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Abstract. We apply the logic-based declarative programming approachof Model
Expansion (MX) to a phylogenetic inference task. We axiomatize the task in
multi-sorted first-order logic with cardinality constraints. Using the model ex-
pansion solver MXG and SAT+cardinality solver MXC, we compare the perfor-
mance of several MX axiomatizations on a challenging set of test instances. Our
methods perform orders of magnitude faster than previouslyreported declarative
solutions. Our best solution involves polynomial-time pre-processing, redundant
axioms, and symmetry-breaking axioms. We also discuss our method of test in-
stance generation, and the role of pre-processing in declarative programming.
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1 Introduction

We apply a declarative programming approach, based on the logical task of model ex-
pansion (MX), to a problem in phylogenetic inference. In theapproach, an instance is a
finite structure; a solution is a finite structure; a problem specification is an axiomatiza-
tion, in a suitable logic, of the relationship between instances and solutions [16].

A phylogenetic tree is a directed graph representing the evolutionary relationships
among a collection of species. Phylogenetic inference (or re-construction) is the task
of constructing a phylogenetic tree (or other network) fromspecies data. It has many
applications in biology and elsewhere, producing a varietyof particular computational
problems. Our interest in these problems is primarily as developers of declarative pro-
gramming tools: In trying to make our tools more effective, it is useful to work on
challenging applications, especially those where successmay not be immediate, but
benefits may be significant. Phylogenetic inference is interesting because of the fol-
lowing observations. Most interesting variants are NP-hard optimization problems, and
there are many data sets too hard to solve well in practice; Many particular problems
are variants of, or combinations of, a few basic problems; And, the optimality metrics
often do not precisely match subjective solution quality, so users could benefit from a
method to interactively add ad-hoc constraints, which is not possible with current tools.

Contributions We describe a method that is faster, by many orders of magnitude, than
the only previous declarative solution we know of. In doing so, we demonstrate that
MX-based tools can be effective on more realistic domains than has previously been
shown. Effectively measuring progress in solving NP-hard problems is tricky, and we



believe the method we use here is interesting. Our pre-processing method, in addition to
benefiting our own solution, could improve the performance of existing software pack-
ages. We point out that instance pre-processing, often important in problem solving,
can be done declaratively.

The Problem The particular problem we study is the binary cladistic Camin-Sokal
(CCS) problem, which we chose because it is a simple problem which is NP-hard;
to which standard tools apply; for which we have suitably challenging real data; and
for which there is a previous declarative programming solution to compare with. Our
primary solving mechanism is the model expansion grounder/solver MXG [16], with
the SAT+cardinality solver MXC [2]. Our test set consists ofseveral hundred instances
of graduated difficulty derived from biological data. We compare the performance of:

– MXG and MXC, with various axiomatizations using cardinality constraints;
– MXG and Minisat [6], a high-performance SAT solver, with non-cardinality MX

axiomatizations;
– clasp [9], a high-performance answer set programming (ASP)solver, with the best-

performing ASP axiomatization from [13];
– MXG and MXC, aided by polynomial-time instance pre-processing;
– PAUP, a widely-used phylogeny software package [19].

Related Work Kavanagh et al [13] reported answer set programming (ASP) based so-
lutions to binary CCS. Their best solution established optimal trees for instances for
which the phylogeny software package PENNY [8] could not, but could not solve their
largest instance (which is identical to our largest instance), or even moderate-sized sub-
sets. ASP solutions to some other phylogeny problems, whichare not directly compa-
rable, are reported in [3, 7, 1]. [3] use “large compatibility”, where the goal is to find
the maximum number of characters, for a given set of species,for which there is a
perfect phylogeny. In contrast, we use “large parsimony”, where we find a (perhaps
not perfect) phylogeny for the input species with the minimum number of evolutionary
changes. The task in [7] is to construct a “perfect phylogenetic network”, from given
phylogenetic trees (the “species” there are natural languages). [1] studied the “Maxi-
mum Quartet Consistency” problem, and evaluated an ASP solution on synthetic data.

