showing that the MV-CDCL-R algorithm
can e�ciently simulate arbitrary resolution refutations. This simulation yields the

1906

Signed Clause Learning with Restarts

following concrete bounds. A resolution refutation is of size r and width w if it has
r clauses and the largest clause has at most w literals. We show that, if � is an
unsatisfiable MV-CNF formula or Reg-CNF formula with s literals, over n atoms,
and has a resolution refutation (in the corresponding resolution proof system) of size
r and width w, then there is an execution of MV-CDCL-R that refutes �, with the
following properties:

1. It implicitly generates a resolution refutation of size O(wn2r).

2. It can be executed in time O(wn2sr);

It follows that, for any fixed w, MV-CDCL-R can refute formulas that have width-
w resolution refutations in time O(nw+2s), with an implicit resolution refutation
constructed of size O(nw+2).

Our proof is an adaptation of that in [18], with parts influenced by [2], although
our presentation is distinct. Rather than proceed from a detailed examination of
CDCL-R, we proceed from the key properties of resolution proofs, to a simplified
algorithm that performs the main reasoning in CDCL-R, and then to a highly ab-
stracted version of CDCL-R. This emphasizes the properties in the proofs and in the
algorithm that are most relevant, in particular those involving “empowering clauses”.
Intuitively, a clause C is empowering for a set � of clauses if more can be proven
by unit resolution from � fi {C} than from � alone. The key properties that are
exploited by the proofs are that:

1. Non-trivial resolution refutations can be decomposed into a sequence of deriva-
tions of empowering clauses;

2. The clauses derived by the clause learning mechanism in the CDCL algorithm
are empowering clauses.

Given a resolution refutation � of clause set �, it is possible to use decision and
restart policies to direct CDCL-R to e�ciently construct a refutation of � that is
not much longer than �. This is done by repeatedly finding an empowering clause
from �, and then causing CDCL-R to generate one or more learned clauses that are
“as good as” (in a sense to be made precise) that clause.

The main technical result in [18] is that, for any formula with a resolution refu-
tation � of length r, CDCL-R can implicitly generate a resolution refutation of
length O(n4r). By slightly more careful counting, we obtain size O(wn2r), where w
is the width of the given refutation �. For general refutations, with no restriction
on clause width, this gives us size O(n3r).

In [2] it is shown that CDCL-R, with su�ciently many random decisions and
su�ciently frequent restarts, with high probability refutes any formula having a

1907

Mitchell

width-w resolution refutation with using at most O(n2w+2) conflicts, and therefore
an implicit resolution refutation of size O(n2w+3). For the restriction to formulas
with refutations of width bounded by some fixed w, our deterministic bound gives
a resolution refutation size of O(n2r) which is O(nw+2) because r = O(nw).

The organization of the paper is as follows. In Section 2 we define signed CNF,
MV-CNF and Reg-CNF formulas, along with binary resolution rules for these for-
mulas. The properties of resolution proofs that are central to the proof are defined
and established in Section 3. In Section 4 we describe an algorithm that embodies
the core reasoning in MV-CDCL-R (as well as standard CDCL-R), while Section 5
shows that repeated calls to this algorithm can refute formulas almost as e�ciently
as unrestricted resolution. In Section 6 we give our MV-CDCL-R algorithm, define
p-simulation and give the main theorem. We briefly discuss applicability issues in
Section 7, and conclude in Section 8.

A preliminary version of this paper appeared as [17]. The present version corrects
notational problems, simplifies and clarifies the presentation, gives tighter simula-
tions and adds the discussion on applicability.

2 Signed CNF Formulas and Resolution

Let T be a finite set of truth values, P a countably infinite set of multi-valued atoms
and ª a partial order on T . We assume throughout that T is fixed, so the size of
T is a constant in complexity analyses. Signed CNF formulas for T are constructed
from literals of the form p@≠S, where S is a non-empty proper subset of T and p œ P.
We will use S and R for sets of truth values in literals, and l, often with subscripts,
for literals. Complementation of sets of truth values is taken with respect to T , so
S denotes {a œ T | a ”œ S}. If l is the literal p@≠S, its complement l̄ is the literal
p@≠S. A clause is a disjunction of literals, and a formula is a conjunction of clauses.
When convenient we identify clauses with sets of literals, and formulas with sets of
clauses.

Remark 1. In the literature on signed formulas, literals are typically written S :p,
but we prefer the readability of a set-like notation such as p@≠S. Formally S is a
sequence of constant symbols denoting elements of T and enumerating the set of
values p may take. Following usual practice in the literature, we overload S and use
it both for the set of truth values and the string representing this set.

An assignment · for formula � and truth value set T is a function mapping the
propositional atoms of � to T . Our assignments will often be partial. Assignment ·
satisfies a literal p@≠S if ·(p) œ S, satisfies a clause C if it satisfies at least one literal

1908

Signed Clause Learning with Restarts

in C, and satisfies CNF formula � if it satisfies every clause in �. If X is a literal,
clause, or formula, we write · |= X to indicate that · satisfies X. A formula or set of
formulas � entails a formula �, written � |= �, if every assignment that satisfies each
formula in � also satisfies �. In particular, if S µ R, then every assignment that
satisfies p@≠S also satisfies p@≠R. We say p@≠S entails p@≠R, and write p@≠S |= p@≠R.

The connectives in signed formulas are classical two-valued connectives. Signed
CNF formulas are intended as a reduction target so, for example, to find a model
of a multi-valued formula „, we would transform it into an appropriate signed CNF
formula �„, and then run a model finder for signed CNF. It is the responsibility of
the transformation to correctly handle the semantics of non-classical connectives in
the source logic. A general, linear-time transformation of formulas from an arbitrary
finitely valued logic to Signed CNF is described in [9]

A number of variants of this basic logic have been studied. Typical variants
restrict the allowed literals or impose structure on the truth value set T . We will
explicitly examine two, although the method can be adapted to some others. (Unfor-
tunately, terminology is not uniform in the literature, so our terms may correspond
only roughly to those in some other papers.)

1. Many-Valued CNF (MV-CNF): Signed CNF formulas as just described,
with the restriction that each atom p occurs in at most one literal in any clause.
The order relation ª plays no role.

