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Abstract. We present an algorithm, CDCL-AMS, for solving Modular
Systems consisting of a set of modules where, for each module, we have
a simple “black-box” solver. The algorithm is based on the Conflict-
Directed Clause Learning algorithm for SAT, and communicates asyn-
chronously with the black-box solvers to accommodate high variability
in response latencies.

1 Introduction

In many modern contexts, finding a solution to a problem amounts to solving
a combinatorial search problem where the constraints are implicit in a collec-
tion of more-or-less independent modules, each of which is a knowledge base
or problem-solving system in its own right, and typically presented via network
connections. The conflict-directed clause learning (CDCL) algorithm [5] is the
basis of SAT solvers with impressive performance on many constraint problems.
However, in the multi-module context we consider here, it is often undesirable
or even impossible to transform each module into a set of explicit constraints.
In this context, each module is a black box which answers queries, for exam-
ple of the form “do you have a solution consistent with partial solution X?”
In many settings, the response latencies for modules will be substantial, highly
variable, and largely un-correlated. The main purpose of this paper is to present
a CDCL-based algorithm suited to this context.

Modular Systems A general logic-based formalization of problem solving in a
multi-module context is provided by the notion of Modular Systems, as defined
in [8]. This generalizes the formalization of a decision problem as a class of
structures, or of a search problem as model expansion [6]. Formally, a module
is a class of structures for a fixed vocabulary. Modular systems are defined by
combining primitive modules with an algebra of modular systems. The algebra is
similar to Codd’s relational algebra, but defined on classes of structures rather
than on relational tables. The operations are Sequential Composition, Union,
Complementation, Projection and Feedback.

In this short paper, we restrict our attention to systems which are conjunc-
tions of “primitive” modules. In the context of solving a particular problem
instance. The algorithm is based on the idea of querying modules with a partial
structures, which for a particular problem instance are on a fixed universe. In



this setting, queries are essentially propositional, so for simplicity we present our
algorithms in purely propositional form. Our setting is as follows.

1. Each module Mi is a set of truth assignments for propositional vocabulary
σi. We say assignment α satisfies Mi if α ∈ Mi, and we say module Mi

implies clause C iff every assignment in Mi satisfies C.
2. Modular SystemM is a conjunction of modules. Its vocabulary is the union

of those of its modules. M is satisfiable if there is a truth assignment for σ
which satisfies every module. M implies clause C if every satisfying assign-
ment for M satisfies C.

3. For each module Mi, we have a solver Si that answers queries in the form of
partial truth assignments for σi. We consider only solvers which are propa-
gators, that is, when queried with partial assignment α for σi, in finite time
return one of:
(a) 〈Reject,Reason〉, where Reason is a set of clauses which are implied by

Mi and false in α.
(b) 〈Accept,Advice〉, where Advice is a set of clauses implied by Mi, with

exactly one literal not defined by α and all other literals false in α.

Remark 1. It is possible for Advice or Reason to be empty. In particular, a solver
Si for which Advice and Reason are always empty is simply verifier for Mi. It
follows that any verifier can be wrapped as a (not very helpful) propagator.

The CDCL Algorithm We assume the reader is familiar with CDCL, but
review some aspects here, and also fix some notation. Given CNF formula Γ ,
the algorithm incrementally constructs a sequence of literals α (the “assignment
stack”) which defines a partial truth assignment for Γ . (We henceforth gloss over
the distinction between assignments and sequences of literals.) The algorithm al-
ternately adds an unassigned literal l to α (called a “decision”), and then extends
α with any literals newly determined by unit propagation. The sub-sequence of
α consisting of only decision literals is the “decision sequence” corresponding to
α, and will be denoted δ. Each literal l of α that is not a decision is labelled
with the clause that the unit propagation engine used to set it true, called the
“reason for l”. This guess-propagate process continues until either α |= Γ , in
which case the algorithm halts, or the unit propagation engine determines that
a literal l must be true, but ¬l is already in α, called a “conflict”.

For clause set Γ and set δ of literals, we write l ∈ UP(Γ, δ) if setting the
literals of δ true and running unit propagation on Γ results in l being set true,
and C ∈ UP(Γ, δ) if C is obtained from a clause of Γ when, for every literal
l ∈ UP(Γ, δ) we delete from δ any clause containing l, and delete from each
clause of δ any occurrence of ¬l. Notice that, if α is an assignment stack, and
δ the corresponding decision sequence then α = UP(Γ, δ). Also, we denote the
empty clause by �, so � ∈ UP(Γ, δ) that executing unit propagation from Γ
and δ produces a conflict.

Upon a conflict, CDCL derives a clause C by resolution, using the reasons
labelling α. The clause C is used to determine a proper prefix α′ of α, which



replaces α as the current assignment stack (called “back-jumping”), and C is
added to Γ (it is called a “learned” clause). The clause C and assignment stack
α bear a particular relationship: C is an “asserting clause” α′ and Γ , as defined
next.