2 The Binary Camin-Sokal Phylogeny Problem

We study a simple “large parsimony” problem in character-based cladistics. A group of
species is characterized by a set ofcharacters. Each character can take one of several
states, and each species is described by a vector giving a state for each character. The
input is a set of species vectors and the goal is to construct atree with nodes labeled by
character vectors, so that the vector of every input specieslabels some node. Changes of
a character’s state along an edge are mutations. Problem variations result from differing
cost metrics and restrictions on character changes. A tree minimizing the cost metric
is a “most parsimonious tree”. In the cladistic Camin-Sokal(CCS) problem, the states
of each character are ordered and mutations must be increasing on this order. This is



appropriate when the direction of evolutionary change of characters is assumed to be
known. The goal is to minimize the total number of mutations.(Examples of biological
application of CCS include [5, 18]). The decision version ofthe problem, even in the
binary case where each character has just two states, is NP-complete [4].

Definition 1. The binary cladistic Camin-Sokal problem (binary CCS) is:

Instance: SetS of n distinct vectors from{0, 1}m; natural numberB.
Question: Is there a directed treeT = (V, E), such that: 1) T is rooted at0m;

2) S ⊆ V ⊆ {0, 1}m; 3) Every leaf ofT is in S; 4) For each directed edge
(v1, v2) ∈ E, v1 and v2 differ in exactly one character, which is 0 atv1

and 1 atv2; 5) |V | ≤ B.

Remark 1.An alternate definition allows multiple mutations on an edge. The definition
we use here was also used in [13], and is easier to axiomatize in MXG.

In a perfect phylogeny, each character mutation occurs only once. For the binary
CCS, this is equivalent to settingB = m, provided that both states of every character
occur inS. (Note that if some character has only one state, we may safely delete it.)
When an instance does not have a perfect phylogeny, some character mutations must
occur more than once in the tree. Since mutations are irreversible in CCS, the same
character cannot change more than once on a directed path from the root, so the same
mutation will occur in distinct subtrees. The goal is to find atree that minimizes the
number of these “extra mutations”. We allow only one mutation per edge, so the num-
ber of extra mutations is equivalent to the number of “extra vertices” or “extra edges”
needed to construct a phylogeny. Since mutation is irreversible, we may assume that all
mutations are from state 0 to state 1, and the tree is rooted atthe zero vector.

3 Model Expansion and MXG Basics

We give a minimal and informal description of MXG. For further details, including
formal aspects of MX, the MXG language and grounding algorithm, examples and
performance on other problems, see [16]. MXG is a model expansion grounder/solver.
It takes as input a problem specificationS and an instanceI. The problem specification
is essentially an axiomatization in multi-sorted first-order logic (FO) extended with
inductive definitions and cardinality constraints.

Vocabulary symbols in an axiomatization have three distinct roles: Instance vocab-
ulary consists of symbols whose interpretation is given by an instance; Solution vo-
cabulary is symbols whose interpretations comprise a solution; Auxiliary vocabulary is
symbols that are not part of the instance or solution. The solution and auxiliary vocabu-
lary together form theexpansion vocabulary, the symbols whose interpretations must be
constructed by the solver. Problem specifications contain declarations of types, typed
declarations of vocabulary symbols, and axioms. They have three parts:Given: has
declarations of all types and instance vocabulary;Find: has the declaration of solution
vocabulary;Satisfying: has axioms, plus declaration of auxiliary vocabulary, if any.

As an example, Figure 1 is an MXG specification for the graph colouring problem.
The sorts areVtx (vertices) andClr (colours); the instance vocabulary is the binary



Given: type Vtx Clr;
Edge(Vtx, Vtx)

Find: Colour(Vtx, Clr)

Satisfying:
∀ x : ∃ y : Colour(x, y)
∀ x y : (Edge(x,y) ⊃ (∀ z : ¬(Colour(x, z) & Colour(y,z))))
∀ x y z : ((Colour(x, y) ∧ Colour(x, z)) ⊃ (y=z))

Fig. 1. An MXG problem specification for graph colouring

relationEdge; the solution vocabulary is the binary relationColour. The axioms say
that the interpretation ofColour must give a proper colouring of the given graph. The
MXC instance file for the instance with colours{1, 2}, vertices{1, 2, 3}, and edges
(1, 2) and(1, 3) contains:Vtx = [1..3] Clr = [1; 2] Edge = {1, 2; 1, 3}.

MXG combines a specification and instance, producing a propositional formulaφ

which is a “reduced grounding” ofS with respect toI. That is, satisfying assignments
of φ correspond one-to-one with solutions ofI. Currently,φ is a CNF formula, possibly
extended with cardinality constraints. A propositional solver searches for a satisfying
assignment toφ, and if found MXG maps the assignment back to the FO language to
produce a solution. Other relevant aspects of the (current)MXG language are:

– Vocabulary symbols are typed, by declarations in the specification. The domain of
each variable is inferred from its use, which must be consistent.