2. Regular CNF over a lattice (Reg-CNF): Let ÈT, ªÍ be a lattice. We call
a literal p@≠S regular for ÈT, ªÍ i� S is either the upset øa = {b œ T | a ∞ b},
or the downset ¿a = {b œ T | b ∞ a} of some a œ T . A formula � is regular if
every literal in � is regular.

When making statements that apply to both families of formulas, we sometimes
use the terms “signed CNF” or “signed formula”, rather than explicitly saying “MV-
CNF or Reg-CNF formula".

Example 1. Consider the signed formulas with T = {0, 1}. The MV-CNF version
is equivalent to the classical case, as is the Reg-CNF version with 0 ª 1.

Example 2. MV-CNF formulas for ÈT, ªÍ, with T = {0, 1

d≠1

, 2

d≠1

. . . 1}, for some
d œ N, and ª the standard order on Q, are a natural reduction target for commonly
used multi-valued logics, including the finite-valued £ukasiewicz logics. In the analo-
gous Reg-CNF version, literals are restricted to those equivalent to p < a and p > a,
for some a œ S. In MV-RES reasoning, the order on T is ignored.

1909

Mitchell

2.1 Signed Resolution
Let signed binary resolution be the following derivation rule (where A and B are
arbitrary disjunctions).

(p@≠S ‚ A) (p@≠R ‚ B)
(p@≠(S fl R) ‚ A ‚ B) (1)

We say the two antecedent (top) clauses in (1) were resolved on p to produce the
resolvent clause. Two literals p@≠S and p@≠R clash if S ”= R. If R fl S is empty, we
say the clash is annihilating, and otherwise we call the literal p@≠(R fl S) the residue.
A pair of clashing literals that are annihilating are inconsistent.

As in the classical case, a resolution derivation � of clause C from a set � of
clauses is a sequence of clauses ÈC

1

, . . . , CrÍ, where each Ci is either in � or derived
from two earlier clauses in � by the resolution rule, and Cr = C. The length, or
size, of the derivation is the number of clauses r. A resolution refutation of � is a
resolution derivation from � of the empty clause, denoted ⇤.

A resolution rule is sound and refutation complete for a family of formulas if, for
every formula � in the family, � is unsatisfiable i� it has a refutation constructed
using the rule. Rule (1) is the basis of resolution proof systems for our two families
of formulas, but we need di�erent variants to obtain a sound and complete proof
system for each family.

Resolution for MV-CNF: We obtain a sound and refutation-complete proof
system by providing rule (1) with implicit merging and annihilation [10]. That is:

1. (Merging) If two literals p@≠S and p@≠R with the same atom p occur in the
resolvent, they are replaced by p@≠(S fi R).

2. (Annihilation) Whenever (S fl R) is empty, the “false literal” p@≠? is omitted
from the resolvent.

We denote the resulting system MV-RES.

Resolution for Reg-CNF: The following restricted signed resolution rule is sound
and complete for regular formulas over a lattice [5].

(p@≠øa ‚ A) (p@≠¿b ‚ B)
(A ‚ B) provided a ”∞ b. (2)

We denote the resulting system by Reg-RES.

The di�erences in the properties of the resolution rules of these two systems are
the main thing to be delt with in adapting the CDCL-R algorithm and the proofs

1910

Signed Clause Learning with Restarts

from [18] to our setting. In MV-RES, literals have complements, and no atom
appears in multiple literals of any clause, but resolution is not annihilating and we
must allow for the residues. In Reg-RES, resolution is annihilating, but literals need
not have complements (more precisely, the complement of a regular literal may not
be a regular). Literal complementation and the annihilating property of classical
resolution both play central roles in the classical CDCL-R algorithm.

3 Empowering and Absorbed Clauses

The e�cient simulation of resolution by CDCL-R relies on a property of resolution
refutations involving unit resolution. A unit clause is a clause with exactly one
literal, and unit resolution is application of the resolution rule when at least one
antecedent is a unit clause. We write � „u (l), or simply � „u l, if (l) can be derived
from � by unit resolution alone, and write � „u ⇤ if there is a refutation of � using
only unit resolution. As in the classical case, with appropriate data structures it is
possible to check if � „u l or � „u ⇤ in linear time. (A proof of this is provided in
Appendix A).

We will use certain sets of literals that are inconsistent with a given clause. For
a set or sequence L of literals, we denote by ÂL the set of literals which are the
complements of literals in L. In particular, if C is a clause, then ÂC is the set of
complements of literals in C. Semantically, we view ÂC as a conjunction of literals
that is equivalent to ¬C. For Reg-CNF we must ensure all literals are regular, but
even if C contains only regular literals ÂC may not. We define a set ‚L as follows. If
L = l

1

, l
2

, . . . lk is a sequence of literals, ‚L denotes the set of all size-k sequences of
the form LÕ = lÕ

1

, . . . lÕk, where each lÕi is a regular literal that is inconsistent with li.
If L is empty then ‚L contains only the empty sequence.

If � is a set of clauses and L a set or sequence of literals, we may write �,L as
an abbreviation for � fi {(l) | l œ L}. If C is a clause of size k then �, ÂC is the set
of all clauses from � plus k unit clauses corresponding to the k literals in C. Thus
�, ÂC „u ⇤ indicates, intuitively, that the restriction of � obtained by setting all literals
of C false can be refuted by unit resolution.

Definition 1 (Empowering and Absorbed Clauses). Let � be a set of clauses and
C a clause with � |= C. For MV-CNF formula � we say C is l-empowering for �
i� C = (A ‚ l) and

1. �, ÂC „u ⇤;

2. �, ÂA ” „u ⇤;

1911

Mitchell

3. For any literal lÕ, if lÕ |= l, then �, ÂA ” „u lÕ.

For � a Reg-CNF formula, we say that C is l-empowering for � i� C = (A ‚ l) and

1a. �,C Õ „u ⇤, for some C Õ œ ‚C;

2a. �,AÕ ” „u ⇤ for each AÕ œ ‚A;

3a. �,AÕ ” „u lÕ for each AÕ œ ‚A, and each lÕ such that lÕ |= l;

Clause C is empowering for � if it is l-empowering for some l œ C, and is absorbed
by � otherwise.

