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Abstract. We apply the logic-based declarative programming approébfodel
Expansion (MX) to a phylogenetic inference task. We axidopeathe task in
multi-sorted first-order logic with cardinality constrasn Using the model ex-
pansion solver MXG and SAT+cardinality solver MXC, we comgthe perfor-
mance of several MX axiomatizations on a challenging segsffinstances. Our
methods perform orders of magnitude faster than previowglprted declarative
solutions. Our best solution involves polynomial-time-precessing, redundant
axioms, and symmetry-breaking axioms. We also discuss etihad of test in-
stance generation, and the role of pre-processing in deslarprogramming.
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1 Introduction

We apply a declarative programming approach, based on tliealdask of model ex-
pansion (MX), to a problem in phylogenetic inference. Ingipproach, an instance is a
finite structure; a solution is a finite structure; a problgradfication is an axiomatiza-
tion, in a suitable logic, of the relationship between ins&s and solutions [16].

A phylogenetic tree is a directed graph representing théugeoary relationships
among a collection of species. Phylogenetic inferencedaronstruction) is the task
of constructing a phylogenetic tree (or other network) frepecies data. It has many
applications in biology and elsewhere, producing a varétyarticular computational
problems. Our interest in these problems is primarily astteers of declarative pro-
gramming tools: In trying to make our tools more effectivieisi useful to work on
challenging applications, especially those where sucoess not be immediate, but
benefits may be significant. Phylogenetic inference is @stémg because of the fol-
lowing observations. Most interesting variants are NRdlmgatimization problems, and
there are many data sets too hard to solve well in practicetyMerticular problems
are variants of, or combinations of, a few basic problems],Ahe optimality metrics
often do not precisely match subjective solution qualityusers could benefit from a
method to interactively add ad-hoc constraints, which ipossible with current tools.

Contributions We describe a method that is faster, by many orders of madmithan

the only previous declarative solution we know of. In doirg we demonstrate that
MX-based tools can be effective on more realistic domaias thas previously been
shown. Effectively measuring progress in solving NP-hambjems is tricky, and we



believe the method we use here is interesting. Our pre-pedtg method, in addition to
benefiting our own solution, could improve the performancexisting software pack-
ages. We point out that instance pre-processing, often ritapbin problem solving,
can be done declaratively.

The Problem The particular problem we study is the binary cladistic Qas8okal
(CCS) problem, which we chose because it is a simple probléichwis NP-hard;
to which standard tools apply; for which we have suitablyligmaing real data; and
for which there is a previous declarative programming sofuto compare with. Our
primary solving mechanism is the model expansion grousderr MXG [16], with
the SAT+cardinality solver MXC [2]. Our test set consistse¥eral hundred instances
of graduated difficulty derived from biological data. We quewe the performance of:

— MXG and MXC, with various axiomatizations using cardingibnstraints;

— MXG and Minisat [6], a high-performance SAT solver, with roardinality MX
axiomatizations;

— clasp [9], a high-performance answer set programming (A8RJer, with the best-
performing ASP axiomatization from [13];

— MXG and MXC, aided by polynomial-time instance pre-pro@egs

— PAUP, a widely-used phylogeny software package [19].

Related Work Kavanagh et al [13] reported answer set programming (ASEgdbao-
lutions to binary CCS. Their best solution establishedroptitrees for instances for
which the phylogeny software package PENNY [8] could not,dmuld not solve their
largest instance (which is identical to our largest inségdnor even moderate-sized sub-
sets. ASP solutions to some other phylogeny problems, wdnriemot directly compa-
rable, are reported in [3,7, 1]. [3] use “large compatipflitwhere the goal is to find
the maximum number of characters, for a given set of spetiesyhich there is a
perfect phylogeny. In contrast, we use “large parsimonyieve we find a (perhaps
not perfect) phylogeny for the input species with the minimmumber of evolutionary
changes. The task in [7] is to construct a “perfect phylogemestwork”, from given
phylogenetic trees (the “species” there are natural laggsa [1] studied the “Maxi-
mum Quartet Consistency” problem, and evaluated an ASRisolan synthetic data.

