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Forest fires cost millions of dollars in damages and claim many human lives every year. Apart
from preventive measures, early detection and suppression of fires is the only way to minimize

the damages and casualties. We present the design and evaluation of a wireless sensor network
for early detection of forest fires. We first present the key aspects in modeling forest fires. We do
this by analyzing the Fire Weather Index (FWI) System, and show how its different components

can be used in designing efficient fire detection systems. The FWI System is one of the most
comprehensive forest fire danger rating systems in North America, and it is backed by several
decades of forestry research. The analysis of the FWI System could be of interest in its own
right to researchers working in the sensor network area and to sensor manufacturers who can

optimize the communication and sensing modules of their products to better fit forest fire detection
systems. Then, we model the forest fire detection problem as a coverage problem in wireless
sensor networks, and we present a distributed algorithm to solve it. In addition, we show how

our algorithm can achieve various coverage degrees at different subareas of the forest, which can
be used to provide unequal monitoring quality of forest zones. Unequal monitoring is important
to protect residential and industrial neighborhoods close to forests. Finally, we present a simple
data aggregation scheme based on the FWI System. This data aggregation scheme significantly

prolongs the network lifetime, because it only delivers the data that is of interest to the application.
We validate several aspects of our design using simulation.

Categories and Subject Descriptors: H.4.0 [Information Systems]: Information Systems Applications—Gen-
eral; C.3 [Computer Systems Organization]: Special-Purpose and Application-Based Systems

General Terms: Design, Algorithms

Additional Key Words and Phrases: Forest Fire Modeling, Forest Fire Detection Systems, Wireless
Sensor Networks, Coverage Protocols

1. INTRODUCTION

Forest fires, also known as wild fires, are uncontrolled fires occurring in wild areas and
cause significant damage to natural and human resources. Forest fires eradicate forests,
burn the infrastructure, and may result in high human death toll near urban areas. Com-
mon causes of forest fires include lightning, human carelessness, and exposure of fuel to
extreme heat and aridity. It is known that in some cases fires are part of the forest ecosys-
tem and they are important to the life cycle of indigenous habitats. However, in most cases,
the damage caused by fires to public safety and natural resources is intolerable and early
detection and suppression of fires deem crucial. For example, in August 2003, a forest fire
was started by a lightning strike in the Okanagan Mountain Park in the Province of British
Columbia, Canada. The fire was spread by the strong wind and within a few days it turned
into a firestorm. The fire forced the evacuation of 45,000 residents and burned 239 homes.
Most of the trees in the Okanagan Mountain Park were burned, and the park was closed.
Although 60 fire departments, 1,400 armed forces troops and 1,000 fire fighters took part
in the fire fighting operation, they were largely unsuccessful in stopping the disaster. The
official reports estimate the burned area as 25,912 hectaresand the total cost as $33.8 mil-
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Table I. Forest fires in the Province of British Columbia, Canada since 1995.
Year Number of Fires Number of Hectares Burned Total Cost (millions)
2006 2,590 131,086 $156.0
2005 976 34,588 $47.2
2004 2394 220,516 $164.6
2003 2473 265,050 $371.9
2002 1783 8,539 $37.5
2001 1266 9,677 $53.8
2000 1539 17,673 $52.7
1999 1208 11,581 $21.1
1998 2665 76,574 $153.9
1997 1175 2,960 $19.0
1996 1358 20,669 $37.1
1995 1474 48,080 $38.5

lion [B.C. Ministry of Forests and Range ]. In the province ofBritish Columbia alone,
there have been 2,590 forest fires during 2006 [B.C. Ministryof Forests and Range Web
Page ]. These burned 131,086 hectares and costed about $156 million. Table I summa-
rizes the extent and cost of wild fires in BC in previous years.The situation of forest fires
is even worse if we look at the national level. Over the past ten years, on average, there
have been 4,387 and 52,943 forest fires in Canada and the United States, respectively, per
year [Canadian Forest Service (CFS) Web Page ]. Preventing asmall fraction of these fires
would account to significant savings in natural and human resources.

Apart from preventive measures, early detection and suppression of fires is the only way
to minimize the damage and casualties. Systems for early detection of forest fires have
evolved over the past decades based on advances in related technologies. We summarize
this evolution in the following, motivating the need and potential of wireless sensor net-
works for this critical application.

1.1 Evolution of Forest Fire Detection Systems

Traditionally, forest fires have been detected using fire lookout towers located at high
points. A fire lookout tower houses a person whose duty is to look for fires using spe-
cial devices such as Osborne fire finder [Fleming and Robertson 2003]. Osborne fire finder
is comprised of a topographic map printed on a disk with graduated rim. A pointer aimed
at the fire determines the location and the direction of the fire. Once the fire location is
determined, the fire lookout alerts fire fighting crew. Fire lookout towers are still in use in
many countries around the world including USA, Australia, and Canada [B.C. Fire Look-
out Towers ].