Lemma 1 (Existence of Empowering Clauses). Let � be a set of signed clauses for
which � ”„u ⇤. If � is a signed resolution refutation of �, then � contains a clause
that is empowering for �.

Proof. Let C be the first clause in � that does not satisfy condition 1 (or 1a, respec-
tively) of Definition 1. Such a clause exists, because ⇤ su�ces if no earlier clause
does. C is the resolvent of two earlier clauses of �, say C

1

= (p@≠S
1

‚ A
1

), and
C

2

= (p@≠S
2

‚ A
2

), where p@≠S
1

and p@≠S
2

clash. One of C
1

or C
2

is empowering
for �. To see this, first observe that both are logically implied by �, because they
are in � and signed resolution is sound, and both satisfy condition 1 (respectively,
1a) of Definition 1 by choice of C.

We complete the argument for MV-RES as follows. Both C
1

and C
2

satisfy
condition 2 of Definition 1, because C = (p@≠(S

1

fl S
2

) ‚ A
1

‚ A
2

), so if �,ÊA
1

„u ⇤ or
�,ÊA

2

„u ⇤ then �, ÂC „u ⇤, contradicting choice of C. Now, suppose both C
1

and C
2

fail condition 3 of Definition 1. That is, for some R
1

µ S
1

and R
2

µ S
2

, we have
�,ÊA

1

„u (p@≠R
1

) and �,ÊA
2

„u (p@≠R
2

). Resolving (p@≠R
2

) and (p@≠R
1

) produces the
unit clause (p@≠(R

1

fl R
2

)), where (R
1

fl R
2

) µ (S
1

fl S
2

). If follows that �, ÂC „u ⇤,
because p@≠(S

1

fl S
2

) is in ÂC and we can resolve it with p@≠(R
1

fl R
2

) to obtain ⇤.
This again contradicts choice of C, so at least one of C

1

or C
2

is empowering for �.
The completion for Reg-RES is just a variation. C = (A

1

‚ A
2

), because Reg-
RES has no residuals, so if �,AÕ

1

„u ⇤ for some AÕ
1

œ „A
1

then �,C Õ „u ⇤ for some
C Õ œ ‚C (because A

1

µ C) contradicting choice of C. By the symmetric argument,
there is no AÕ

2

œ „A
2

for which �,AÕ
2

„u ⇤. So, both C
1

and C
2

satisfy condition 2a.
Now, suppose both C

1

and C
2

fail condition 3. Then, for some AÕ
1

œ „A
1

, AÕ
2

œ „A
2

,
R

1

µ S
1

and R
2

µ S
2

, we have that �,AÕ
1

„u (p@≠R
1

) and �,AÕ
2

„u (p@≠R
2

). Because
Reg-RES has no residuals, we know S

1

fl S
2

= ?, so we also have that R
1

fl R
2

= ?
and (p@≠R

1

) and (p@≠R
2

) can be resolved to produce ⇤. So if C Õ œ ‚C then �,C Õ „u ⇤,
again contradicting the choice of C. So either C

1

or C
2

is empowering for �.

1912

Signed Clause Learning with Restarts

4 Probing with Learning
The core of the CDCL algorithm can be viewed as a back-and-forth between two
tightly related processes, one which guesses at partial assignments, and one which
derives new clauses based on these guesses and what follows from them by unit
propagation. We first consider an algorithm, which we call Probe-and-Learn, that
embodies one stage of this interaction. Describing the algorithm requires some
terminology.

For signed formulas, the guesses (called “decisions” in the SAT literature) involve
restrictions on assignments, rather than absolute assignments. We will make use of
certain sequences of restrictions.

Definition 2 (Proper Restriction Sequence). A proper restriction sequence (or just
“restriction sequence”) ” for T and � is a sequence ” = Èl

1

, l
2

, . . . lkÍ of distinct
literals for T such that:

1. If ” contains a literal p@≠S then � has a literal with the atom p;

2. The set of literals in ” is satisfiable;

3. If li is p@≠S, then u{R | j < i and lj = p@≠R} fl S ”= ?

For any non-empty restriction sequence ” = Èl
1

, . . . lk≠1

, lkÍ, we denote by ”≠ the
maximal proper prefix ”≠ = Èl

1

, . . . lk≠1

Í.

We will use ” and – for decision sequences. Condition 3 of the definition ensures
that each successive literal in the restriction sequence further restricts the allowed
assignments.

We say that assignment · is consistent with restriction sequence ” if no literal in
” is inconsistent with a literal in · . For literal l and restriction sequence ”, we may
say that “” makes l false” if l is not satisfied by any assignment consistent with ”,
and that “” makes l true” if every assignment consistent with ” satisfies l.

Unit propagation is a key component of CDCL algorithms, and in particular
of the “back-and-forth” process embodied in Probe-and-Learn. We will define unit
propagation for signed formulas, as used in our algorithm, in terms of restriction
sequences.

Definition 3 (UP(�, ”)). For any clause set � and restriction sequence ” for �, we
denote by UP(�, ”) the restriction sequence ”Õ defined by the fixpoint of the following
operation:

If � contains a clause C = (l ‚ B) where ” makes every literal of B false,
but does not make l either true or false, extend ” with l.

1913

Mitchell

Algorithm 1: Probe-and-Learn
Input: Clause set �; truth value set ÈT, ªÍ; restriction sequence ”.
Output: Clause set �Õ; restriction sequence ”Õ.

1 – Ω a minimal extension of ” such that either UP(�, –) |= � or �,– „u ⇤
2 while �,– „u ⇤ and – ”= ÈÍ do
3 –,C Ω Handle-Conflict(�, –)
4 � Ω � fi {C}
5 end
6 return �,–

Unit propagation corresponds to unit resolution, in a context where we are in-
terested in collecting implied restrictions on truth assignments rather than derived
unit clauses. In particular, the restriction sequence UP(�, ”) makes a clause of �
false if and only if �,” „u ⇤.

A second process, closely related to unit propagation, involves derivation of
clauses called “asserting clauses”. CDCL-R proofs of unsatisfiability are constructed
by a sequence of asserting clause derivations.