2 The Binary Camin-Sokal Phylogeny Problem

We study a simple “large parsimony” problem in charactesdubcladistics. A group of
species is characterized by a sethfracters Each character can take one of several
states and each species is described by a vector giving a stataébr éharacter. The
input is a set of species vectors and the goal is to construetavith nodes labeled by
character vectors, so that the vector of every input spéairds some node. Changes of
a character’s state along an edge are mutations. Probléativas result from differing
cost metrics and restrictions on character changes. A tieanizing the cost metric

is a “most parsimonious tree”. In the cladistic Camin-SqK&CS) problem, the states
of each character are ordered and mutations must be inogeanithis order. This is



appropriate when the direction of evolutionary change @rahters is assumed to be
known. The goal is to minimize the total number of mutatiqExamples of biological
application of CCS include [5, 18]). The decision versiortle# problem, even in the
binary case where each character has just two states, i9hiptete [4].

Definition 1. The binary cladistic Camin-Sokal problem (binary CCS) is:

Instance: SetS of n distinct vectors fron{0, 1}"*; natural numberB.

Question: Is there a directed tre& = (V, E), such that: 1) T is rooted &™;
2)S CV C{0,1}™; 3) Everyleaf ofl" isin S; 4) For each directed edge
(v1,v2) € E, vy andwv, differ in exactly one character, which is 0 at
and 1 atvy; 5) |V| < B.

Remark 1.An alternate definition allows multiple mutations on an eddee definition
we use here was also used in [13], and is easier to axiomatikXiG.

In a perfect phylogenyeach character mutation occurs only once. For the binary
CCS, this is equivalent to setting = m, provided that both states of every character
occur inS. (Note that if some character has only one state, we mayysdédéte it.)
When an instance does not have a perfect phylogeny, somaatbamutations must
occur more than once in the tree. Since mutations are irséuerin CCS, the same
character cannot change more than once on a directed pathtieroot, so the same
mutation will occur in distinct subtrees. The goal is to finttee that minimizes the
number of these “extra mutations”. We allow only one mutatier edge, so the num-
ber of extra mutations is equivalent to the number of “exediges” or “extra edges”
needed to construct a phylogeny. Since mutation is irrédviersve may assume that all
mutations are from state O to state 1, and the tree is rooti aero vector.

3 Model Expansion and MXG Basics

We give a minimal and informal description of MXG. For furtheetails, including

formal aspects of MX, the MXG language and grounding algamit examples and
performance on other problems, see [16]. MXG is a model esipargrounder/solver.
It takes as input a problem specificatiSrand an instancé. The problem specification
is essentially an axiomatization in multi-sorted first-@rdogic (FO) extended with
inductive definitions and cardinality constraints.

Vocabulary symbols in an axiomatization have three distioles: Instance vocab-
ulary consists of symbols whose interpretation is given byirstance; Solution vo-
cabulary is symbols whose interpretations comprise aisoiyfuxiliary vocabulary is
symbols that are not part of the instance or solution. Thetswl and auxiliary vocabu-
lary together form thexpansion vocabularghe symbols whose interpretations must be
constructed by the solver. Problem specifications contatladations of types, typed
declarations of vocabulary symbols, and axioms. They hhxeetpartsGiven: has
declarations of all types and instance vocabul&igd: has the declaration of solution
vocabulary Satisfying: has axioms, plus declaration of auxiliary vocabulary, ij.an

As an example, Figure 1 is an MXG specification for the gragbuing problem.
The sorts arevtx (vertices) andClr (colours); the instance vocabulary is the binary



Given: type Vix Clr;
Edge(Vtx, Vix)

Find:  Colour(Vtx, ClIr)

Satisfying:
Vv x: 3y : Colour(x, y)
Vv xy: (Edge(x,y) D (V z: ~(Colour(x, z) & Colour(y,z))))
V xy z: ((Colour(x, y) A Colour(x, z)) D (y=2))

Fig. 1. An MXG problem specification for graph colouring

relationEdge; the solution vocabulary is the binary relati@olour. The axioms say
that the interpretation d€olour must give a proper colouring of the given graph. The
MXC instance file for the instance with coloufs, 2}, vertices{1, 2,3}, and edges
(1,2) and(1, 3) containsVtx = [1..3] ClIr=[1;2] Edge =1, 2; 1, 3}.

