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Wherefor

MXC, in a sense, reflects an alternate interpretation of “SAT Race”. The submitted solver was designed and
implemented, completely from scratch, in 45 days. Implementation was done by the first author, currently a
second-year undergraduate student, working part-time.1. The second author devoted about 1 day per week.
The primary goal was a solver to support research based on [1], where problems are modelled using first- and
second-order logic with inductive definitions, and solved by reduction to (extended) SAT. The first author
registered for the SAT-Race because it sounded like a good challenge, but the work could not begin until the
summer term. It still seemed a nice – but not obviously realistic – challenge to produce a first-rate solver in
time for the SAT-Race. A conventional design was clearly called for, but we chose not to simply re-code an
existing solver: Each design decision was weighed in turn, and often we tested multiple solutions. We did
not quite manage a first-rate solver, but we did produce a respectable one which will serve our needs.

Solver Details

MXC is a fairly conventional solver in the Chaff/Berkmin/siege/MiniSat family. The solver does its’ own
memory management, has a separate binary clause database [3], and stores watched and binary-clause literals
in linked lists with 31 literals per node. A bit-vector scheme is used for membership checks during conflict
clause derivation. The version submitted for the second qualification round used the VMTF heuristic [4],
and geometric restarts, but no clause deletion. For the final submission, we added a decision strategy similar
to the MiniSat version of VSIDS [2], conflict clause minimisation as in MiniSAT [5], and clause deletion.
There is no pre-processing.
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1Perhaps under a generous notion of “part-time”, but still concurrently taking a statistics course and leading a normal life.
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