– Each type is an ordered finite set given by the instance. The ordering is determined
by the form of the instance description: Numerical if expressed as a range of in-
tegers; otherwise as enumerated. For each type, constant symbolsMIN andMAX,
binary relation symbols<, ≤, etc., and binary relationSUCC are all implicitly
defined, with the natural semantics. Types are disjoint, so two elements are compa-
rable only if of identical type.

– Bounded quantifiers are supported:∀x y < x : φ(x,y) is equivalent to∀x ∀y : (y<x
⊃ φ(x,y)); ∃x y < x : φ(x,y) is equivalent to∃x ∃y : (y<x ∧ φ(x,y)).

– Simple cardinality constraints are supported, which are universal sentences of the
form∀x : ⊙(n; y; φ(x, y)), where⊙ is one of UB, LB, or CARD, for upper bound,
lower bound, and equivalence, respectively. For example∀u : UB(1;v;Edge(v,u))
says the in-degree of every vertex is at most 1.

– A limited form of inductive definition is supported (see [16]for details).

4 MX Axiomatizations of Binary CCS

Here we give three MX axiomatizations of Binary CCS. One we find natural and sim-
ple, using cardinality constraints; one uses no cardinality constraints, and can be solved
by straightforward reduction to SAT; and one is a translation to MX of the best ASP
encoding from [13]. We produced other distinct axiomatizations, but since none per-
formed better than our basic one (except when using enhancements such as described
in Section 6), we do not report them.



Given: type Char Vertex State;
A(Vertex, Char, State)
NSpecies: Vertex
NEdges: Vertex

Find: Edge(Vertex, Vertex)
Vector(Vertex, Char)

Satisfying:
∀ s ≤ NSpecies c : (A(s,c,MAX)⇔ Vector(s, c)) (1)
∀ u v : UB(1; c; (Edge(u,v) ∧ ¬ Vector(u,c) ∧ Vector(v,c))) (2)
∀ u v : (Edge(u,v) ⊃ (∃c : (¬Vector(u,c) ∧ Vector(v,c)))) (3)
∀ u v : UB(0; c; (Edge(u,v) ∧ Vector(u,c) ∧ ¬ Vector(v,c))) (4)
CARD(NEdges; v, u; Edge(v,u)) (5)
∀ v>MIN : CARD(1; u; Edge(u, v)) (6)

Fig. 2.Basic MX axiomatization of binary CCS phylogeny re-construction

Basic MX Axiomatization The types areVertex, vertices of the tree;Char, the set of
characters; andState (= {0, 1}), the set of states. We identify then species with the
first n vertices. The (too simple) type system requires that variables and constant sym-
bols which are to range over species must be of typeVertex. The instance vocabulary
consists of:

– A(Vertex, Char, State): the set of triples specifying the matrix of species of data.
(The first argument is the species.)

– NSpecies: a constant symbol denoting the number of species.
– NEdges: a constant symbol which is always set to|Vertex| − 1.

The solution vocabulary has two binary relation symbols:Edge, the set of edges, and
Vector, which labels vertices with character vectors.Vector(v,c) holds if characterc
has state 1 in the vector labelingv. The axioms (see Figure 2) state:

– The label of vertexi, for i ∈ {1, . . . , n}, must be species vectori (Axiom 1);
– Each edge has exactly one character changing from 0 to 1, and no characters chang-

ing from 1 to 0 (Axioms 2–4);
– Every node, except the root, has in-degree exactly one, and the number of edges is

exactly the number of vertices less one (Axioms 5,6).

Axioms 2 through 4 ensure edges have only allowed mutations,and in particular
that every path is monotone increasing in the set of characters with state 1; Axioms 5
and 6 ensure the graph is a tree, which is rooted at the zero vector by a convention that
species 1 is the zero vector.