MXG combines a specification and instance, producing a mitipaal formula¢
which is a “reduced grounding” of with respect tal. That is, satisfying assignments
of ¢ correspond one-to-one with solutionsiofCurrently,¢ is a CNF formula, possibly
extended with cardinality constraints. A propositionaleo searches for a satisfying
assignment t@, and if found MXG maps the assignment back to the FO language t
produce a solution. Other relevant aspects of the (curMKX(p language are:

— Vocabulary symbols are typed, by declarations in the spatiéin. The domain of
each variable is inferred from its use, which must be coestst

— Each type is an ordered finite set given by the instance. Ttherimg is determined
by the form of the instance description: Numerical if exjgexbas a range of in-
tegers; otherwise as enumerated. For each type, constabotyMIN andMAX,
binary relation symbols<, <, etc., and binary relatioSUCC are all implicitly
defined, with the natural semantics. Types are disjointwsceiements are compa-
rable only if of identical type.

— Bounded quantifiers are support&tty < X : ¢(X,y) is equivalent torx Vy : (y<x
D @(x,y)); IXY < X:P(x,y) is equivalent tadx Iy : (Y<x A ¢(X,y)).

— Simple cardinality constraints are supported, which argarsal sentences of the
formVz : ©(n; y; ¢(x, y)), where® is one of UB, LB, or CARD, for upper bound,
lower bound, and equivalence, respectively. For exarple UB(1;v;Edge(v,u))
says the in-degree of every vertex is at most 1.

— A limited form of inductive definition is supported (see [16} details).

4 MX Axiomatizations of Binary CCS

Here we give three MX axiomatizations of Binary CCS. One wd fiatural and sim-
ple, using cardinality constraints; one uses no cardinatinstraints, and can be solved
by straightforward reduction to SAT; and one is a transtatio MX of the best ASP
encoding from [13]. We produced other distinct axiomatimas, but since none per-
formed better than our basic one (except when using enhamisrauch as described
in Section 6), we do not report them.



Given: type Char Vertex State;
A(Vertex, Char, State)
NSpecies: Vertex
NEdges: Vertex

Find: Edge(Vertex, Vertex)
Vector(Vertex, Char)

Satisfying:
Vs < NSpecies c : (A(s,c,MAX) < Vector(s, c)) 1)
YV uv:UB(1; c; (Edge(u,v) A — Vector(u,c) A Vector(v,c))) 2)
YV uv: (Edge(u,v) D (3c: (—Vector(u,c) A Vector(v,c)))) 3)
YV uv: UB(0; c; (Edge(u,v) A Vector(u,c) A — Vector(v,c))) 4
CARD(NEdges; v, u; Edge(v,u)) (5)
Vv v>MIN : CARD(1; u; Edge(u, v)) (6)

Fig. 2. Basic MX axiomatization of binary CCS phylogeny re-constion

Basic MX Axiomatization The types ard&/ertex, vertices of the treeChar, the set of
characters; an®tate (= {0, 1}), the set of states. We identify thespecies with the
first n vertices. The (too simple) type system requires that véasaand constant sym-
bols which are to range over species must be of iygeex. The instance vocabulary
consists of:

— A(Vertex, Char, State): the set of triples specifying the matrix of species of data.
(The first argument is the species.)

— NSpecies: a constant symbol denoting the number of species.

— NEdges: a constant symbol which is always settertex| — 1.

The solution vocabulary has two binary relation symb&ldge, the set of edges, and
Vector, which labels vertices with character vectovector(v,c) holds if character:
has state 1 in the vector labelingThe axioms (see Figure 2) state:

— The label of vertex, fori € {1,...,n}, must be species vectofAxiom 1);

— Each edge has exactly one character changing from 0 to 1 acitemacters chang-
ing from 1 to 0 (Axioms 2—4);

— Every node, except the root, has in-degree exactly one,fandumber of edges is
exactly the number of vertices less one (Axioms 5,6).

Axioms 2 through 4 ensure edges have only allowed mutatiamd,in particular
that every path is monotone increasing in the set of charawutith state 1; Axioms 5
and 6 ensure the graph is a tree, which is rooted at the zetonk®gca convention that
species 1 is the zero vector.