Definition 4 (Asserting Clause; Conflict Clause). Clause C is an asserting clause
for signed CNF formula � and restriction sequence ” i�

1. �, ÂC „u ⇤ if � is MV-CNF; �, A „u ⇤ for each A œ ‚C if � is Reg-CNF;

2. For each literal l œ C, there is a literal lÕ with lÕ |= l̄ and �,” „u lÕ;

3. For exactly one literal l œ C, there is no literal lÕ with lÕ |= l̄ and �,”≠ „u lÕ.

C is a conflict clause for � and ” if it satisfies conditions 1 and 2.

The Probe-and-Learn algorithm is presented in Algorithm 1. It is parameterized
by T and ª so we don’t need to present distinct versions for MV-CNF and Reg-
CNF. The di�erences only a�ect low level details involving operations on literals.
In analyses, we take the parameter ÈT, ªÍ to be fixed, and allow the other two
arguments, the clause set � and restriction sequence ”, to vary.

Probe-and-Learn extends ” to a minimal extension – of ” for which unit propa-
gation either produces a satisfying assignment or makes a clause false. In the former
case, � and the satisfying assignment – are returned. In the latter case Handle-
Conflict is executed. Handle-conflict returns a proper prefix of – (which becomes
the new value of –) and a clause C which is added to � (“learned”).

We require Handle-Conflict to satisfy the following correctness property. If the
call Handle-Conflict(�, –) returns –Õ,C then

1914

Signed Clause Learning with Restarts

1. –Õ is a proper prefix of –;

2. If –Õ is empty, then C is ⇤;

3. If –Õ is not empty, then C is an asserting clause for � and UP(�,–Õ).

If C is an asserting clause for � and –Õ, then UP(� fi {C}),–Õ) will be a proper
extension of UP(�,–), and it is possible for this propagation to reach a new conflict,
after which a new asserting clause may be derived. The loop on lines 2-5 of Probe-
and-Learn repeats this process until unit propagation no longer produces a conflict
(or � is proven unsatisfiable). Probe-and-Learn returns the resulting clause set and
restriction sequence.

For correctness, there is no restriction on the method by which Handle-Conflict
generates C and –. For the p-simulation results of Section 6.1, Handle-Conflict
must run in polynomial time. For the concrete simulation bounds of Section 5
and Section 6, it must run in time O(ns), where n is the number of atoms and s
is the total number of literal occurrences in the clause set, and there must be a
corresponding (possibly implicit) resolution derivation of each asserting clause.

For simplicity of the remainder of the presentation, we will assume that Handle-
Conflict is implemented by an algorithm analogous to the standard method that
forms the basis of conflict clause derivation in almost all CDCL SAT solvers. We
now describe this algorithm, and show that it does run in the require time bound
and construct an appropriate resolution derivation.

4.1 Asserting Clause Derivation

An execution of Handle-Conflict(�,–) must, except in the case it finds a satisfying
assignment, return an asserting clause for a proper prefix of –. The standard meth-
ods for this in CDCL SAT solvers involve a resolution derivation closely connected
to the unit propagation sequence that establishes a conflict. (The method may ei-
ther be implemented based on resolution, as we describe below, or the “implication
graph” [15].) A generalized version of this process can be used in our many-valued
Handle-Conflict procedure. We describe a particular version, the so-called “1UIP
asserting clause” derivation. Most CDCL SAT solvers use a refined version of this.

We make the assumption, consistent with standard practice, that UP(�, ”) is
computed incrementally according to the order of literals in ”. That is, if ” =
l
1

, l
2

, l
3

..., we first extend ” by computing UP(�,l
1

), then extend UP(�,l
1

) by any
additional literals in UP(�,Èl

1

, l
2

Í), etc., so that the last literals in UP(�,”) are those
that are not also in UP(�,”≠). The elements of ” in UP(�,”) are called “decisions”
(they are the guesses), and the others are there because they are implied.

1915

Mitchell

We obtain the desired asserting clause by means of a resolution derivation con-
structed as follows. Let L = l

1

, l
2

, . . . , ld, . . . , lk be the literals of UP(�,”) in order,
and ld be the last literal of L that is in ” (i.e., the last decision literal in L). We
associate to each literal li in ld+1

, . . . , lr a pair of clauses Bi and a Ci. For each i in
d + 1, . . . , r, let Bi be a clause of � that, when restricted by l

1

, . . . li≠1

, is the unit
clause (li). Such a Bi must exist, since li was obtained by unit propagation.

We define the Ci by induction in reverse order as follows. Let Cr+1

be a clause
of � that is made false by L. For each i in r . . . d + 1 (proceeding in that order) let
Ci be the resolvent of Bi and Ci+1

if they are resolvable, and Ci+1

if they are not.
It is clear that each clause Ci in the sequence can be derived from � by resolution,
and that the number of derived clauses in this derivation is at most the length of
the sequence L. Let j be the largest index in d + 1, . . . r for which Cj contains only
one literal that is inconsistent with a literal in the sequence lj , . . . lr. (Certainly
j = d + 1 will work, if no larger value does.) The clause Cj , which is known in
the SAT literature as the 1UIP clause (for “first unique implication point”), is the
clause to be returned by Handle-Conflict. The restriction sequence to be returned
by Handle-Conflict is the least prefix ”Õ of ” such that UP(�,”Õ) makes Cj a unit
clause.

Lemma 2. Each derived clause in the derivation of the 1UIP clause is a conflict
clause for ” and �, and the clause returned by HandleConflict is an asserting clause
for ” and �.

Proof. We give a proof for MV-RES. The proof for Reg-RES is almost identical.
Cr+1

satisfies property 1 of Definition 4, because Cr+1

œ � and trivially for any C

we have {C}, ÂC „u ⇤, so �,]Cr+1

„u ⇤. Also, by choice Cr+1

is made false by UP(�,”),
so it satisfies property 2. So Cr+1

is a conflict clause. Now, assume that some Ci+1

is a conflict clause. ”, ÊCi „u ⇤ because Ci contains every literal of Bi fi Ci+1

except
for possibly li and some literal l that clashes with it. So either ÊCi makes Ci+1

false
or it makes Ci+1

and Bi clashing unit clauses. UP(�,”) makes Ci false because each
of its literals is either in Ci+1

or in Bi\li, both of which are made false by UP(�,”).
Thus, all the Ci are conflict clauses. Cj satisfies property 3 of Definition 4 by choice,
so is an asserting clause.