Non-Cardinality Axiomatization To determine if we obtain a speed-up over pure
SAT solving by using MXC with cardinality constraints, we produced several axioma-
tizations without cardinality constraints, which MXG grounds to SAT. Figure 3 shows
the best-performing of these. The axioms state: The input species vectori must label
vertexi (Axiom 1 - as before); Each edge has exactly one character changing from 0 to
1 (Axiom 2); On a directed path the set of 1-characters is monotone increasing (Axiom



Given: type Char Vertex State;
A(Vertex, Char, State)
NSpecies: Vertex
NEdges: Vertex

Find: Edge(Vertex, Vertex)
Vector(Vertex, Char)

Satisfying:
TC(Vertex, Vertex) // TC will be the transitive closure of Edge.
∀ s ≤ NSpecies c : (A(s,c,MAX)⇔ Vector(s,c)) (1)
∀ v1 v2: (Edge(v1,v2)⊃(∃ c1 : (¬Vector(v1,c1)∧Vector(v2, c1) (2)

∧ (∀c2 : ((¬Vector(v1,c2) ∧ Vector(v2, c2)) ⊃ (c1=c2))))))
∀ u v c : ((TC(u, v) ∧ Vector(u, c)) ⊃ Vector(v,c)) (3)
∀ u>MIN : ∃ v : (Edge(v,u) ∧ (∀v2 : (Edge(v2, u) ⊃ (v2 = v)))) (4)
∀ u v>u : ¬(TC(u, v) ∧ TC(v, u)) (5)
∀ u v : (TC(u,v)⇔ ((u = v) ∨ Edge(u,v) ∨ (∃x : (TC(u, x) ∧ Edge(x,v))))) (6)

Fig. 3. MXG axiomatization with no cardinality constraints

3), so there are no reverse mutations; The graph is a tree (Axioms 4 and 5), since every
node but the root has in-degree one and there are no cycles in the transitive closure of
Edge; TC is the transitive closure of Edge (Axiom 6 provides the lower bound on TC;
Axiom 5 the upper bound). We report results based on the SAT solver minisat, arguably
the best all-around SAT solver available.

Translation of ASP to MX We also used an MX axiomatization based on the best ASP
encoding from [13] (denoted “A+” there). It differs from theprevious two in that: 1) We
have a typeSpecies, distinct fromVertex. 2) Rather than identify then species with the
first n vertices, we construct a functionP (represented as a binary relation) from species
to vertices. 3) We construct a functionM from vertices to characters. The mutation
on edge (u,v) is the character c such thatM(v,c) holds. In contrast, in our previous
axiomatizations the mutation on edge (u,v) is implicit in the difference between the
vectors labeling u and v. 4) The (root) vector0 is left implicit, so a solution is a forest.
A tree is obtained by adding an edge from0 to the root of each forest component.

Figure 4 gives the axioms, which state: Each vertex is mappedto exactly one char-
acter (Axiom 1); Each species is mapped to a vertex (Axiom 2);The graph is a tree
(Axioms 3–5); The characters which are 1 at species S must have mutated at some an-
cestor of the node S is mapped to (Axiom 6); If species S is mapped to vertexv, the
character which mutated atv must not be 0 at S (Axiom 7); A character mutates at most
once on any (directed) path (Axiom 8). Axioms 7 and 8 are redundant, but improve
performance.

5 Evaluating Progress in Performance

Evaluating performance of solvers for NP-hard problems hasmany pitfalls, especially
when there is no base-line provided by well-established benchmarks and solvers. Our
goal is to have a clear measure ofprogressin performance. Direct comparison of run-
times does not work here, because run-times for the methods we test vary by many



Given: type Chars Vertex State Species;
A(Species, Char, State)

Find : Edge(Vertex, Vertex)

Satisfying :
M(Vertex, Char)
P(Species, Vertex)
TC(Vertex, Vertex)
∀ v : CARD(1; c; M(v,c)) (1)
∀ s : CARD(1; v; P(s,v)) (2)
∀ v : UB(1; u; Edge(u, v)) (3)
∀ u v : (TC(u,v)⇔ ((u = v) ∨ Edge(u,v) ∨ (∃x : (TC(u, x) ∧ Edge(x,v))))) (4)
∀ u v>u : ¬(TC(u,v) ∧ TC(v,u)) (5)
∀ s c: ( A(s,c,MAX)⇔ (∃ u v : (TC(u, v) ∧ M(u,c) ∧ P(s, v)))) (6)
∀ s v c : ¬(P(s,v) ∧ M(v,c) ∧ A(s,c, MIN)) (7)
∀ v v1>v c : ¬(TC(v, v1) ∧ M(v1, c) ∧ M(v, c)) (8)

Fig. 4. MXG axiomatization based on ASP encoding “A+” from [13].

orders of magnitude (see Figure 8). A better measure is the number of instances that can
be solved within reasonable time. For this, a collection of related instances of graduated
difficulty is needed, but in practice this is often hard to arrange. For example, [13]
obtained three real data sets: Two were too easy and the thirdwas too hard. Randomly
generated instances are easily graduated, but their use requires care (see, e.g., [17]), and
may be irrelevant to practice.