Non-Cardinality Axiomatization To determine if we obtain a speed-up over pure
SAT solving by using MXC with cardinality constraints, weopiuced several axioma-
tizations without cardinality constraints, which MXG gruds to SAT. Figure 3 shows
the best-performing of these. The axioms state: The inpetiep vectoi must label
vertex: (Axiom 1 - as before); Each edge has exactly one charactegihgfrom 0 to

1 (Axiom 2); On a directed path the set of 1-characters is rrammincreasing (Axiom



Given: type Char Vertex State;
A(Vertex, Char, State)
NSpecies: Vertex
NEdges: Vertex

Find: Edge(Vertex, Vertex)
Vector(Vertex, Char)

Satisfying:
TC(Vertex, Vertex) // TC will be the transitive closure of Edge.
V' s < NSpecies c¢: (A(s,c,MAX) < Vector(s,c)) 1)
V vl v2: (Edge(vl,v2)D(3 cl : (—Vector(vl,cl)AVector(v2, c1) 2)
A (Ve2 : ((—Vector(vl,c2) A Vector(v2, c2)) D (cl=c2))))))
Yuvec: ((TC(u, v) A Vector(u, c)) D Vector(v,c)) 3)
V u>MIN : 3 v : (Edge(v,u) A (VVv2 : (Edge(v2, u) D (v2 =V)))) 4)
Y uv>u:—(TC(u, v) A TC(v, u)) (5)
Yuv:(TC(uyv) < ((u=v)V Edge(u,v) v (3x: (TC(u, x) A Edge(x,v))))) (6)

Fig. 3. MXG axiomatization with no cardinality constraints

3), so there are no reverse mutations; The graph is a tre@f@sc#t and 5), since every
node but the root has in-degree one and there are no cycles inansitive closure of

Edge; TC is the transitive closure of Edge (Axiom 6 provides lbower bound on TC;

Axiom 5 the upper bound). We report results based on the SAWEsminisat, arguably

the best all-around SAT solver available.

Translation of ASP to MX We also used an MX axiomatization based on the best ASP
encoding from [13] (denoted “A+” there). It differs from tipeevious two in that: 1) We
have a typ&pecies, distinct fromVertex. 2) Rather than identify the species with the
first n vertices, we construct a functidh(represented as a binary relation) from species
to vertices. 3) We construct a functiovi from vertices to characters. The mutation
on edge (u,v) is the character ¢ such tMilv,c) holds. In contrast, in our previous
axiomatizations the mutation on edge (u,v) is implicit ir thifference between the
vectors labeling u and v. 4) The (root) vectbis left implicit, so a solution is a forest.
A tree is obtained by adding an edge fré@nto the root of each forest component.
Figure 4 gives the axioms, which state: Each vertex is mappegactly one char-
acter (Axiom 1); Each species is mapped to a vertex (AxiomTBg graph is a tree
(Axioms 3-5); The characters which are 1 at species S must imafated at some an-
cestor of the node S is mapped to (Axiom 6); If species S is @app vertexv, the
character which mutated atmust not be 0 at S (Axiom 7); A character mutates at most
once on any (directed) path (Axiom 8). Axioms 7 and 8 are reldmn but improve
performance.

5 Evaluating Progress in Performance

Evaluating performance of solvers for NP-hard problemsrhaay pitfalls, especially
when there is no base-line provided by well-establishedberarks and solvers. Our
goal is to have a clear measuregrbgressin performance. Direct comparison of run-
times does not work here, because run-times for the methedtest vary by many



Given: type Chars Vertex State Species;
A(Species, Char, State)

Find: Edge(Vertex, Vertex)

Satisfying :
M(Vertex, Char)
P(Species, Vertex)
TC(Vertex, Vertex)

V v : CARD(1; c; M(v,c)) 1)
V s : CARD(1; v; P(s,v)) )
V v : UB(1; u; Edge(u, v)) ?3)
Yuv:(TC(uVv) < ((u=v) VvV Edge(u,v) VvV (3x: (TC(u, x) A Edge(x,v))))) 4
Yuv>u:—~(TC(u,v) A TC(v,u)) (5)
Vs c: (A(s,c,MAX) < (Fuv: (TC(u, v) A M(u,c) A P(s, v)))) (6)
Vsvc:=(P(s,v) A M(v,c) A A(s,c, MIN)) )
Vvvl>vc:—(TC(v, vl) A M(v1, c) A M(y, c)) 8)

Fig. 4. MXG axiomatization based on ASP encoding “A+” from [13].

orders of magnitude (see Figure 8). A better measure is thpuof instances that can
be solved within reasonable time. For this, a collectioretdted instances of graduated
difficulty is needed, but in practice this is often hard toaage. For example, [13]
obtained three real data sets: Two were too easy and thewhsdoo hard. Randomly
generated instances are easily graduated, but their ugigegeqgare (see, e.g., [17]), and
may be irrelevant to practice.