Unreliability of human observations in addition to the difficult life conditions for fire
lookout personnel have led to the development of automatic video surveillance systems
[Fire Watch Web Page ; Breejen et al. 1998; Khrt et al. 2001]. Most systems use Charge-
Coupled Device (CCD) cameras and Infrared (IR) detectors installed on top of towers.
CCD cameras use image sensors which contain an array of lightsensitive capacitors or
photodiodes. In case of fire or smoke activity, the system alerts local fire departments,
residents, and industries. Current automatic video surveillance systems used in Germany,
Canada, and Russia are capable of scanning a circular range of 10 km in less than8 min-
utes [Fire Watch Web Page ]. The accuracy of these systems is largely affected by weather
conditions such as clouds, light reflection, and smoke from industrial activities. Automatic
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video surveillance systems cannot be applied to large forest fields easily and cost effec-
tively, thus for large forest areas either aeroplanes or Unmanned Aerial Vehicles (UAV)
are used to monitor forests. Aeroplanes fly over forests and the pilot alerts the base station
in case of fire or smoke activity. UAVs, on the other hand, carry both video and infrared
cameras and transmit the collected data to a base station on the ground that could be up to
50 km away. UAVs can stay atop for several hours and are commanded by programming
or joystick controls [Aerovision Web Page ].

More advanced forest fire detection systems are based on satellite imagery. Advanced
Very High Resolution Radiometer (AVHRR) [AVHRR Web Page ] was launched by Na-
tional Oceanic and Atmospheric Administration (NOAA) in 1998 to monitor clouds and
thermal emission of the Earth. Moderate Resolution ImagingSpectroradiometer (MODIS)
[MODIS Web Page ] was launched by NASA in 1999 on board of the Aqua satellite to
capture cloud dynamics and surface radiation from the Earth. Current satellite-based for-
est fire detection systems use data from these instruments for forest fire surveillance. The
instruments provide a complete image of the Earth every 1 to 2days. The minimum de-
tectable fire size is 0.1 hectare, and the fire location accuracy is 1 km [L et al. 2000; Lohi
et al. 1999]. The accuracy and reliability of satellite-based systems are largely impacted
by weather conditions. Clouds and rain absorb parts of the frequency spectrum and reduce
spectral resolution of satellite imagery which consequently affects the detection accuracy.
Although satellite-based systems can monitor a large area,relatively low resolution of
satellite imagery means a fire can be detected only after it has grown large. More impor-
tantly, the long scan period—which can be as long as2 days—indicates that such systems
cannot provide timely detection.

To summarize, the most critical issue in a forest fire detection system is immediate re-
sponse in order to minimize the scale of the disaster. This requires constant surveillance
of the forest area. Current medium and large-scale fire surveillance systems do not accom-
plish timely detection due to low resolution and long periodof scan. Therefore, there is
a need for a scalable solution that can provide real time fire detection with high accuracy.
We believe that wireless sensor networks (WSN) can potentially provide such solution.

Recent advances in WSN support our belief that they make a promising framework for
building near real-time forest fire detection systems. Currently sensing modules can sense
a variety of phenomena including temperature, relative humidity, and smoke [Crossbow
Inc. Web Page ] which are all helpful for fire detection systems. Sensor nodes can operate
for months on a pair of AA batteries to provide constant monitoring during the fire season.
Moreover, recent protocols make sensor nodes capable of organizing themselves into a self-
configuring network, thus removing the overhead of manual setup. Large-scale wireless
sensor networks can be easily deployed using aeroplanes at alow cost compared to the
damages and loss of properties caused by forest fires.

1.2 Contributions and Paper Organization

In this paper, we present the design and evaluation of a wireless sensor network for early
detection of forest fires. Our design is based on solid forestry research conducted by the
Canadian Forest Service [Canadian Forest Service (CFS) WebPage ] over several decades.
In particular our contributions can be summarized as follows:

—We present the key aspects in modeling forest fires. We describe the Fire Weather Index
System [Canadian Forest Service (CFS) Web Page ; de Groot 1998], and show how
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its different components can be used in designing efficient fire detection systems. This
could be of interest to researchers working in this area and to sensor manufacturers
who can optimize the communication and sensing modules of sensors to fit forest fire
detection systems.

—We model the forest fire detection problem as ak-coverage problem (k ≥ 1) in wireless
sensor networks, and present a distributed algorithm to solve this problem.

—We present a simple data aggregation scheme based on the FWI System, which signifi-
cantly prolongs the network lifetime.

—We show how ourk-coverage algorithm can be extended to address several issues rel-
evant to forest fire detection systems, such as providing different coverage degrees at
different subareas of the forest. This is important because, for example, the parts of
the forest that are near residential areas need to be monitored with higher accuracy than
others.

The rest of the paper is organized as follows. In Sec. 2, we summarize the related work.
Sec. 3 describes the FWI System which is the basis of our design. The details of our design
are presented in Sec. 4. In Sec. 5, we evaluate various aspects of the proposed system, and
we conclude the paper in Sec. 6.

2. RELATED WORK

Sensor networks have several appealing characteristics for environmental monitoring ap-
plications such as habitat monitoring [Mainwaring et al. 2002; Akyildiz et al. 2002], and
forest fire detection systems [Son et al. 2006; Yu et al. 2005;Doolin and Sitar 2005;
Chaczko and Ahmad 2005].

For example, in [Mainwaring et al. 2002], the authors apply wireless sensor networks to
habitat monitoring. A set of system requirements are developed and a system architecture
is proposed to address these requirements. Different issues such as deployment, data col-
lection, and communication protocols are discussed and design guidelines are provided.
The system is comprised of patches of sensor nodes reportingtheir readings to a base sta-
tion through gateway nodes. The base station is connected tothe Internet and exposes the
collected data to a set of web-based applications. They present experimental results from a
habitat monitoring system consisting of 32 nodes deployed on a small island off the coast
of Maine. The sensors were placed in burrows to collect temperature data which are used
to detect the presence of nesting birds.