Instances Here, we produce a set of suitably graduated instances from the one chal-
lenging real data set we have for our problem. This is possible because, if we view a set
of n species vectors of lengthm as ann×m matrixM , any sub-matrix ofM is a valid
set of data, as real (or not) as the full matrix. For illustration: {eye-colour,hair-colour}
is as valid a set of characters as{eye-colour,hair-colour,handedness}. (Not every such
matrix is scientifically interesting, of course.) Our initial instance is a36 × 63 matrix
obtained from the experimentally obtained haplotype data of [12] (for Poecilia retic-
ulata – guppies) as described in [13]. Following [13], we produced a set of instances
from upper-left sub-matrices of sizek× l, for k, l multiples of 3. Thus, we view perfor-
mance as a function of two natural instance parameters: number of species and number
of characters. Unfortunately, the resulting instances were not nicely graduated, as most
moderate-size instances were very easy for our methods. Theproblem was that most
sub-matrices had all-zero columns and duplicate rows, which we solved as follows.
Keeping the zero vector as species 1, we put all other speciesin reverse lexicographic
order. Thus, the first row was all zero, but the second row had many ones. The set of
instances produced from this initial matrix by the scheme described above satisfied our
main criteria: the instances are smoothly graded in difficulty for our solvers, and they
do not contain significant numbers of trivial or duplicate rows or columns.

Performance Measure As an objective measure of progress, we require the solver to
establish the optimal phylogeny size within a fixed time bound. As with any optimiza-
tion problem, one may trade solution quality for solving time. In phylogenetic inference,



user’s often don’t care about optimalityper se, because the cost metrics do not exactly
correspond their subjective notion of quality. But if optimality is not a precise measure
of quality, surely being within some distance of optimal is not either, so relaxing the
optimality requirement does not improve our measure. The requirement to solve to op-
timality would seem to better measure whether we are making progress in dealing with
whatever it is that makes up the combinatorially hard aspectof our instances. For mea-
suring progress toward being able to practically solve larger and harder instances than
currently possible, we believe that establishing optimal solutions within a reasonable
time cut-off is as good a measure as any we know of.

Evaluation MXG does not have a built-in optimization facility, so for each optimiza-
tion instance we solve a sequence of search instances. The first asks for a perfect phy-
logeny (with the same number of mutations as characters). Successive instances allow
one more mutation. We run the solver on the sequence, stopping when a solution is
found – which must be optimal – or when the cumulative run timereaches two hours.
Sequential search is faster than binary search because instances with too few mutations
are typically easier than those with too many. Time for sequential search is dominated,
almost without exception, by the two instances needed to establish optimality: the one
producing an optimum solution and the one with one fewer mutations. Binary search
is often dominated by the instances just beyond optimal, which sequential search never
visits. This pattern of hardness also supports our argumentin favour of using optimality
in our measure of performance.

Tests were run on Sun Fire VZ20 Dual Opteron computers with 2.4 GHz AMD
Opteron 250 processors, with 1MB cache and 2GB of RAM per processor, running
Suse Enterprise Linux 2.6.11. The software versions were: MXG 0.17; MXC 0.5; min-
isat v2s; clasp rc3; and paup4b10-opt-linux-a. Executables forclasp and PAUP were
downloaded from the solver web sites, while MXG, MXC, and minisat v2s were com-
piled with gcc version 3.3.4.1

Figure 5 shows the “frontier” for MXG with the axiomatizations of Section 4, and
for the ASP solver clasp using the A+ axiomatization of [13].We plot a curve for each
solving method. A point at(x, y) denotes thatx is the largest number of characters for
which the method succeeded in solving instances withy species within the two-hour
cut-off. Instances left of or below a curve were solved; those above and to the right
were not. The basic MX axiomatization is best, except with very few species. MXG
performs relatively poorly with few species because it mustconstruct the whole vector
for each vertex, and thus with many characters has quite a bitof work to do, while the
ASP axiomatizations do not. We ran two ASP solvers, cmodels [14] and clasp [9], on the
A+ axiomatization. Since the performance was similar, withclasp being slightly better,
we show only the clasp curve. The no-cardinality axiomatization and minisat performed
essentially the same as our basic MX axioms, except for beingslightly weaker with few
species. Our translation of the ASP axioms to MX performed poorly.