Instances Here, we produce a set of suitably graduated instances tenone chal-
lenging real data set we have for our problem. This is posdfibtause, if we view a set
of n species vectors of length as am x m matrix M, any sub-matrix of\/ is a valid
set of data, as real (or not) as the full matrix. For illustrat {eye-colour,hair-coloyr
is as valid a set of characters fsye-colour,hair-colour,handednésg@Not every such
matrix is scientifically interesting, of course.) Our iaitinstance is &6 x 63 matrix
obtained from the experimentally obtained haplotype dafd 2] (for Poecilia retic-
ulata — guppies) as described in [13]. Following [13], wedureed a set of instances
from upper-left sub-matrices of siZex [, for k, I multiples of 3. Thus, we view perfor-
mance as a function of two natural instance parameters: auailspecies and number
of characters. Unfortunately, the resulting instanceswat nicely graduated, as most
moderate-size instances were very easy for our methodspiididem was that most
sub-matrices had all-zero columns and duplicate rows, lwhie solved as follows.
Keeping the zero vector as species 1, we put all other specieserse lexicographic
order. Thus, the first row was all zero, but the second row hadynones. The set of
instances produced from this initial matrix by the schemscdbed above satisfied our
main criteria: the instances are smoothly graded in diffictdr our solvers, and they
do not contain significant numbers of trivial or duplicatevsoor columns.

Performance Measure As an objective measure of progress, we require the solver to
establish the optimal phylogeny size within a fixed time kshuks with any optimiza-
tion problem, one may trade solution quality for solvingeinn phylogeneticinference,



user’s often don't care about optimaliber se because the cost metrics do not exactly
correspond their subjective notion of quality. But if opéility is not a precise measure
of quality, surely being within some distance of optimal @& either, so relaxing the
optimality requirement does not improve our measure. Theirement to solve to op-
timality would seem to better measure whether we are makiogrpss in dealing with
whatever it is that makes up the combinatorially hard aspketir instances. For mea-
suring progress toward being able to practically solvedaand harder instances than
currently possible, we believe that establishing optingdilisons within a reasonable
time cut-off is as good a measure as any we know of.

Evaluation MXG does not have a built-in optimization facility, so foraaoptimiza-
tion instance we solve a sequence of search instances. $hadks for a perfect phy-
logeny (with the same number of mutations as characterspesgive instances allow
one more mutation. We run the solver on the sequence, stppgien a solution is
found — which must be optimal — or when the cumulative run tieeches two hours.
Sequential search is faster than binary search becausadest with too few mutations
are typically easier than those with too many. Time for sedjaésearch is dominated,
almost without exception, by the two instances needed ablish optimality: the one
producing an optimum solution and the one with one fewer trarta. Binary search
is often dominated by the instances just beyond optimalgckvbéquential search never
visits. This pattern of hardness also supports our arguinéatour of using optimality
in our measure of performance.

Tests were run on Sun Fire VZ20 Dual Opteron computers withGHz AMD
Opteron 250 processors, with 1IMB cache and 2GB of RAM pergssar, running
Suse Enterprise Linux 2.6.11. The software versions wed¢GN).17; MXC 0.5; min-
isatv2s; clasp rc3; and paup4bl10-opt-linux-a. Executablefasp and PAUP were
downloaded from the solver web sites, while MXG, MXC, and isétv2s were com-
piled with gcc version 3.3.4.

Figure 5 shows the “frontier” for MXG with the axiomatizatis of Section 4, and
for the ASP solver clasp using the A+ axiomatization of [M8% plot a curve for each
solving method. A point afz, y) denotes that is the largest number of characters for
which the method succeeded in solving instances wisipecies within the two-hour
cut-off. Instances left of or below a curve were solved; thabove and to the right
were not. The basic MX axiomatization is best, except withyview species. MXG
performs relatively poorly with few species because it nmaststruct the whole vector
for each vertex, and thus with many characters has quitea bibrk to do, while the
ASP axiomatizations do not. We ran two ASP solvers, cmoddlsdnd clasp [9], on the
A+ axiomatization. Since the performance was similar, witsp being slightly better,
we show only the clasp curve. The no-cardinality axiomditireand minisat performed
essentially the same as our basic MX axioms, except for stigltly weaker with few
species. Our translation of the ASP axioms to MX performeatiyo

1 MXG and MXC are atmwv. cs. sf u. ca/ r esear ch/ gr oups/ mxp/ ; minisat atwww.
cs. chal mers. se/ Cs/ Resear ch/ For mal Met hods/ M ni Sat/, clasp atwwv. Ccs.
uni - pot sdam de/ cl asp/ and PAUP ahtt p: // paup. csit. fsu. edu/.
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We conclude that our basic MX axiomatization, which is afiyesubstantially better
than the best solution in [13], is a good starting point fattar work.