The authors of [Doolin and Sitar 2005] show the feasibility of wireless sensor networks
for forest fire monitoring. Experimental results are reported from two controlled fires in
San Francisco, California. The system is composed of 10 GPS-enabled MICA motes
[Crossbow Inc. Web Page ] collecting temperature, humidity, and barometric pressure
data. The data is communicated to a base station which records it in a database and pro-
vides services for different applications. The experiments show that most of the motes in
the burned area were capable of reporting the passage of the flame before being burned.
In contrast to this system which reports raw weather data, our design processes weather
conditions based on the Fire Weather Index System [CanadianForest Fire Danger Rating
System (CFFDRS) Web Page ] and reports more useful, summarized, fire indexes.

In [Hartung et al. 2006], the authors address the problem of fire behavior study rather
than fire detection. They present FireWxNet, a portable fire sensor network to measure the
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Fig. 1. Structure of the Fire Weather Index (FWI) System.

weather conditions surrounding active fires. The system is comprised of sensor nodes, we-
bcams, and base stations which are capable of long distance communication. FireWxNet
is deployed at the fire site to study the fire behavior using thecollected weather data and
visual images. Temperature, relative humidity, wind speedand direction are collected ev-
ery half an hour while cameras provide a continuous view of the current fire condition.
The experimental results indicate that the system is capable of providing useful data for
fire behavior analysis. Our system is designed for a different application which is early
detection of forest fires.

A Forest fire Surveillance System for South Korea mountains is designed in [Son et al.
2006]. The authors provide a general structure for sensor networks and provide details
for a forest fire detection application. The sensor types, operating system and routing
protocol are discussed. Sensor nodes use a minimum cost pathforwarding to send their
readings to a sink which is connected to the Internet. The data is reported to a middleware
which calculates the forest fire risk level according to formulas defined by forestry service.
The calculation is depending on daily measurement of relative humidity, precipitation,
and solar radiation. The results are recorded in a database that can be accessed by web
applications over the Internet. Instead of using a middleware, we propose calculating fire
indexes according to the FWI System at cell heads where the data is more likely to be
correlated. This removes the need for communicating all sensor data to the sink. Instead
only a few aggregated indexes are reported to reduce energy consumption.

3. UNDERSTANDING AND MODELING FOREST FIRES

Forests cover large areas of the earth and are often home to many animal and plant species.
They function as soil conserver and play an important role inthe carbon dioxide cycle.
To assess the possibility of fires starting in forests and rate by which they spread, we
adopt one of the most comprehensive forest fire danger ratingsystems in North America.
We use the Fire Weather Index (FWI) System developed by the Canadian Forest Service
(CFS)[Canadian Forest Service (CFS) Web Page ], which is based on several decades of
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Fig. 2. Forest soil layers.

forestry research [San-Miguel-Ayanz et al. 2003].
The FWI System estimates the moisture content of three different fuel classes using

weather observations. These estimates are then used to generate a set of indicators showing
fire ignition potential, fire intensity, and fuel consumption. The daily observations include
temperature, relative humidity, wind speed, and 24-hour accumulated precipitation, all
recorded at noon Local Standard Time (LST). The system predicts the peak fire danger
potential at 4:00 pm LST. Air temperature influences the drying of fuels and thus affects the
heating of fuels to ignition temperature. Relative humidity shows the amount of moisture
in the air. Effectively, a higher value means slower drying of fuels since fuels will absorb
moisture from the air. Wind speed is an important factor in determining fire spread for
two main reasons: (a) it controls combustion by affecting the rate of oxygen supply to the
burning fuel, and (b) it tilts the flames forward, causing theunburned fuel to be heated
[Pearce 2000]. The last factor, precipitation, plays an important role in wetting fuels.

As shown in Fig. 1, the FWI System is comprised of six components: three fuel codes
and three fire indexes. The three fuel codes represent the moisture content of the organic
soil layers of forest floor, whereas the three fire indexes describe the behavior of fire. In
the following two sections, we briefly describe these codes and indexes. In Section 3.3, we
present how these codes and indexes can be interpreted and utilized in designing a wireless
sensor network for early forest fire detection.

3.1 Fuel Codes of the FWI System

The forest soil can be divided into five different layers [Canadian Forest Service (CFS)
Web Page ; de Groot 1998] as shown in Fig. 2. Each layer has specific characteristics and
provides different types offuelsfor forest fires. These characteristics are reflected in fuel
codes of the FWI System. Related to each fuel type, there is a drying rate at which the
fuel loses moisture. This drying rate, called timelag, is the time required for the fuel to
lose two-thirds of its moisture content with a noon temperature reading of21◦C, relative
humidity of 45%, and a wind speed of 13 km/h [de Groot 1998]. Also, each fuel type has
a fuel loading metric, which describes the average amount (in tonnes) of that fuel which
exists per hectare.