1 MXG and MXC are atwww.cs.sfu.ca/research/groups/mxp/; minisat atwww.
cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/, clasp atwww.cs.
uni-potsdam.de/clasp/ and PAUP athttp://paup.csit.fsu.edu/.
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Fig. 5.Frontier comparison of three MX axiomatizations and an ASP solution.

We conclude that our basic MX axiomatization, which is already substantially better
than the best solution in [13], is a good starting point for further work.

6 Enhancing Performance

In this section, we report on two ways we refined our basic axiomatization that dramat-
ically improved performance. Adding redundant axioms is a standard method in SAT
and CSP encodings, and [13] reported significant speedups with this method. It is not
well understood why particular redundant axioms help (or hurt) performance. Natu-
ral explanations are that they increase the amount of unit propagation performed for
some partial assignments, or that they help a clause-learning solver learn more useful
clauses. Symmetry-breaking axioms eliminate some - but notall - solutions among a
set of symmetric solutions. They often improve performance, even when only one so-
lution is needed, presumably because they help the solver effectively eliminate many
symmetric “near-solutions”.

Axioms 13 of Figure 6 states that no extra vertex is a leaf. It is neither symmetry-
breaking nor redundant, but has a similar flavour in that it removes only solutions that
are not very interesting, and improves performance.

Computing Vertex Depth In a binary CCS tree, each vector labeling a vertex at depth
k has exactlyk 1’s. Thus, ifK is the maximum number of1’s in any species vector,
the tree has height at mostK. We can add axioms requiring labels of vertices to respect
this property. These are axioms seven through ten and thirteen of Figure 6, which state:

– Each vertex must be assigned a unique depth (Axiom 8), which must be one greater
than that of its parent (Axiom 9).

– The depth of each vertex is the number of1’s in its label (Axiom 10).



Given: type Char Vertex State Depth;
A(Vertex, Char, State)
NSpecies: Vertex
NEdges: Vertex

Find: Edge(Vertex, Vertex)
Vector(Vertex, Char)

Satisfying:
// Axioms 1-6 are the Basic MX Axioms of Figure 2

VtxDepth(Nodes, Depth)
SpcDepth(Nodes, Chars, Depth)
{ SpcDepth(u,c,d) ← c=MIN ∧ d=MIN ∧ s = MIN ∧ A(u,c,s) (7)

SpcDepth(u,c,d) ← c=MIN ∧ SUCC(MIN, d) ∧ s = MAX ∧ A(u,c,s)
SpcDepth(u,c,d) ← SpcDepth(u,c1, d) ∧ SUCC(c1, c) ∧ A(u,c,s) ∧ s=MIN
SpcDepth(u,c,d) ← SpcDepth(u,c1, d1) ∧ SUCC(c1, c) ∧ SUCC(d1, d)

∧ A(u,c,s) ∧ s=MAX
}
∀ u : CARD(1; d; VtxDepth(u, d)) (8)
∀ u v d1 d2 : ((Edge(u,v) ∧ VtxDepth(u, d1) ∧ VtxDepth(v,d2)) ⊃ SUCC(d1, d2)) (9)
∀ u≤NSpecies d: (VtxDepth(u,d)⇔ SpcDepth(u,MAX,d)) (10)
∀ u>MIN : ¬ VtxDepth(u,MIN) (11)
∀ u>NSpecies v>u d1 d2 : ((VtxDepth(u,d1) ∧ VtxDepth(v,d2)) ⊃ d2 ≥ d1) (12)
∀ u>NSpecies : ∃ v : Edge(u,v) (13)

Fig. 6. MX-Depth (Axioms 1-10) and MX-Depth+ (Axioms 1-13) axiomatizations.