6 Enhancing Performance

In this section, we report on two ways we refined our basicragitization that dramat-
ically improved performance. Adding redundant axioms igaamdard method in SAT
and CSP encodings, and [13] reported significant speedupghis method. It is not
well understood why particular redundant axioms help (omt)hperformance. Natu-
ral explanations are that they increase the amount of unjpgation performed for
some partial assignments, or that they help a clause-tegstlver learn more useful
clauses. Symmetry-breaking axioms eliminate some - buaihetsolutions among a
set of symmetric solutions. They often improve performareen when only one so-
lution is needed, presumably because they help the solfestigkly eliminate many
symmetric “near-solutions”.

Axioms 13 of Figure 6 states that no extra vertex is a leak haither symmetry-
breaking nor redundant, but has a similar flavour in thatritoges only solutions that
are not very interesting, and improves performance.

Computing Vertex Depth In a binary CCS tree, each vector labeling a vertex at depth

k has exactlyk 1's. Thus, if K is the maximum number af’s in any species vector,

the tree has height at makt. We can add axioms requiring labels of vertices to respect

this property. These are axioms seven through ten andehigéFigure 6, which state:

— Each vertex must be assigned a unique depth (Axiom 8), whigt be one greater
than that of its parent (Axiom 9).
— The depth of each vertex is the numben&fin its label (Axiom 10).



Given: type Char Vertex State Depth;
A(Vertex, Char, State)
NSpecies: Vertex
NEdges: Vertex

Find: Edge(Vertex, Vertex)
Vector(Vertex, Char)

Satisfying:
/I Axioms 1-6 are the Basic MX Axioms of Figure 2

VtxDepth(Nodes, Depth)
SpcDepth(Nodes, Chars, Depth)
{ SpcDepth(u,c,d) < c=MIN A d=MIN A s = MIN A A(u,c,s) 7)
SpcDepth(u,c,d) « c=MIN A SUCC(MIN, d) A s = MAX A A(u,c,s)
SpcDepth(u,c,d) « SpcDepth(u,c1, d) A SUCC(c1, c) A A(u,c,s) A s=MIN
SpcDepth(u,c,d) « SpcDepth(u,cl, d1) A SUCC(c1, ¢) A SUCC(d1, d)
A A(u,c,s) A s=MAX

b

V u: CARD(1; d; VixDepth(u, d)) 8)
V uvdld2: ((Edge(u,v) A VixDepth(u, d1) A VixDepth(v,d2)) D SUCC(d1, d2)) 9)
V u<NSpecies d: (VtxDepth(u,d) < SpcDepth(u,MAX,d)) (10)
YV u>MIN : -~ VtxDepth(u,MIN) (11)
V u>NSpecies v>u d1 d2 : ((VtxDepth(u,d1) A VixDepth(v,d2)) D d2 > d1) (12)
V u>NSpecies : 3 v : Edge(u,v) (13)

Fig. 6. MX-Depth (Axioms 1-10) and MX-Depth+ (Axioms 1-13) axiondtions.

— Only the root has depth 0 (Axiom 11);

These axioms are redundant, but significantly improve perémce. They use two
auxiliary relation symbolsSpcDepth andVixDepth. VixDepth(v,d) holds if vertex v
is at depth dSpcDepth(s, ¢, d) holds if the number of’s among the first characters
for species s is d. Axiom 7 is an inductive definition whichyda special role. The
form of this definition is such that MXG can compute the relatspcDepth before
grounding Axioms 8, 9 and 10. Thus, it is as if a pre-processanputed this relation
and added it to the instance. SirsecDepth(s, MAX, d) says that species s is at depth
d, the grounder has computed the depth for each speciessi(Rplicity of axiomatiza-
tion, we also added a new tyjpepth, which is a set the size of the maximum number
of ones in species vector. We added this to our instancesin@espre-processing step,
although this could be avoided with a more complex axionaditin.)