There are three fuel codes in the FWI System: Fine Fuel Moisture Code (FFMC), Duff
Moisture Code (DMC), and Drought Code (DC). FFMC representsthe moisture content
of litter and fine fuels, 1–2 cm deep, with a typical fuel loading of about 5 tonnes per
hectare. The timelag for FFMC fuels is 16 hours. Since fires usually start and spread
in fine fuels[de Groot 1998], FFMC can be used to indicate easeof ignition, or ignition
probability.
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Table II. Ignition Potential versus the FFMC value.
Ignition Potential FFMC Value Range

Low 0–76
Moderate 77–84

High 85–88
Very High 89–91
Extreme 92+

The Duff Moisture Code (DMC) represents the moisture content of loosely compacted,
decomposing organic matter, 5–10 cm deep, with a fuel loading of about 50 tonnes per
hectare. DMC is affected by precipitation, temperature andrelative humidity. Because
these fuels are below the forest floor surface, wind speed does not affect the fuel mois-
ture content. DMC fuels have a slower drying rate than FFMC fuels, with a timelag of
12 days. Although the DMC has an open-ended scale, the highest probable value is about
150[de Groot 1998]. The DMC determines the probability of fire ignition due to lightning
and also shows the rate of fuel consumption in moderate depthlayers. The last fuel mois-
ture code, the Drought Code (DC), is an indicator of the moisture content of the deep layer
of compacted organic matter, 10–20 cm deep, with a fuel loading of about 440 tonnes per
hectare. Temperature and precipitation affect the DC, but wind speed and relative humid-
ity do not have any effect on it due to the depth of this fuel layer. DC fuels have a very
slow drying rate, with a timelag of 52 days. The DC is indicative of long-term moisture
conditions, determines fire’s resistance to extinguishing, and indicates fuel consumption in
deep layers. The DC scale is also open-ended, although the maximum probable value is
about 800[de Groot 1998].

3.2 Fire Indexes of the FWI System

Fire indexes of the FWI System describe the spread and intensity of fires. There are three
fire indexes: Initial Spread Index (ISI), Buildup Index (BUI), and Fire Weather Index
(FWI). As indicated by Fig. 1, ISI and BUI are intermediate indexes and are used to
compute the FWI index. The ISI index indicates the rate of fire spread immediately after
ignition. It combines the FFMC and wind speed to predict the expected rate of fire spread.
Generally, a 13 km/h increase in wind speed will double the ISI value. The BUI index is a
weighted combination of the DMC and DC codes, and it indicates the total amount of fuel
available for combustion. The DMC code has the most influenceon the BUI value. For
example, a DMC value of zero always results in a BUI value of zero regardless of what
the DC value is. DC has its strongest influence on the BUI at high DMC values, and the
greatest effect that the DC can have is to make the BUI value equal to twice the DMC
value.

The Fire Weather Index (FWI) is calculated from the ISI and BUIto provide an estimate
of the intensity of a spreading fire. In effect, FWI indicates fire intensity by combining
the rate of fire spread with the amount of fuel being consumed.Fire intensity is defined
as the energy output measured in kilowatts per meter of flame length at the head of a fire.
The head of a fire is the portion of a fire edge showing the greatest rate of spread and fire
intensity. The FWI index is useful for determining fire suppression requirements as well as
being used for general public information about fire danger conditions. Although FWI is
not directly calculated from weather data, it depends on those factors through ISI and BUI.
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Fig. 3. Using two main components of the Fire Weather Index System in designing a
wireless sensor network to detect and combat forest fires.

3.3 Interpreting and Using the FWI System

There are two goals of the proposed wireless sensor network for forest fires: (i) provide
early warning of a potential forest fire, and (ii) estimate the scale and intensity of the
fire if it materializes. Both goals are needed to decide on required measures to combat a
forest fire. To achieve these goals, we design our sensor network based on the two main
components of the FWI System: (i) the Fine Fuel Moisture Code (FFMC), and (ii) the
Fire Weather Index (FWI). The FFMC code is used to achieve the first goal and the FWI
index is used to achieve the second. In the following, we justify the choice of these two
components by collecting and analyzing data from several forestry research publications.

The FFMC indicates the relative ease of ignition and flammability of fine fuels due to
exposure to extreme heat. To show this, we interpolate data from [de Groot 1998] to plot
the probability of ignition as a function of FFMC. The results are shown in Fig. 3(a). The
FFMC scale ranges from 0–101 and is the only component of the FWI System without
an open-ended scale. Generally, fires begin to ignite at FFMCvalues around 70, and the
maximum probable value that will ever be achieved is 96 [de Groot 1998]. Based on data
available from the web site of The Sustainable Resource Development Ministry of the
Province of Alberta, Canada, we classify in Table II the potential of fire ignition versus the
FFMC ranges. Low values of FFMC are not likely to be fires and can be simply ignored,
while larger values indicate more alarming situations.

The FWI index estimates the fire intensity by combining the rate of fire spread (from the
Initial Spread Index, ISI) with the amount of fuel being consumed (from the Buildup Index,
BUI). A high value of the FWI index indicates that in case of fireignition, the fire would be
difficult to control. This intuition is backed up by several studies. For example, in 1974, the
Alberta Forest Service performed a short term study of experimental burning in the Jack
pine forests in north eastern Alberta. Snapshots of the resulting fires and the computed
FWI indexes are shown in Fig. 4 for three fires with different FWIvalues [Alexander and
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(a) Moderate surface fire (FWI = 14)(b) Very intense surface fire (FWI =
24)

(c) Developing active fire (FWI =
34)

Fig. 4. Experimental validation of the FWI index. Pictures shown from experiments con-
ducted by the Alberta Forest Service, and are reproduced with permission.