– Only the root has depth 0 (Axiom 11);

These axioms are redundant, but significantly improve performance. They use two
auxiliary relation symbols,SpcDepth andVtxDepth. VtxDepth(v,d) holds if vertex v
is at depth d.SpcDepth(s, c, d) holds if the number of1’s among the firstc characters
for species s is d. Axiom 7 is an inductive definition which plays a special role. The
form of this definition is such that MXG can compute the relation SpcDepth before
grounding Axioms 8, 9 and 10. Thus, it is as if a pre-processorcomputed this relation
and added it to the instance. SinceSpcDepth(s, MAX, d) says that species s is at depth
d, the grounder has computed the depth for each species. (Forsimplicity of axiomatiza-
tion, we also added a new typeDepth, which is a set the size of the maximum number
of ones in species vector. We added this to our instances in a simple pre-processing step,
although this could be avoided with a more complex axiomatization.)

Symmetry Breaking Our final example is a symmetry-breaking axiom. It states that
the depth of “extra vertices” (those which allow extra mutations), respects their numer-
ical order (Axiom 12).

Instance Pre-processingWe found that instances (including the largest) often satisfied
easily-checked properties that could be used to simplify them with a pre-processing
step, which greatly improved performance. We recursively applied the following rules:
1. Delete any all-zero column: The character does not mutate, so we need no node for
it. 2. Delete any column having exactly one 1: Ifc is 1 only in s, we construct a tree
without c, then addc = 0 to every vector on the tree, adding one new edge and vertex
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Fig. 7.Frontier plot showing performance improvement with refinedaxiomatizations (MX-Depth
and MX-Depth+) and instance pre-processing (MX-Depth+(PP)).

wheres appears. 3. Delete any column having exactly one 0: The 0 occurs in the root
zero vector. We construct a solution withoutc, and insert one new node beneath the
root in the solution, settingc = 1 everywhere except the root. 4. Delete any duplicate
species. 5. Deletes2 for any pairs1, s2 of species such that: (a)s1 ⊂ s2, i.e., every
character that is 1 fors1 is also 1 fors2; (b) |s2 − s1| = k, i.e.,s2 hask more 1’s than
s1; (c) ∀s3 6∈ {s1, s2}, |s2\s3| ≥ k. Solve the instance withouts2, then add it to a path
of lengthk belows1.

Performance with Refined Axioms and Pre-processingFigure 7 is a frontier plot
showing performance improvements obtained with enhanced axiomatizations and pre-
processing. For comparison, we included the curves for clasp and MX-Basic, and in
addition three new curves:

– MX-Depth: MX-Basic axioms extended with Axioms 7–10 of Figure 6;
– MX-Depth+: MX-Depth further extended with Axioms 11–13 of Figure 6;
– MX-Depth+(PP): Pre-processing of instances, and solving with the MX-Depth+

axiomatization (all axioms of Figure 6).

Remark 2.The “dip” in performance of MX-Depth+(PP) at 27 species is the conse-
quence of pre-processing being less effective on these.

How Much Better: Frontier vs.Run-time The frontier plots show that we have pro-
gressed in terms of our chosen measure, but do not show the (dramatic) corresponding
changes in run-time. Figure 8 illustrates, showing run-times as a function of number
of characters, with number of species fixed at 24. Analogous curves for fewer or more
species are similar, except for very small numbers of species. They (time) axis is log
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scale, so these run-times appear to be exponential in the number of characters. Notice
that the curves have very different slopes, suggesting thatthe run-time curves for MX-
Depth+ and MX-Depth+(PP) have much smaller exponents than the other solutions.
We cannot really extrapolate the curves for the ASP or Basic MX solutions to compare
run-times for large instances with the best methods, but unless the curves here are com-
pletely mis-leading the difference is certainly many orders of magnitude. Solving the
hardest instances with those methods is completely infeasible in practice.

7 MXG vs. PAUP

The two most widely used phylogeny software packages, PHYLIP [8] and PAUP [19],
both use two methods to carry out phylogenetic inference (for CCS and other models).
One method is based on heuristic search, which cannot guarantee optimality, and one is
based on branch-and-bound, which can. The branch-and-bound program for CCS in the
PHYLIP package is called PENNY (after the second author of [11], where branch and
bound was proposed for this task). In [13], the performance of PENNY was compared
with the ASP-based solutions developed there. PENNY was unable to prove optimality
of solutions for any instances with more than 18 species.