A clause C is a conflict clause for decision sequence δ and clause set Γ iff:
1) � ∈ UP(Γ,C), and 2) For each literal l ∈ C, l ∈ UP(Γ, δ). C is an asserting
clause for Γ and δ if it is a conflict clause and also satisfies: 3) For exactly one
literal l ∈ C, l 6∈ UP (Γ, δ−), where δ− is δ with its last element removed.

Observe that, when C is a conflict clause for α and Γ , UP(Γ ∪ {C}, δ) con-
tains at least one literal not in α, so immediately after back-jumping, the new
assignment stack is extended by unit propagation, which could in turn lead to
a new conflict. If a state is reached where this does not happen, the algorithm
returns to extending α with decisions.

Synchronous CDCL for Sets of Modules We can make a version of CDCL
for sets of modules very simply, provided we query them synchronously and
the response times are sufficiently fast. To do this, we simply query each solver
every time we extend the current assignment stack, adding all reasons and advice
returned by the solvers to Γ . However, we are interested in the case when these
properties do not hold, in which case it is unreasonable to make so many queries,
and unreasonable to have the algorithm wait for all solvers to respond to a given
query before proceeding.

2 Asynchronous CDCL for Modular Systems

Our asynchronous clause-learning algorithm, which we call CDCL-AMS, has
three processes (not including the solvers): The CDCL Engine, the Query Han-
dler and the Response Handler. These communicate via four data objects: clause
set Γ ; set QUERIES of available solver queries; set HOLD decision sequences
corresponding to pending queries; and set CONTINUE of query responses wait-
ing to be handled by the Engine. The Engine is a CDCL solver that tries to
decide satisfiability of M. It generates models of Γ , which become queries to
solvers. Each query is extended until either it is rejected by a solver, at which
time at least one clause is added to Γ , or is accepted by all solvers. The other
processes handle the communication between the Engine and the solvers.

Γ is initially empty, and is extended by clauses obtained from solvers in re-
sponse to queries, and by the standard clause learning mechanism. The algorithm
proceeds as in standard CDCL, extending its assignment stack until either a con-
flict or a satisfying assignment for Γ is obtained. Upon conflict, learned clause
derivation and back-jumping are carried out. This process is identical to stan-
dard CDCL, except for the role of HOLD, which is discussed below. If α |= Γ ,
α becomes a query to send to a solver, and the Engine:

1. Adds α to QUERIES;
2. Adds δ, the decision sequence corresponding to α, to HOLD;



3. Replaces δ with some proper subsequence, and modifies α accordingly. (This
is back-jumping in the absence of a true conflict. Correctness requires only
that the back-jump is proper, i.e., removes at least one decision from α.)

When a solver S becomes available, the Query Handler selects and removes an
appropriate query from QUERIES and submits it to S. (A query is appropriate
for S if S could reject it. Slightly more precisely: the vocabulary of α, less any
prefix of α that has previously been accepted by S, has non-empty intersection
with the vocabulary of S.) When S responds to query α, the Response Handler:

1. Adds all clauses in the returned Reasons or Advice to Γ . If the response
is Reject, but Reasons is empty, it adds to Γ the clause consisting of the
disjunction of the negations of the literals in δ;

2. Marks α to indicate that S has accepted it;

3. Removes the δ corresponding to α from HOLD.

A solution to M is an assignment that has been accepted by every solver.
In the algorithm, a query is sent only to one solver before being returned to
the main engine (via CONTINUE). This keeps all reasoning in one algorithm,
and also ensures that information obtained by the main engine is exploited as
soon as possible, avoiding, for example, submitting a query to a solver when
clauses returned by other solvers already imply its rejection. To keep track of
which solvers have accepted a query, each assignment stack has a mark for each
solver indicating its largest prefix which has been accepted by that solver. When
a query is returned to the main engine, via CONTINUE, it may be extended,
both by unit propagation involving new clauses and by new decisions, and these
marks are maintained.

The purpose of the HOLD set is to ensure that, while a response to a query
based on decision sequence δ is pending (in QUERIES, or being handled by a
solver), the engine does not generate any query which is “no better than” δ (i.e.,
is a superset of δ). To this end, each decision sequence δ in HOLD is treated by
the unit propagation engine as the clause δ, the disjunction of complements of
literals in δ.

The clauses in HOLD cannot be used as “reasons” for the purpose of asserting
clause derivation because they are guesses and might not be implied by M. In
the derivation, any literal set by unit propagation by using a clause of HOLD
must be treated as a decision literal. The standard methods for asserting clause
derivation ensure every learned clauses is unique. This now fails, and it is possible
that an execution of the body of the main loop of the Engine fails to generate
a new query or add a new clause. Loop iterations which are essentially “wheel-
spinning” may result. While undesirable, it seems that this cannot entirely be
avoided: If solvers take sufficiently long to respond to queries, the main engine
will generate all possible resolvents and all possible queries based on Γ , and can
make no further progress until some further query response arrives.

The CDCL-AMS Engine is given by Algorithm 1.