Table III. Potential Fire Danger versus the FWI value.
FWI Class Value Range Type of Fire Potential Danger

Low 0–5 Creeping surface fire Fire will be self extinguishing
Moderate 5–10 Low vigor surface fire Easily suppressed with hand tools

High 10–20 Moderately vigorous surface fire Power pumps and hoses are needed
Very High 20–30 Very intense surface fire Difficult to control
Extreme 30+ Developing active fire Immediate and strong action is critical

Groot 1988], we obtained a permission to reproduce these images. Another study [de Groot
1998] relates the fire intensity with the FWI index. We plot this relationship in Fig. 3(b)
by interpolating data from [de Groot 1998]. In Table III, we provide a classification of fire
danger as a function of the FWI index based on the data available from [Canadian Forest
Service (CFS) Web Page ].

Both the FFMC code and the FWI index are computed from four basic weather condi-
tions: temperature, relative humidity, precipitation, and wind speed. These weather condi-
tions can be measured by sensors deployed in the forest. The accuracy and the distribution
of the sensors impact the accuracy of the FFMC code and the FWI index. Therefore, we
need to quantify the impact of these weather conditions on FFMC and FWI. Using this
quantification, we can design our wireless sensor network toproduce the desired accuracy
in FFMC and FWI. In addition, this quantification could help other researchers and sensor
manufacturers to customize or develop new products that aremore suitable for the forest
fire detection application. To do this quantification, we contacted the Canadian Forest Ser-
vice to obtain the closed-form equations that describe the dependence of FFMC and FWI
on the weather conditions. We were given access to these equations as well as a program
that computes them [Wagner and Pickett 1985], we post an electronic copy of this report
at [Network Systems Lab Web Page ] for interested researchers in this area. We studied
the sensitivity of FFMC and FWI to air temperature and relative humidity. Sample of our
results are shown in Fig. 5 and Fig. 6. The sensitivity of FFMCto temperature and relative
humidity is shown in Fig. 5 for fixed wind speed at5 km/h and precipitation level of5
mm. Fig. 6 shows the sensitivity of FWI to temperature and relative humidity under simi-
lar conditions. An interesting observation for sensor manufacturers is that the accuracy of
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Fig. 5. Sensitivity of the FFMC code to basic weather conditions.
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Fig. 6. Sensitivity of the FWI Index to basic weather conditions.

the sensor readings is critical in high temperature ranges and when humidity is low, while
fine accuracy is not that important outside these ranges. We will use these figures to bound
the errors in estimating FFMC and FWI in the next section.

In summary, the FFMC code and FWI index provide quantifiable means to detect and
respond to forest fires. Low values of FFMC are not likely to befires and may be ignored.
In case of higher FFMC values, where a fire is possible, based on the values of FWI, some
fires might be left to burn, some should be contained and others need to be extinguished
immediately. We design our wireless sensor network for forest fire detection based on the
FFMC code and FWI index. Our system uses weather data collected by sensor nodes to
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Fig. 7. The architecture of the proposed forest fire detection system. Nodes self-organize into clusters, where
cluster heads aggregate collected data using the FWI System. The shaded area represents a forest zone with
higher fire potential and thus needs higher monitoring accuracy.

calculate these indexes.

4. EARLY DETECTION OF FOREST FIRES USING WIRELESS SENSOR NET-
WORKS

In this section, we present the design of a wireless sensor network for forest fire detection.
Indeed there are many research problems in such large-scalesensor network. We focus on
a subset of them, and we leverage solutions for other problems in the literature, as outlined
below.

The system considered in this paper is depicted in Fig. 7. A sensor network deployed
in a forest reports its data to a processing center for possible actions, such as alerting local
residents and dispatching fire fighting crews. Sensors are deployed uniformly at random
in the forest by, for example, throwing them from an aircraft. A single forest fire season
is approximately six months (between April and October), and it is desired that the sensor
network lasts for several seasons. Since the lifetime of sensors in active mode is much
shorter than even a fraction of one season, sensor deployment is assumed to be relatively
dense such that each sensor is active only during a short period of time and the monitoring
task is rotated among all sensors to achieve the target network lifetime. Therefore, during
the network operation, a small fraction of the deployed sensors are kept inactivemode,
while the rest are put insleepmode to conserve energy. It is important to mention that
the forest fire detection application considered in this paper works on a large time scale.
Thus, active sensors are not continuously monitoring the area. Rather, they periodically
(e.g., every 30 minutes) perform the sensing task. Therefore, sensors in the active mode
are further divided intoactive-senseandactive-listenmodes. In the former, all modules
(transmission, receiving, and sensing) of the sensor are turned on, while in the latter only
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the receiving module is on.
Sensors are assumed to self-organize into clusters using a distributed protocol. After

the termination of the clustering protocol, sensors know their cluster heads and the whole
network is connected. Any of the protocols described in the recent survey in [Younis
et al. 2006] can be employed. Our proposed system does not restrict the cluster size, and
it allows single- and multi-hop intra-cluster communications. The sensor clustering and
data routing problems are outside the scope of this paper. Weconsider four problems in
this paper. First, modeling the forest fire detection application as a coverage problem in
wireless sensor networks, which we describe in Sec. 4.1. Second, designing a distributed
coverage protocol, presented in Sec. 4.2. Third, developing a data aggregation scheme
that is suitable for the forest fire detection application, presented in Sec. 4.3. The final
problem is achieving unequal fire protection in different zones in the forest, e.g., forest
zones near industrial plants and residential areas, or forest zones with drier conditions and
higher temperatures (denoted by hot spots). This is illustrated in Fig. 7 by activating more
sensors in the shaded hot spot area. We make the case for this unequal protection using
real data and present a method to achieve it in Sec. 4.4.