We compare the performance of our method against the branch and bound im-
plementation in PAUP. (We might expect PAUP (which is not free) to be faster than
PHYLIP (which is free), because it has had more development effort, and this seems to
be the case.) Figure 9 shows the frontier plots for the PAUP branch and bound imple-
mentation (PAUP-BnB), along with that for MX-Depth+(PP), and MX-Basic for com-
parison. Our MX-based solution is similar overall to PAUP, but comes closer to solving
our largest – and presumably hardest – instances. For completeness, we also ran PAUP
branch-and-bound on the instances produced by our pre-processing algorithm. Interest-
ingly, PAUP performance improved, and with our pre-processing it solved all instances.
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8 Discussion

We have developed MX-based solutions to a phylogenetic inference problem. A simple
and natural axiomatization gave much better performance than the only other declara-
tive solution to this problem we know of, and more refined efforts produced a solution
scheme with dramatically better performance. Ultimately,the kinds of methods and
tools we use must be validated by demonstrating good performance on a wide range of
problems and instances. Here we have tackled one interesting and non-trivial problem,
and we believe what we have learned here will usefully informmore general solutions
to a variety of phylogeny problems. Our instances here are derived from a single source
of data, but we have taken pains to ensure that our instances and performance mea-
sures provide a good measure of performance progress. The improvements in running
time, which are of many orders of magnitude, strongly suggest that our methods will be
significant improvements by any other reasonable measure ofperformance.

MX vs.ASP We remind the reader that, while our Model Expansion based solutions,
using the grounder MXG with ground solver MXC, perform dramatically better than the
ASP solution we evaluate, our results here do not justify a claim of superiority of MX
methodology or solvers over those of ASP. The best ASP solvers are quite powerful,
and alternate approaches to ASP axioms, combined with pre-processing of the sort we
do, might yield effective ASP-based solutions. (A comparison of MXG with several
ASP solvers appears in [16].)

PAUP Heuristics An easy criticism of the work presented here is that the heuristic
methods implemented in PAUP and PHYLIP often perform very well, and we have
not compared our methods with those. In fact, the heuristic search method of PAUP
finds optimum solutions for all of our instances well within our time limit. PAUP, of



course, does not know if they are optimal or not, and neither would a PAUP user. But,
if optimality per seis not of much value to a biologist, why would they care?

One reply is that declarative solutions are potentially very useful. For example,
user’s don’t worry about optimality because they are interested in criteria that are not
captured by the cost function. With standard tools they are limited in how they can ad-
dress these other preferences. Good declarative tools would allow them to add specific
constraints, say that certain species should not be in the same sub-tree, and find solu-
tions satisfying these (see also [7]). Another reason good declarative techniques could
pay off is that problems of interest are often variants of a few core problems, and in
some cases these are much more complex than the simple problem we studied here. An
example is the Galled Tree Network Haplotyping Problem [10]. An instance is geno-
type data, which consists of vectors of conflated pairs of haplotypes. The task is to infer
a set of haplotype vectors from the genotype data for which a parsimonious galled tree
network exists. A galled tree network is a significantly morecomplex phylogeny than
our binary CCS trees. The task of inferring small sets of haplotypes from genotype data,
without worrying about phylogenies, is itself NP-hard (although SAT solvers do well at
this [15], so MXG should also). Implementing a special-purpose program for this prob-
lem would be some effort, and finding simple heuristics whichwork reliably on large
instances of such a problems seems unlikely. However, if we had effective declarative
solutions for haplotype inference and construction of galled-tree networks, it would be
easy to combine them and have a good start toward a solution for the larger problem.

Declarative Pre-ProcessingA point that may be argued against the progress we claim
is that pre-processing of the instances before passing to the declarative solver was im-
portant, but this step is not declarative. Indeed, pre-processing is important in tackling
many problems, seemingly a stumbling block for declarativemethods. We point out
the technique we used in our MX-Depth axiomatization (Figure 6), where we wrote
an inductive definition to compute a set, and then used certain elements of that set in
other axioms. MXG computes the defined set directly, while grounding, so the ground
solver does not see this part of the axiomatization. Essentially any poly-time prepro-
cessing can be carried out using this technique (not necessarily by the current ver-
sion of MXG). With suitably refined languages, some users could accomplish such
pre-processing more conveniently with declarative descriptions than with procedural
code.

Conclusion We have not, yet, changed the way phylogenetic inference will be done in
practice. But we have made progress that justifies our optimism regarding declarative
approaches in general, and our MX-based tools in particular.
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