Algorithm 1: CDCL-AMS Engine

Input: Vocabulary σ
Output: SAT or UNSAT

1 δ ← any non-empty decision sequence
2 repeat
3 if CONTINUE 6= ∅ then
4 Remove one query γ from CONTINUE
5 if γ satisfied all modules then
6 return SAT
7 end
8 Remove γ from HOLD
9 δ ← γ

10 end
11 δ ← ExtendAndLearn-AMS(δ, Γ )
12 if δ = 〈〉 then
13 return UNSAT
14 end
15 if UP (Γ, δ) |= Γ then
16 Add δ to HOLD
17 Add δ to QUERIES
18 δ ← a proper sub-sequence of δ

19 end

20 end

Algorithm 1 is described in terms of decision sequences (δ and γ), but the
corresponding assignment stack, labelled with both reasons and marks from ac-
cepting solvers, is implicitly maintained, and is in fact what is being operated
on. (For example, in adding δ to QUERIES, it is clear that the labelled assign-
ment stack must be intended. The exception is line 16, where it is indeed just
the decision sequence δ that is added to HOLD.)

In line 11, ExtendAndLearn-AMS(δ,Γ ) carries out the process of extend-
ing decision sequence δ until either it satisfies Γ , or generates a conflict. In the
latter case, it may generate multiple conflicts (and learned clauses), eventually
returning a decision sequence δ such that either UP (Γ, δ) |= Γ or computing
UP(Γ, δ) does not generate a conflict. (This may correspond to many iterations
of the main loop of CDCL as it is usually presented.) At line 12, if δ = 〈〉, the
last learned clause was �.

Remark 2. If at any point Γ becomes unsatisfiable, the algorithm essentially
becomes a standard CDCL solver. In particular, it generates no new queries, and
once existing contents of QUERIES have been exhausted, and their responses
all handled, the algorithm becomes CDCL proving unsatisfiability of Γ .

In Line 5, “γ satisfied all modules” means that every solver S accepted (some
previous version of) γ at a time when it was (already) total for the vocabulary
of S.



Correctness If the algorithm returns SAT, then some assignment is total for,
and accepted by, every solver, so M is satisfiable. If the algorithm returns UN-
SAT, it is because the empty clause has been derived from Γ . SinceM |= Γ ,M
is unsatisfiable. It remains to establish termination.

Observe that the main engine is simply a CDCL engine which generates all
satisfying assignments for Γ . (Γ grows monotonically, so some generated satisfy-
ing assignments later are not satisfying, but this does not affect the argument.)
To see that the algorithm makes progress, we observe that every assignment α
generated by the engine is eventually extended until it either becomes a satisfy-
ing assignment for M, or is “killed” by generation of a clause which is implied
by M, but is false in α. We need to see that, in each iteration of the Engine
main loop, progress is made either by δ being killed by a new clause added to Γ ,
or by “getting closer” to satisfying every module. For the moment, set aside the
question of the “wheel-spinning” iterations mentioned above. Consider line 11,
where δ is re-assigned by the call to ExtendAndLearn-AMS(δ,Γ ). To avoid
ambiguity, let’s write β for the new value of δ. If at line 3 CONTINUE was
empty, then the standard CDCL process will ensure that either β is a proper
extension of δ, or that a clause that “kills” δ was added to Γ , and β is new. So
we have progress. If CONTINUE was not empty, δ could be killed either because
the response for δ was Reject (in which case a killing clause was added to Γ ),
or because unit propagation from δ produced a conflict based on other clauses
that have been added to Γ since δ was generated as a query. If δ does not get
killed, and is not total, then β is set to a proper extension of δ. If δ is not killed
and is total, then there is some solver S which has accepted a larger prefix of
α than the previous time this query was in QUERIES, and α is marked with
this information. In each case, we have made progress. It remains to verify that
every query is eventually responded to, and that “wheel-spinning” iterations
do not prevent eventual progress. There are finitely many possible queries, and
each solver responds to each query in finite time, so each query is eventually
responded to by a solver. Wheel-spinning iterations are only possible if HOLD
is not empty, and since every query is eventually responded to, every element of
HOLD is eventually deleted, at which point progress is ensured.

3 Discussion

Related Work Many related algorithms have been presented in the literature.
These include propagation via lazy clause generation [7], algorithms used in used
in “lazy” SMT solvers, methods for supporting external constraints in SMT and
ASP solvers [3, 2, 1], and distributed and parallel CSP and SAT algorithms [4].
An abstract algorithmic scheme for Modular System solvers was given in [8]. We
will give detailed comparisons in a longer paper.

Future Work A number of details of this algorithm warrant more careful
discussion, and there are many refinements and heuristics to consider when con-
templating implementation, even without taking into account the practical com-



plexity of interacting with real on-line solvers. We will discuss some of these in
a longer paper. In future work, we intend to examine the extension of these al-
gorithms to the full algebra of modular systems; develop versions for use with
solvers which are more than just propagators; study the relationship between
problem structure and algorithm complexity; develop versions which make use
of FO vocabulary of modules as classes of structures; attend more closely to
issues that need to be addressed for implementability; and develop versions for
use in distributed and many-core computational environments.
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