4.2 Complexity of Probe-and-Learn
In all complexity analyses, given a formula �, n will be the number of distinct atoms,
the size s the number of literal occurrences, and |�| the number of clauses.

Lemma 3. Let � be a formula of size s over n atoms. If ” is a restriction sequence
for � s.t. �,” „u ⇤, and Probe-and-Learn(�, ”) returns �Õ, ”Õ, then

1916

Signed Clause Learning with Restarts

1. The number of conflicts generated during execution is |�Õ| ≠ |�| < |”|;

2. The number of clauses derived in conflict clause derivation is at most |”|O(n);

3. The execution can be carried out in time |”|O(ns).

Proof. Each iteration of the body of the loop performs unit propagation and executes
Handle-Conflict, which performs the asserting clause derivation. On each iteration
of the loop, except possibly the terminating iteration in the case that a satisfying
assignment is found, ” is set to a proper prefix of its previous value. Therefore, the
number of iterations, the number of conflicts, and the number of asserting clauses
added to �, are all at most |”|. The number of derivation steps during one asserting
clause derivation is at most the maximum number of literals in a restriction sequence,
which is |T |n = O(n). Each resolution derivation step can be carried out in time
O(n). The time spent by Handle-Conflict is the time to do one unit propagation
and up to n resolution steps, so is O(s + n2) = O(ns). So the total time for Probe-
and-Learn is |”|O(ns) = O(n2s).

5 Simulating Resolution with Probe-and-Learn
We now show that, if � is a resolution refutation of MV-CNF or Reg-CNF formula
�, there is a sequence of calls to Probe-and-Learn that refutes � in time polynomial
in the combined size of � and �. We begin by showing that any empowering clause
can be absorbed by a sequence of calls to Probe-and-Learn. Througout, n is the
number of distinct atoms and s the number of literal occurrences, of formula �.

Lemma 4. Suppose C = (A ‚ l) is l-empowering for clause set �. Then there is a
sequence of calls to Probe-and-Learn that generates a superset �Õ of � such that C
is not l-empowering for �Õ, and the following properties hold.

1. The number of calls to Probe-and-Learn is O(n);

2. The size of the underlying resolution derivation is O(n2)

3. The entire computation can be carried out in time O(n2s);

Proof. We state the proof for Reg-RES; that for MV-RES is similar. Let ” be a
restriction sequence consisting of the literals of some element of ‚A, in any order, fol-
lowed by a literal that is inconsistent with l. We construct a sequence �

0

, �
1

, . . . �r of
increasing (by set inclusion) clause sets with � = �

0

, such that C is not l-empowering
for �r, and set �Õ = �r. We obtain �i+1

by setting �i+1

,– = Probe-and-Learn(�i, ”),

1917

Mitchell

and ignoring –. Each execution of Probe-and-Learn involves one or more execu-
tions of Handle-Conflict(�i,”Õ), where ”Õ is a prefix (not necessarily proper) of ”.
We consider the sequence of all calls to Handle-Conflict, over however many calls to
Probe-and-Learn are made. Each execution of Handle-Conflict returns a pair È–, BÍ,
where – is a proper prefix of ” and B is an asserting clause for UP(�i,–) and �i.
The “learned clause” B is added to �i. Clause B, when restricted by UP(�i, ”≠)
is a unit clause. By construction, for each call to Handle-Conflict this implied unit
clause will contain a distinct literal on the same atom as l. Therefore, after O(n)
calls to Handle-Conflict, �i must contain either ⇤ a clause B for which the implied
unit clause entails l. In either case, C is not l-empowering for �i. Each call to
Handle-Conflict requires time at most O(ns), and derives O(n) clauses.

Lemma 5. If C is empowering for �, and C is of width (size) w, then there is a
sequence of calls to Probe-and-Learn that generates a superset �Õ of � which absorbs
C, and such that the following hold.

1. The number of calls to Probe-and-Learn is O(wn);

2. The size of the underlying resolution derivation is O(wn2);

3. The entire computation can be executed in time O(wn2s).
Proof. Apply Lemma 4 for each literal l œ C.

To see that an appropriate sequence of calls to Probe-and-Learn can refute � in
a number of steps not much greater than the size of any given refutation, we identify
a sequence of empowering clauses, and absorb each. By “refutes �”, we mean that
it produces a set �Õ of clauses, each of which is implied by �, and containing ⇤.
Lemma 6. Let � be a set of signed clauses and � a signed resolution refutation of
� of size at most r clauses, in which no clause has width greater than w. Then there
is a sequence of calls to Probe-and-Learn that refutes �, such that the following hold.

1. The number of calls to Probe-and-Learn in the is O(wnr);

2. The size of the underlying resolution refutation is O(wn2r);

3. The entire computation can be executed in time O(wn2sr).
Proof. We generate a sequence �

0

. . . �k of supersets of �, where �
0

= �, k Æ r, and
⇤ œ �k, as follows. If �i „u ⇤ we are done. Otherwise, let C be the first clause in
� that is empowering for �i. Lemma 1 ensures such a clause exists. By Lemma 5
there is a sequence of calls to Probe-and-Learn that generates a superset of �i for
which C is absorbed. Let this set be �i+1

. The claims follow from Lemma 5 and
the fact that the number of clauses to be absorbed is at most r.

1918

Signed Clause Learning with Restarts

Algorithm 2: Multi-Valued CDCL with Restarts (MV-CDCL-R)
Input: Finite set � of signed clauses; truth value set ÈT, ªÍ

1 . Output: SAT or UNSAT
2 . � Ω � // Clause set, initialized to the input clauses
3 ” Ω ÈÍ // Restriction sequence, initialized to empty
4 repeat
5 �, ” Ω Probe-and-Learn(�, ”, ÈT, ªÍ)
6 if UP(�, ”) |= � then
7 return SAT
8 if ” = ÈÍ then
9 return UNSAT

10 if Time to Restart then
11 ” Ω ÈÍ
12
13 end

6 CDCL with Restarts

We assume the reader is familiar with the standard CDCL-R algorithm. (A self-
contained description of CDCL and its relationship to resolution can be found in
[16], among other places. The reader may also want to refer to [18] and [2] for
distinct presentations of the algorithm, as well as the proofs we work from, and [3]
where a careful examination of the relation between resolution and the implication
graph method for obtaining conflict clauses appears.)