4.1 Modeling Forest Fire Detection as a Coverage Problem

We discussed in the previous section the relevance and importance of the FWI System,
especially its FFMC and FWI components. We design our wireless sensor network for
forest fire detection based on the FWI System. As shown in Fig. 7, the deployed sen-
sors are grouped into clusters, and each cluster elects a cluster head. Each cluster head
periodically computes the FFMC and FWI for its cluster by sampling weather conditions
from active sensors inside the cluster. This information isthen forwarded—through multi
hop routing—to a processing center for possible actions. Recall that FFMC and FWI are
computed from basic weather conditions such as temperatureand humidity (see Fig. 1).

To be useful in detecting fires and assessing their intensity, FFMC and FWI need to be
estimated within specific error bounds. For example, if the error in the estimated FWI is
high (e.g.5 units), the fire would be misclassified as indicated by Table III. To achieve the
desired accuracy in FFMC and FWI, basic weather conditions should, in turn, be measured
accurately. The accuracy level of measuring basic weather conditions is determined from
the curves relating FWI and FFMC to weather conditions, such as Figs. 5 and 6. For
instance, the worst-case slope of the FWI-Temperature curvein Fig. 6(a) at RH =10% is
about 0.62. Thus, an error up to 1 unit in FWI requires measuring the temperature with
1.6 degree accuracy. Knowing the needed accuracy in measuring weather conditions, the
sensor network should be designed to collect data with that accuracy. We illustrate this
design using temperature as an example, the same can be done for other metrics.

Consider measuring the temperature in an arbitrary cluster. Sensors in the cluster should
be activated in a way that the samples reported by them represent the temperature in the
whole cluster. This means that the cluster area should be covered by the sensing ranges of
active sensors. This is called 1-coverage, or coverage withdegree 1, because each point
in the area is supposed to be within the sensing range of at least one sensor. In dense
sensor networks and when sensors are deployed uniformly at random in the area—which
is the case for forest fire detection systems as described above—area coverage can be
approximated by sensor location coverage [Yang et al. 2006]. That is, we need to activate
a subset of sensors to ensure that the locations of all sensors are 1-covered.

In real forest environments, sensor readings may not be accurate due to several factors,
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including: (i) different environment conditions (e.g., some sensors happen to be in the
shade of trees, while others are not), (ii) inaccurate calibration of sensors, (iii) aging of
sensors, and (iv) unequal battery levels in sensors. In addition, to cover large forests,
sensing ranges of deployed sensors will have to be large (in order of hundreds of meters),
which may introduce more errors in the sensor readings. Therefore, multiple (k) samples
may be needed to estimate the temperature at a location with the target accuracy. That is,
each location needs to be sensed byk different sensors. This is calledk-coverage, where
k ≥ 1. The actual value ofk depends on the expected error in the sensor readings and the
tolerable error in the FFMC and FWI indexes. One way to estimate k is described in the
following.

We define a random variableT as the reading of a sensor inside the cluster. It is reason-
able to assume thatT follows a normal distribution because of the many factors contribut-
ing to it, which all are naturally stochastic. We denote the mean and standard deviation
of T as µT and σT , respectively. The estimated meanµ̂T , also known as the sample
mean, is given by:̂µT = 1

k

∑
k

i=1
ti, wheretis are the individual sensor readings, andk

is the number of samples. As the number of samples increases,the sample mean becomes
closer to the actual mean. The error between the sample mean and the population mean,

δT = |µT − µ̂T |, is calculated as follows [Taylor 1997]:δT = zα

2

σT√
k

, wherez is the

standard normal distribution,α is the length of the confidence interval,σT is the popula-
tion standard deviation, andk is the sample size.zα

2
can be obtained from tables of the

standard normal distribution. Rearranging the formula, weget:

k =

⌈
(zα

2

σT

δT

)2
⌉
. (1)

Thus, given a confidence value of100(1 − α)% and standard deviation ofσT , we can
determine the sample size required to estimate the population meanµT within δT error
margin. σT can be calculated from the specifications of the sensing board. The error
in sensor measurements is usually interpreted as2σT . To illustrate, suppose we want to
measure the temperature with a maximum error of1◦C and with a confidence value of
95%. Assume that sensors have temperature sensing boards with an error up to2◦C, i.e.,
σT = 1. Therefore, we need a coverage degreek = (1.96 × 1/1)2 = 4. In the evaluation
section, we study and validate the relationship between thecoverage degreek and the error
in FFMC and FWI. We also study the tradeoff between the error inthe sensor readingsσT

and the required coverage degreek to meet given target errors in FFMC and FWI.
To summarize, in this section we have established a mapping between the forest fire

detection system and thek-coverage problem (k ≥ 1) in sensor networks. We showed how
k can be estimated based on the error in sensor readings and themaximum tolerable errors
in estimating the FFMC code and FWI index. The tolerable errors in FFMC and FWI can
be estimated from Figs. 5, 6 and Tables II, III, based on the application requirements. After
computingk, we need to activate a subset of sensors to ensurek-coverage, and keep other
sensors in sleep mode to conserve energy. In Sec. 4.2, we present a distributed protocol to
achieve this.

