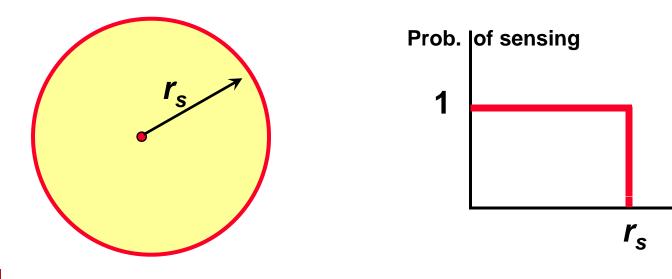
School of Computing Science Simon Fraser University, Canada

PCP: A Probabilistic Coverage Protocol for Wireless Sensor Networks

Mohamed Hefeeda and Hossein Ahmadi

ICNP 07 17 October 2007



Motivations

- Sensor networks have been proposed for many apps: surveillance, forest fire detection, ...
- Common in most apps:

SFU

- Each sensor detects events within its *sensing range*
- Sensors collaborate to deliver data to processing centre
- Many previous works assume *disk* sensing model

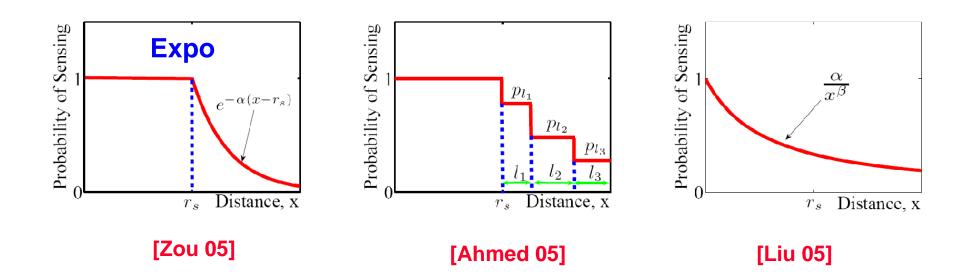
distance

Motivations (cont'd)

- Why disk sensing model?
 - Easier to design and analyze coverage protocols
- What is wrong with it?
 - Not too realistic [Zou 05, Ahmed 05, Cao 05, ...]
 - Wastes sensor capacity: signals don't fall abruptly \rightarrow chance to detect events after r_s
 - Activates more sensors → more interference, shorter network lifetime
 - Protocols my not function in real environments

Our Work

- New coverage protocol for *probabilistic sensing models* (denoted by PCP)
 - Simple, energy efficient
 - Robust against clock drifts, failures, location inaccuracy
- One model does not fit all sensor types ->
 - PCP is designed with limited dependence on sensing model → can be used with various sensor types
- PCP can use disk sensing model as well



Related Works

- Lots of coverage protocols assuming disk model
 - PEAS [Ye 03], OGDC [Zhang 05], CCP [Xing 05], ...
 - We compare PCP (with disk model) vs. OGDC, CCP
- Analysis of probabilistic sensing models
 - [Liu 04] studies implications of adopting prob. models
 - [Lazos 06] analyzes prob. of coverage under general sensing modes and heterogeneous sensors
 - Neither presents distributed coverage protocols
- Coverage protocols using probabilistic models
 - CCANS [Zou 05] assumes exponential sensing model
 - We show that PCP (with expo model) outperforms CCANS by wide margins

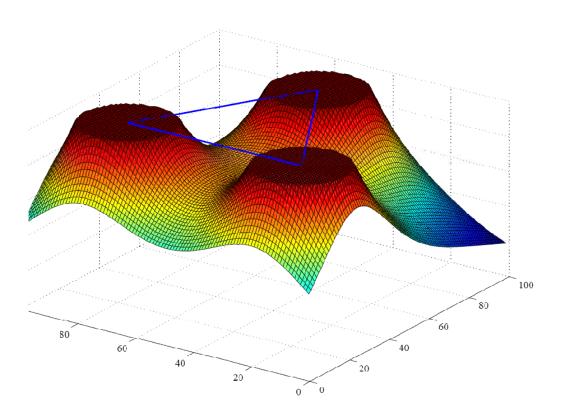
Probabilistic Sensing Models

- Several models have been proposed in literature
- Our protocol can work with various models

Probabilistic Coverage: Definitions

Def 1: An area A is probabilistically covered with threshold θ if for every point x in A:

$$P(x) = 1 - \prod_{i=1}^{n} \left(1 - p_i(x) \right) \ge \theta$$


- where $p_i(x)$: prob. that sensor *i* detects events at x
- That is, the collective probability of sensing events at x by all sensors is at least θ

Probabilistic Coverage: Definitions (cont'd)

Def 2: x is called the least-covered point in A if:

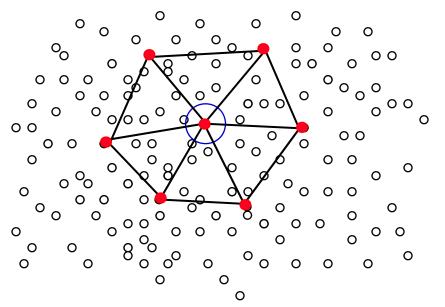
 $P(x) \le P(y) \quad \forall x, y \in A \text{ and } x \neq y$

 Ex.: least-covered point by three sensors using expo model

Probabilistic Coverage: Basic Ideas

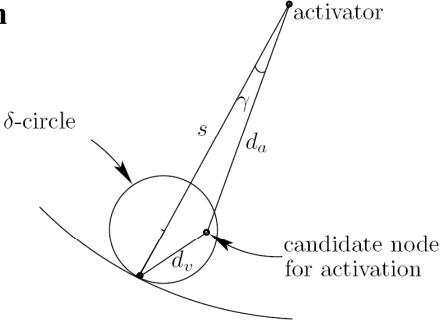
- Activate sensors such that the least-covered point in A has prob of sensing $\geq \theta$
- To do this in distributed manner, we
 - divide A into smaller subareas,
 - determine location of the least-covered point,
 - activate sensors to meet θ coverage in each subarea
- We choose subareas to be equi-lateral triangles
 - Activate sensors at vertices, others sleep →
 - Yields optimal coverage in disk sensing model [Bai 06]

Probabilistic Coverage: Basic Ideas (cont'd)


- Size of each triangle?
 - Stretch the separation between active sensors to the maximum while maintaining θ coverage \rightarrow
 - Minimize number of activated sensors
- Theorem 1: Maximum Separation under the exponential sensing model is:

$$\sqrt{3}\left(r_{s}-\frac{\ln\left(1-\sqrt[3]{1-\theta}\right)}{\alpha}\right)$$

PCP: Probabilistic Coverage Protocol


- One node randomly enters active state
- The node sends an activation message
- Closest nodes to vertices of triangular mesh activated
 - Using activation timers as function of proximity to vertex
- Activated nodes send activation messages

PCP: Further Optimization

- Def 3: δ-circle is the smallest circle drawn anywhere in A s.t. there is at least one node inside it
- Minimizes number of nodes in WAIT state → saves energy
- The diameter δ is computed based on node deployment
- Paper shows calculations for uniform and grid distributions

PCP: Convergence and Correctness

Theorem 2: PCP converges in at most

$$l(\tau_a \delta^2 + \tau_m) / (s - \delta)$$

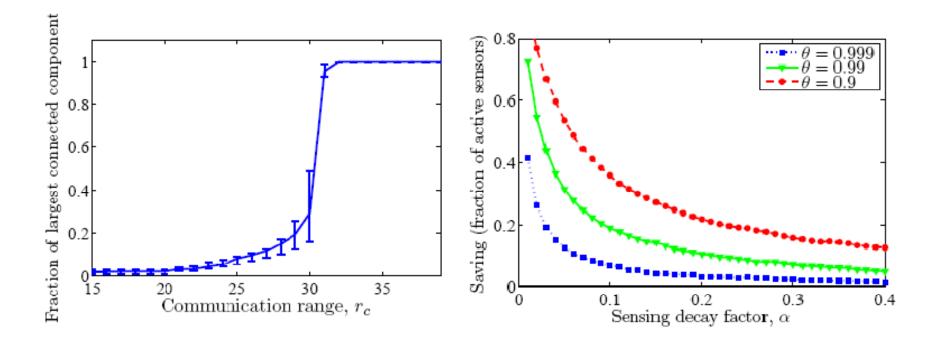
steps with every point has a prob. of sensing $\geq \theta$

- Convergence time depends *only* on area size (not number of sensors) → PCP can scale