CDCL-R can be described in terms of a sequence of calls to Probe-and-Learn,
as illustrated in Algorithm 2. While many details have been abstracted away, Al-
gorithm 2 captures the core algorithm implemented by CDCL-R-based solvers. For
simplicity, let us assume the given formula is unsatisfiable. The algorithm begins
with the empty restriction sequence. In the first call to Probe-and-Learn, the restric-
tion sequence is extended until a clause is made false, after which clause learning
and back-jumping are carried out (by Handle-Conflict, within Probe-and-Learn).
In subsequent executions of the loop body, the restriction sequence resulting from
the most recent Handle-Conflict is extended until Probe-and-Learn again finds a
conflict. Each asserting clause derived by Handle-Conflict is new, so each call to
Probe-and-Learn extends the clause set with at least one new implied clause. This
is repeated, until the derived conflict clause is the empty clause.

At this level of abstraction, the signed versions and classical version are not

1919

Mitchell

distinguishable, except for the input parameter ÈT, ªÍ, which a�ects only the low-
level steps in Probe-and-Learn and Handle-Conflict. We make ÈT, ªÍ a parameter
to make explicit the fact that Probe-and-Learn (and in particular Handle-Conflict),
must be appropriate to the order relation and the class of formulas in question. If
T is of size 2, then with appropriate choice for Probe-and-Learn, this algorithm is
equivalent to the classical CDCL-R.

Since CDCL-R can be viewed simply as a repeated application of Probe-and-
Learn, it is straightforward to see that MV-CDCL-R can be guided to refute any
formula that has a resolution refutation � in time polynomial in the size of �. We
need one more kind of object to complete the argument.

Definition 5 (Extended Restriction Sequence for MV-CDCL-R). An extended re-
striction sequence for MV-CDCL-R on input � and ÈT, ªÍ is a finite sequence of
symbols satisfying:

1. Each symbol is either a literal for ÈT, ªÍ or the distinguished symbol R;

2. Each maximal sub-sequence with no R is a restriction sequence for �.

We may take two views of an extended restriction sequence. On one view, we
may take it as a record or witness of an actual execution of MV-CDCL-R. On the
other, we may view it as a string to control an intended execution of MV-CDCL-R.

Lemma 7. Let � be an MV-CNF or Reg-CNF formula of size s over n atoms that
has a resolution refutation of size r and width w. Then there is an execution of
MV-CDCL-R that refutes � in time O(wn2sr) and with an underlying resolution
refutation of size O(wn2r).

Proof. It is su�cient to show there is an extended restriction sequence that produces
such an execution. Since MV-CDCL-R is repeated execution of Probe-and-Learn,
we need only to take the sequence of calls to Probe-and-Learn implied by Lemma 6,
produce a restriction sequence corresponding to each call, and concatenate all the
restriction sequences with an R separating each adjacent pair.

6.1 Proof Complexity and p-Simulation

Propositional proof complexity is the study of the relative power of proof systems for
propositional logic, measured by minimum length of proofs for tautological formulas.
The abstract definition of propositional proof system introduced in the seminal paper
of Cook and Reckow [8] can be trivially adapted to refutation proofs for unsatisfiable
signed CNF formulas (or indeed any co-NP complete set).

1920

Signed Clause Learning with Restarts

Definition 6. A refutation proof system for a set S of unsatisfiable signed CNF
formulas is a set of strings L with a poly-time onto function VL from strings over the
alphabet of L to S fi‹, such that VL(x) = � if x is an L-proof that � is unsatisfiable,
and VL(x) = ‹ otherwise.

Intuitively, L is the proofs of the system and VL is an e�ciently computable
function that verifies their correctness.

Proof system A p-simulates proof system B if there exists a polynomial function
p() such that, for every unsatisfiable formula � and every B-proof �B of �, there is
an A-proof �A of � with |�A |Æ p(|�B |).

As a simplifying convention, we require that the minimum size of a proof of �
is |�|. This is not standard in the proof complexity literature, but is necessary for
relevance to practical satisfiability algorithms, and is followed also in, e.g., [3, 7,
11, 18]. This is because a formula may be large but have a tiny proof, and any
reasonable satisfiability solver begins by reading the entire formula. Moreover, any
reasonable CDCL-R-based solver begins by executing unit propagation, which may
visit every clause of the formula.

To view a satisfiability algorithm as a proof system, we may take any trace of
the algorithm on an unsatisfiable clause set � as a proof of the unsatisfiability of
�, provided that the trace reflects the running time of the algorithm, and that we
can e�ciently verify that the trace corresponds to an execution of the algorithm
that reports “unsatisfiable”. For present purposes, we may use extended restriction
sequences as MV-CDCL-R proofs.

Theorem 1. MV-CDCL-R p-simulates MV-RES and Reg-RES.

Proof. To show that CDCL-R p-simulates resolution, it is su�cient to show that for
any resolution refutation � of clause set � there is an extended restriction sequence ”
such that, when CDCL-R is executed in accordance with ” on input �, it runs in time
polynomial in the length of �, and reports UNSAT. This follows from Lemma 7.

Corollary 1 (Pipatsrisawat & Darwiche). CDCL-R p-simulates resolution.

To see that this is indeed a corollary, it is enough to observe that MV-CNF and
MV-RES for |T | = 2 are equivalent to the classical case.

Theorem 2. MV-RES and Reg-RES p-simulate MV-CDCL-R for MV-CNF and
Reg-CNF formulas respectively.

Proof. Consider an execution of MV-CDCL-R that halts and outputs “UNSAT”,
and let ‡ be the extended restriction sequence corresponding to this execution. The
implicit underlying resolution refutation of � consists of the sequence of asserting

1921

Mitchell

clauses returned by Handle-Conflict, and all the clauses implicitly used in their
derivation. It is clear that this sequence of clauses is of length polynomial in the
length of ‡.