4.2 Distributed K-Coverage Algorithm

To achievek-coverage (k ≥ 1) in different clusters of the monitored forest, we need a
distributed, energy-efficient, algorithm. As mentioned above, area coverage can be ap-
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proximated by ensuring that all node locations are covered.Thus, thek-coverage problem
becomes selecting a minimum subset of nodes to cover all nodes. Selecting the minimum
subset for activation is desired because it reduces total energy consumption and thus pro-
longs the network lifetime. Computing the minimum subset, however, is NP-hard [Yang
et al. 2006]. In [Hefeeda and Bagheri 2007], we designed a logarithmic factor approxima-
tion algorithm to solve thek-coverage problem. Our previous work focused on the theo-
retical analysis of the algorithm without paying much attention to the specific application.
In the current work, we customize this algorithm to the forest fire detection application,
and we consider several issues that were not addressed before. We first summarize the key
ideas of ourk-coverage algorithm.

We model thek-coverage problem as a set system for which an optimal hitting set cor-
responds to an optimal solution for coverage. At a high level, our algorithm begins with
selecting a set of points referred to asǫ-net. Initially the number of points in theǫ-net is1.
All points are assigned weights that are initially equal to1. A point is added to theǫ-net
with a probability proportional to its weight. If a pointq is selected to be inǫ-net,k nodes
inside a disk of radiusrs centered atq are randomly selected to be part of the solution for
k-coverage.rs is the sensing range of a node. The algorithm then verifies if activating the
selected set of sensor locations sufficiently covers all points. If so, it terminates. Other-
wise, the weight of a point that is not sufficiently covered isdoubled and a newǫ-net with
the same size is selected. After a specific number of iterations, if no solution was found,
the size of theǫ-net is doubled to allow a larger solution. It is proved in theextended ver-
sion of [Hefeeda and Bagheri 2007] that this algorithm terminates and achieves a solution
of size within a logarithmic factor of the optimal.

The above algorithm is centralized, but it can easily be implemented in a distributed
manner. This is because it only maintains two global variables,ǫ-net size and aggregate
weight of all points, and both variables can be estimated with local information. The
distributed algorithm, called DRKC, estimates theǫ-net size as follows. All nodes keep
track of the desiredǫ-net size using the local variablenetSize, which is initially set to
1. Since theǫ-net size is simply doubled in every iteration, nodes can getan accurate
estimate of the desired size of theǫ-net for the current iteration. Knowing the desiredǫ-
net size enables nodes to independently contribute to the current ǫ-net in a way when all
contributions are added up, the desired globalǫ-net is produced. A node decides (locally)
to be part of theǫ-net with a probabilityp = (weight/totalWeight) × netSize. If a
node is chosen, it will activatek other nodes to be part of thek-coverage solution by
broadcasting an ACTIVATE message. The ACTIVATE message contains a probabilityPa

which is calculated as(k − curCoverage)/(neighborSize − curCoverage), wherek is
the requested coverage degree, andcurCoverage is the current degree of coverage at the
node. When a node receives an ACTIVATE message, it becomes active with probability
Pa. Pa is so chosen to make the expected number of newly activated nodes equal to
k − curCoverage which is needed by the sender of the ACTIVATE message.

A node uses the variabletotalWeight to estimate the aggregate weight of all nodes.
totalWeight is initialized to the number of nodes in the networkn. In the centralized
algorithm, the weight of only one under-covered node is doubled. To emulate this in the
distributed algorithm, an under-covered node doubles its weight with probability1/nu,
wherenu is the number of under-covered nodes in the network.nu is approximated locally
as(n−netSize). Thus, the expected number of nodes that double their weights is equal to
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Fig. 8. The need for coverage with different degrees in forest fires. The picture shows different fire danger levels
at different zones. Reproduced with permission from the Ministry of Forests and Range, Protection Program, BC,
Canada.

1, which is the same as in the centralized case. Now since the total weight is increased by
the weight of a single under-covered node in each iteration,a node can estimate the total
weight by adding the average weight of nodes(totalWeight/n) to its own current value
of totalWeight. To verify k-coverage, each node independently checks its own coverage
by listening to messages exchanged in its neighborhood, andcounting number of active
nodes. A node terminates the algorithm if it is sufficiently covered. Otherwise, it doubles
its weight with probability1/nu, and starts another iteration. It is shown in the extended
version of [Hefeeda and Bagheri 2007] that the distributed algorithm: (i) performs close to
the centralized algorithm in terms of number of activated sensors, (ii) converges fast, (iii)
does not rely on sensor location information, and (iv) does not require fine-grained clock
synchronization.

4.3 Application-Oriented Data Aggregation

We propose a simple data aggregation scheme explicitly designed for forest fire detection
applications. Based on our analysis of the FWI System in Sec. 3.3, the application can
interpret and uses only the FFMC code and the FWI index. Thus, individual sensor read-
ings of various weather conditions may not be of interest to the application. Therefore,
there is not need to deliver all these detailed data to the processing center. We propose
that cluster heads aggregate individual sensor readings bycomputing the FFMC and FWI
using their respective closed-form equations [Wagner and Pickett 1985]. Each cluster head
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periodically collects weather conditions from sensors in its cluster and computes FFMC
and FWI.