Symmetry Breaking Our final example is a symmetry-breaking axiom. It states tha
the depth of “extra vertices” (those which allow extra migas), respects their numer-
ical order (Axiom 12).

Instance Pre-processingWe found that instances (including the largest) often atls
easily-checked properties that could be used to simplignttwith a pre-processing
step, which greatly improved performance. We recursivelylied the following rules:

1. Delete any all-zero column: The character does not mugatee need no node for

it. 2. Delete any column having exactly one 1clfs 1 only ins, we construct a tree
without ¢, then add: = 0 to every vector on the tree, adding one new edge and vertex
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Fig. 7. Frontier plot showing performance improvement with refiagtbmatizations (MX-Depth
and MX-Depth+) and instance pre-processing (MX-Depth}(PP

wheres appears. 3. Delete any column having exactly one 0: The Orséauhe root
zero vector. We construct a solution withaytand insert one new node beneath the
root in the solution, setting = 1 everywhere except the root. 4. Delete any duplicate
species. 5. Delete, for any pairs;, sy Of species such that: (&) C so, i.e., every
character that is 1 fot; is also 1 forse; (b) |s2 — s1| = k, i.e., sy hask more 1's than

s1; (C) Vs3 & {s1, 82}, |s2\ s3] > k. Solve the instance without, then add it to a path
of lengthk belows;.

Performance with Refined Axioms and Pre-processingFigure 7 is a frontier plot
showing performance improvements obtained with enhankdratizations and pre-
processing. For comparison, we included the curves fopctasl MX-Basic, and in
addition three new curves:

— MX-Depth: MX-Basic axioms extended with Axioms 7-10 of Fig;

— MX-Depth+: MX-Depth further extended with Axioms 11-13 dfEre 6;

— MX-Depth+(PP): Pre-processing of instances, and solviitg the MX-Depth+
axiomatization (all axioms of Figure 6).

Remark 2.The “dip” in performance of MX-Depth+(PP) at 27 species is tonse-
quence of pre-processing being less effective on these.

How Much Better: Frontier vs.Run-time The frontier plots show that we have pro-
gressed in terms of our chosen measure, but do not show tamétic) corresponding
changes in run-time. Figure 8 illustrates, showing runesnas a function of number
of characters, with number of species fixed at 24. Analogowngss for fewer or more
species are similar, except for very small numbers of sgedirey (time) axis is log



I T T T 1 T T 1
1000 -MX-Basic —5— -
MX-SAT —_—
MX-ASP - =
clasp —a—
00 MX-Depth —o—
% 100~MX-Depth(PP) —+— .
2 MX-Depth+ = —=—
§ MX-Depth+(PP}——
< 10f 4
]
E
'_
1k / .
0.1 1/ & I N N SRR 1 /A0 NN NN [ N N R N

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51
Number of Characters

Fig. 8. Run-times for instances with 24 species, as a function ofbeuraf characters.

scale, so these run-times appear to be exponential in th&ewof characters. Notice
that the curves have very different slopes, suggestinglhieatun-time curves for MX-
Depth+ and MX-Depth+(PP) have much smaller exponents tharother solutions.
We cannot really extrapolate the curves for the ASP or Basicddlutions to compare
run-times for large instances with the best methods, btasthe curves here are com-
pletely mis-leading the difference is certainly many osdef magnitude. Solving the
hardest instances with those methods is completely iffksisi practice.

7 MXG vs. PAUP

The two most widely used phylogeny software packages, PIRY8] and PAUP [19],
both use two methods to carry out phylogenetic inference@foS and other models).
One method is based on heuristic search, which cannot geareptimality, and one is
based on branch-and-bound, which can. The branch-anddipragram for CCS in the
PHYLIP package is called PENNY (after the second author df, [there branch and
bound was proposed for this task). In [13], the performarid@ENNY was compared
with the ASP-based solutions developed there. PENNY wablana prove optimality
of solutions for any instances with more than 18 species.