7 Application Issues

Our stated motivation was to better understand the question of whether reasoning
in multi-valued logics might be e�ectively carried out by reduction to multi-valued
CNF formulas followed by execution of a CDCL-R based algorithm adapted to the
multi-valued setting. Our simulation results provide one way of understanding the
power of MV-CDCL-R. To the extent that the theorems of [18, 2] are related to
positive performance characteristics of solvers based on CDCL-R, we now expect
the same to hold for solvers based on MV-CDCL-R. This provides some evidence
that reduction to multi-valued CNF may be a fruitful approach to multi-valued logic
reasoning.

The MV-CDCL-R algorithm seems quite reasonable to implement. Most of the
work is easily inherited from existing CDCL SAT solvers. For |T | up to 64, the sign
of a literal can be implemented in a single word on modern CPUs, and key operations
such as the check for clashing, computing the residual of two clashing literals, or
merging two non-clashing literals, can be done in a single CPU instruction. Even for
significantly larger T , most modern CPUs provide support to do these operations in
hardware.

A number of algorithms and solvers for signed or multi-valued formulas, or spe-
cial cases of them, have been described in the literature. Most of these are essentially
backtracking or tableau-based. Thus, they correspond to tree-like versions of resolu-
tion and we can expect that, as in the classical case, there will be formulas for which
they are exponentially less e�cient than unrestricted resolution. We are aware of
two algorithms that seem closely related to our MV-CDCL-R, namely those of of
[14] and [12]. These do not use restarts, which are essential to our work here, but
otherwise seem very closely related to the instantiation of MV-CDCL-R for MV-
CNF. The interested reader will find a useful discussion of implementation issues
in both of those reports. In light of the importance of restarts in high-performance
SAT solvers, and of our results here, it would be very interesting to see the e�ect on
performance of modifying these solvers to execute good restart policies.

An alternate reasoning strategy is to reduce the multi-valued reasoning problem
to SAT, and then execute a classical (CDCL-R based) SAT solver. The advantage
of this approach is that SAT solvers are easily available and subject to constant
improvement e�orts. We will not address reductions directly from multi-valued

1922

Signed Clause Learning with Restarts

logics to SAT, but restrict our attention to the following observation. We can easily
reduce Signed CNF satisfiability to SAT as follows. The set of propositional atoms
will contain atoms we write as p = a, one for each signed atom p and each truth value
a œ T . Each literal p@≠{a, b, c, . . .} then maps to the disjunction (p = a ‚ p = b ‚ p =
c ‚ . . .). Each clause of a Signed CNF formula maps to a single propositional clause.
We add to the resulting clauses the set of binary clauses of the form (p = a ‚ p = c),
for each atom p and each pair a, c œ T with a ”= c.

We may simulate Signed resolution using classical resolution on these clauses,
but this does not seem of potential use in practice. To simulate the single resolution
step

p@≠S ‚ A p@≠R ‚ B

p@≠(S fl R) ‚ A ‚ B
(3)

with classical resolution seems to require a number of 2-valued resolution steps that
is quadratic in |T |. Since T is fixed, this is only a constant blow-up, but constants
can be important in solver design. Moreover, this constant applies to optimal proofs,
adding a large amount of non-determinism to the proof simulations. In a practical
algorithm, expecting to make |T |2 correct decisions in order to simulate a single
multi-valued resolution step seems unreasonably optimistic.

Recently, it was been shown that for any CDCL-R solver S and any unsatisfiable
CNF formula F, it is easy to generate a CDCL solver S’ (with no restarts) and a
formula F’ (consisting of a conjunction of F with some new clauses) such that S’
generates exactly the same resolution refutation of F that S’ does, and with only a
small polynomial slow-down [4]. Thus, theoretically, restarts are not really required.
However, it is far from clear that this fact can be used to make implemented solvers
without restarts that are as fast in practice as solvers that use restarts.

The potential of using resolution-based methods for signed formulas to solve com-
binatorial optimization problems has been examined in [1]. It would be interesting
to relate that direction of work to the present one.

8 Conclusion

We have presented a natural generalization of the SAT algorithm known as CDCL
with restarts to signed CNF formulas, in particular to Multi-valued CNF formu-
las, and to Regular formulas when the truth value set is a lattice. Adapting the
proofs from [18, 2] we showed that the algorithm p-simulates natural forms of bi-
nary resolution for these formulas, and vice versa. The simulation of resolution by
the algorithm is quite e�cient, both in terms of length and width. Explaining the
impressive performance of SAT solvers in practice in light of their worst-case per-

1923

Mitchell

formance and the NP-completeness of SAT is an area of active interest. We do not
know if the theorems of [18, 2] are significant in such an explanation, but it is plau-
sible and consistent with empirical observation. Moreover, there is a good deal of
evidence that frequent restarts are important in practice. To the extent that this is
so, we have shown that similar properties hold for the generalization to multi-valued
CNF formulas. We consider the algorithm we have described easily implementable
and of potential use in developing practical model finders and theorem provers for
multi-valued logics.

References
[1] Carlos Ansótegui, María Luisa Bonet, Jordi Levy, and Felip Manyà. Resolution proce-

dures for multiple-valued optimization. Information Sciences, 227:43 – 59, 2013.
[2] Albert Atserias, Johannes Klaus Fichte, and Marc Thurley. Clause-learning algorithms

with many restarts and bounded-width resolution. J. Artif. Intell. Res. (JAIR), 40:353–
373, 2011.

[3] Paul Beame, Henry Kautz, and Ashish Sabharwal. Towards understanding and har-
nessing the potential of clause learning. Journal of Artificial Intelligence Research,
22:319–351, 2004.

[4] Paul Beame and Ashish Sabharwal. Non-restarting SAT solvers with simple prepro-
cessing can e�ciently simulate resolution. In Carla E. Brodley and Peter Stone, editors,
Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27
-31, 2014, Québec City, Québec, Canada., pages 2608–2615. AAAI Press, 2014.

[5] Bernhard Beckert, Reiner Hähnle, and Felip Manyà. The 2-sat problem of regular
signed cnf formulas. In Proc. 30th IEEE International Symposium on Multi-Valued
Logic (ISMVL 2000), pages 331–336, 2000.