PCP: Activated Nodes and Message Complexity

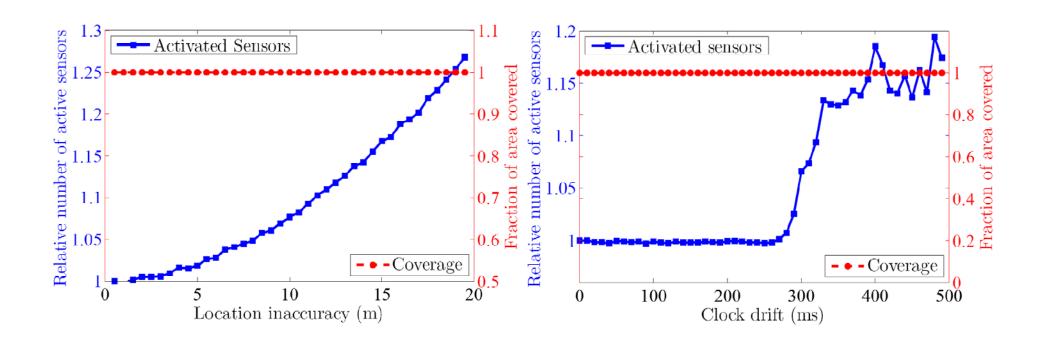
Theorem 3: PCP activates at most

$$l^2/\sqrt{3}(s-\delta)^2$$

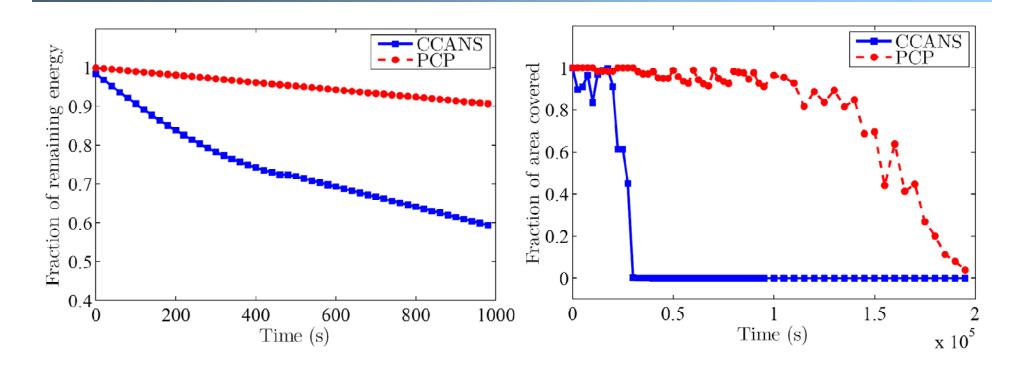

nodes to maintain coverage, and exchanges at most that number of messages **PCP: Connectivity**

Theorem 4: Nodes activated by PCP will be connected if communication range r_c is greater than or equal to maximum separation s

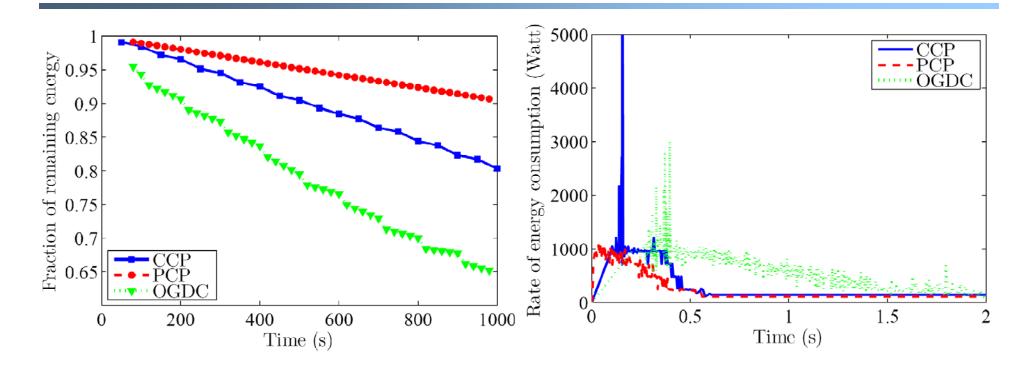
Evaluation: Setup


- We implemented PCP
 - in NS-2; worked fine for up to 1,000 nodes, and
 - in our own packet level simulator; scaled to more than 20,000 nodes deployed in a 1 km x 1 km area
 - Implemented Expo and Disk sensing models
- Used elaborate energy model (Motes) in [Zhang 05][Ye 03]
- Rigorous evaluation to
 - Verify correctness
 - Show robustness
 - Compare PCP against the state-of-the-art protocols:
 - Probabilistic coverage protocol : CCANS
 - Deterministic coverage protocols : CCP, OGDC
- Only sample results are presented

Evaluation: Correctness and Savings


- Connectivity achieved when $r_c \ge s$
- Significant savings can be achieved by gauging coverage threshold θ

Evaluation: Robustness


- Coverage is maintained even with large: (i) location errors, and (ii) clock drifts
- Cost: slight increase in number of activated sensors

Evaluation: PCP vs. CCANS

- Significant energy savings
- Much longer lifetime

Evaluation: PCP vs. OGDC, CCP

PCP (with disk model) outperforms OGDC and CCP. Why?

- Peak in CCP is due to many HELLO messages
- OGDC takes longer time to converge

Conclusions

- Presented a distributed protocol (PCP) for maintaining coverage under probabilistic and deterministic sensing models
 - Robust, efficient, and outperforms others
 - More suitable for real environments than others
- PCP Limitation
 - Does not provide coverage with multiple degrees

Thank You!

Questions??

 Details are available in the extended version of the paper at:

http://www.cs.sfu.ca/~mhefeeda