We compare the performance of our method against the bramdtbaund im-
plementation in PAUP. (We might expect PAUP (which is notjreo be faster than
PHYLIP (which is free), because it has had more developnféateand this seems to
be the case.) Figure 9 shows the frontier plots for the PAWRdm and bound imple-
mentation (PAUP-BnB), along with that for MX-Depth+(PP)daMX-Basic for com-
parison. Our MX-based solution is similar overall to PAU& bomes closer to solving
our largest — and presumably hardest — instances. For ctenples, we also ran PAUP
branch-and-bound on the instances produced by our preegsotg algorithm. Interest-
ingly, PAUP performance improved, and with our pre-proaegi solved all instances.
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8 Discussion

We have developed MX-based solutions to a phylogeneticdanfze problem. A simple
and natural axiomatization gave much better performarae the only other declara-
tive solution to this problem we know of, and more refined gfg@roduced a solution
scheme with dramatically better performance. Ultimatéhg kinds of methods and
tools we use must be validated by demonstrating good pediocmon a wide range of
problems and instances. Here we have tackled one integestith non-trivial problem,

and we believe what we have learned here will usefully infomore general solutions
to a variety of phylogeny problems. Our instances here atigetbfrom a single source
of data, but we have taken pains to ensure that our instamzkperformance mea-
sures provide a good measure of performance progress. Tgrewvements in running
time, which are of many orders of magnitude, strongly sutjdpes our methods will be

significant improvements by any other reasonable measyerédrmance.

MX vs.ASP We remind the reader that, while our Model Expansion baskdisos,
using the grounder MXG with ground solver MXC, perform draioally better than the
ASP solution we evaluate, our results here do not justifyaintlof superiority of MX
methodology or solvers over those of ASP. The best ASP solwer quite powerful,
and alternate approaches to ASP axioms, combined with qoeepsing of the sort we
do, might yield effective ASP-based solutions. (A comparie®f MXG with several
ASP solvers appears in [16].)

PAUP Heuristics An easy criticism of the work presented here is that the Iséiari
methods implemented in PAUP and PHYLIP often perform veryl,veend we have
not compared our methods with those. In fact, the heurigtimeh method of PAUP
finds optimum solutions for all of our instances well withiordime limit. PAUP, of



course, does not know if they are optimal or not, and neitterld/a PAUP user. But,
if optimality per seis not of much value to a biologist, why would they care?

One reply is that declarative solutions are potentiallyyveseful. For example,
user’s don't worry about optimality because they are irgeze in criteria that are not
captured by the cost function. With standard tools theyiangdd in how they can ad-
dress these other preferences. Good declarative toolsivatloiv them to add specific
constraints, say that certain species should not be in tine saib-tree, and find solu-
tions satisfying these (see also [7]). Another reason gemthdative techniques could
pay off is that problems of interest are often variants ofwa é®re problems, and in
some cases these are much more complex than the simplemprofelstudied here. An
example is the Galled Tree Network Haplotyping Problem [23] instance is geno-
type data, which consists of vectors of conflated pairs ofdtgpes. The task is to infer
a set of haplotype vectors from the genotype data for whichraimonious galled tree
network exists. A galled tree network is a significantly mooenplex phylogeny than
our binary CCS trees. The task of inferring small sets of bgples from genotype data,
without worrying about phylogenies, is itself NP-hard lfaligh SAT solvers do well at
this [15], so MXG should also). Implementing a special-msgprogram for this prob-
lem would be some effort, and finding simple heuristics whiaitk reliably on large
instances of such a problems seems unlikely. However, if ackdifective declarative
solutions for haplotype inference and construction ofegilree networks, it would be
easy to combine them and have a good start toward a solutidhddarger problem.

Declarative Pre-ProcessingA point that may be argued against the progress we claim
is that pre-processing of the instances before passingetdehlarative solver was im-
portant, but this step is not declarative. Indeed, pregssing is important in tackling
many problems, seemingly a stumbling block for declarathathods. We point out
the technique we used in our MX-Depth axiomatization (Fég@), where we wrote
an inductive definition to compute a set, and then used ceelaments of that set in
other axioms. MXG computes the defined set directly, whiteugding, so the ground
solver does not see this part of the axiomatization. Essl§ntiny poly-time prepro-
cessing can be carried out using this technique (not neilgsby the current ver-
sion of MXG). With suitably refined languages, some userddc@agccomplish such
pre-processing more conveniently with declarative desioms than with procedural
code.

Conclusion We have not, yet, changed the way phylogenetic inferendéeitione in
practice. But we have made progress that justifies our optimregarding declarative
approaches in general, and our MX-based tools in particular
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