[6] Bernhard Beckert, Reiner Hahnle, and Filip Manya. The SAT problem of signed CNF
formulas. In Basin, D’Agostino, Gabbay, Matthews, and Viganò, editors, Labelled
Deduction, volume 17 of Applied Logic Series, chapter 3, pages 59–80. Kluwer Academic,
2000.

[7] Samuel Buss, Jan Ho�mann, and Jan Johannsen. Resolution trees with lemmas: Res-
olution refinements that characterize DLL algorithms with clause learning. Logical
Methods in Computer Science, 4(4:13), 2008.

[8] Stephen Cook and Robert Reckhow. The relative e�ciency of propositional proof
systems. J. Symbolic Logic, 44(1):23–46, 1979.

[9] Reiner Hähnle. Short conjunctive normal forms in finitely valued logics. J. Log. Com-
put., 4(6):905–927, 1994.

[10] Reiner Hähnle. Exploiting data dependencies in many-valued logics. Journal of Applied
Non-Classical Logics, 6(1):49–69, 1996.

[11] Philipp Hertel, Fahiem Bacchus, Toniann Pitassi, and Allen Van Gelder. Clause learning
can e�ectively p-simulate general propositional resolution. In Proc., 23rd National

1924

Signed Clause Learning with Restarts

Conference on Artificial Intelligence (AAAI-08), Volume 1, pages 283–290, 2008.
[12] Siddhartha Jain, Eoin O’Mahony, and Meinolf Sellmann. A complete multi-valued SAT

solver. In Principles and Practice of Constraint Programming – 16th International
Conference (CP 2010), St. Andrews, Scotland, UK, September 6-10, 2010. Proceedings,
pages 281–296, 2010.

[13] Henry Kautz, Eric Horvitz, Yongshao Ruan, Carla Gomes, and Bart Selman. Dynamic
restart policies. In Proc., 19th National Conference on Artificial Intelligence (AAAI-
2002), pages 674–681, 2002.

[14] Cong Liu, Andreas Kuehlmann, and Matthew W. Moskewicz. Cama: A multi-valued
satisfiability solver. In Proc., 2003 Int’l. Conf. on Computer Aided Design (ICCAD-
2003), pages 326–333, 2003.

[15] João Marques-Silva and Karem Sakallah. Grasp: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers, 48(5):506–521, May 1999.

[16] David Mitchell. A SAT solver primer. EATCS Bulletin, 85:112–133, February 2005.
The Logic in Computer Science Column.

[17] David Mitchell. Resolution and clause learning for multi-valued CNF formulas. In
Thomas Lukasiewicz, Rafael Peñaloza, and Anni-Yasmin Turhan, editors, Proceedings
of the First Workshop on Logics for Reasoning about Preferences, Uncertainty, and
Vagueness, PRUV 2014, co-located with 7th International Joint Conference on Auto-
mated Reasoning (IJCAR 2014), Vienna, Austria, July 23-24, 2014., volume 1205 of
CEUR Workshop Proceedings, pages 141–154. CEUR-WS.org, 2014.

[18] Knot Pipatsrisawat and Adnan Darwiche. On the power of clause-learning SAT solvers
as resolution engines. Artificial Intelligence, 175(2):512–525, 2011.

[19] Hantao Zhang and Mark E. Stickel. An e�cient algorithm for unit propagation. In
Proceedings of the Fourth Int’l Symposium on Artificial Intelligence and Mathematis
(AI-MATH’96), Fort Lauderdale Florida USA, pages 166–169, 1996.

A Linear-time Unit Propagation
We will show that unit propagation can be executed in linear time on MV-CNF and
REG-CNF formulas. The method uses a single watched literal in each clause, which
is a simplification of the method with head and tail watches of [19].

Lemma 8. Let � be a set of multi-valued clauses with s literals in total, over a
domain T of size t. Then UP(�), or UP(�,”), can be computed in time O(st).

Proof. We assume a data structure for clauses that supports viewing each clause
as a list of literals, and each literal p@≠S in a clause as a list of atom-value pairs
Èp, aÍ, one for each a œ S, in no particular order. (This exact representation is not
important, but makes explanation simple.) We further assume that accessing the
next literal in a clause or the next value in S takes constant time. For each clause

1925

Mitchell

C we maintain a pointer or index to a single pair Èp, aÍ for a single literal p@≠S, and
call this the “watched value” for C. Initially, the watched value for each clause is
the first value of the first literal. As we execute the procedure, we keep track of a
set of assignments of values to each atom that remain possible. We will maintain
the following invariant:

If Èp, aÍ in the representation of literal p@≠S is the watched value for
clause C, then every Èp, bÍ that precedes Èp, aÍ in the representation of
p@≠S is known to be impossible, and for every literal that precedes p@≠S
in the representation of C, every value is known to be impossible.

We maintain a queue Q of pairs Èp, aÍ of atoms and values which we have determined
to be impossible, but for which we have not propagated the e�ects of that fact. We
initialize Q by inserting the set of pairs

{Èp, aÍ | C = (p@≠S) is a unit clause of � and a ”œ S}

For each pair Èp, aÍ consisting of an atom p and value a, we construct a list of
watched occurrences of the pair. Now, until Q is empty, remove one pair Èp, aÍ from
Q and handle it as follows. Traverse the list of watched occurrences of Èp, aÍ. For
each occurrence, scan the remaining values in the literal with Èp, aÍ looking for a
value that is not known to be impossible, to be used as a new watch. If none is
found, search for one in the subsequent literals of the clause. If none is found, this
clause is now e�ectively an empty clause, so we are done with it and proceed to
the next watched occurrence of Èp, aÍ. If one was found but it is in the last literal
of the clause, then this clause is e�ectively unit, say (q@≠R). Add the set of pairs
{Èq, bÍ | b ”œ R and b is not already known to be impossible} to Q. If a new value
to watch was found and it is not in the last literal of the clause, then add the
corresponding pair to the appropriate watch list, and get the next pair from Q.

This algorithm visits each literal l in � at most once, and uses constant work for
each such visit, so runs in time O(st).

Since t is a constant in our analyses, this establishes the linear time unit prop-
agation we need. This algorithm works for both MV-CNF and REG-CNF, and
essentially amounts to reducing them to the two-valued case and performing stan-
dard watched-literal unit propagation.

Received 27 July 20151926