Cluster heads carry out significant load, because they compute FFMC and FWI from
complicated equations and participate in data forwarding across clusters. Hence, unless
the role of the cluster head is rotated, heads run out of energy and die earlier than other
nodes. This may cause coverage holes in some areas, or it could partition the network
and disrupt data forwarding. To balance the load across all nodes, we propose to scale
the probability of a node activating itselfPa upon receiving an ACTIVATE message by its
level of remaining energy. Thus, a node that has been a cluster head before will have a
smaller probability of becoming cluster head again. Our simulation results (Sec. 5) show
that this simple extension balances the load across all nodes and significantly prolongs the
network lifetime.

4.4 Unequal Monitoring of Forest Zones

Unequal monitoring of different forest zones is important in forest fire detection systems,
because some areas may have higher fire potential than others. For example, dry areas at
higher elevations are more susceptible to fires than lower and more humid areas. Moreover,
it is usually important to monitor parts of the forest near residential and industrial zones
with higher reliability and accuracy. To confirm the above intuition, we collected real data
on the fire danger rating produced by the Protection Program of the Ministry of Forests and
Range, in the Province of British Columbia, Canada. Sample of the data is shown in Fig.
8 for 23 July 2007. The figure shows several hot spots with ‘High’ danger rating within
larger areas with ‘Moderate’ rating. The number, size, and locations of the hot spots are
dynamic, because they depend on weather conditions. Maps such as the one shown in Fig.
8 are produced daily.

To support unequal monitoring of forest zones, we propose tocover the forest with
different degrees of coverage at different zones. Intuitively, in hot spots, the FFMC and
FWI are expected to be in the high ranges of their scales, and small errors in these ranges
could lead to mis-classifying a fire and/or taking the wrong re-actions. For example, the
‘Very High’ range of FFMC in Table II is 89–91 (only two units), while the ‘Low’ range
is 0–76. As discussed in Sec. 4.1, higher accuracy in computing FFMC and FWI require
collecting weather conditions more accurately, which can be achieved by controlling the
coverage degreek.

We extend our distributedk-coverage algorithm (DRKC), described in Sec. 4.2, to sup-
port coverage with various degrees at different zones in theforest at the same time. We
are not aware of any other coverage protocol in the literature that supports this feature. We
first model areas requiring different coverage degrees as polygons, an example is shown
in Fig. 9. Then, the vertices of each polygon are communicated to all cluster heads in the
network. Each cluster head in turn can determine whether they are within the area with the
different coverage. If this is the case, it notifies the sensors in its own cluster to adjust their
operation to achieve the new requested coverage degree. This is easily done by our DRKC
algorithm, because coverage verification in DRKC is done by individual nodes: each node
decides locally to terminate the algorithm if it finds itselfsufficiently covered by its active
neighbors. Otherwise, it doubles its weights with a small probability and begins a new it-
eration to activate more of its neighbors. In the evaluationsection, we verify that coverage
with various degrees can indeed be achieved by DRKC.

As discussed in Sec. 4.2, our DRKC does not use any location information. Thus, it
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Regular covergae, k = 1

k = 4

k = 8

Fig. 9. Modeling forest zones that require different degrees of coverage as polygons.

saves the overhead of localization protocols, or the cost ofequipping sensors with GPS,
which is a significant saving considering the scale of the forest fire detection system. How-
ever, cluster heads need to determine whether or not they areinside some hot spots. This
can be achieved by associating sensor IDs to their approximate locations during the de-
ployment process. For example, during deployment, sensorswith specific ID ranges can
be thrown by the aircraft in target geographical locations.This mapping is maintained by
the data processing center to dynamically configure the sensor network. It is important to
emphasize that the approximate locations do not impact the operation of our DRKC proto-
col, they are only used to delineate hot spots. Hot spots are usually measured in kilometers,
and thus approximate locations are suitable for specifyingthem.

5. EVALUATION

In this section, we evaluate various aspects of the proposedwireless sensor network for
forest fire detection. We start by assessing the accuracy in estimating the FFMC and FWI
fire indexes as a function of the coverage degreek. We also analyze the tradeoff between
the error in sensor readings and the required coverage degree. Then, we evaluate ourk-
coverage algorithm and verifies that it can provide unequal monitoring of the forest zones,
and balances the load across all sensors and hence prolongs the network lifetime.

5.1 Accuracy of FFMC and FWI

In Section 4.1, we established a relationship between the coverage degree and the accuracy
in estimating FFMC and FWI. We numerically analyze this relationship. We vary the
coverage degreek between1 and16. We assume that the accuracy of the temperature
sensing board is4◦C, i.e.,σT = 2. All calculations are done for a confidence level of
95%. For each value ofk, we compute the error in estimating the temperatureδT . Then,
we use the software program that computes the FFMC and FWI indexes [Wagner and
Pickett 1985] to determine the maximum error in these indexes, given a±δT error in
the temperatureT . We repeat the experiment for several values of the temperature and
humidity. Some of the results are given in Fig. 10. First, as predicted by the analysis in
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Fig. 10. Error in calculating: (a) FFMC Code, (b) FWI Index forvarious coverage degrees
and in different weather conditions.
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Fig. 11. The tradeoff between the accuracy in sensor readingand the required coverage
degree, given a maximum tolerable error in the FWI index. (a) considers a wide range for
sensor accuracy, while (b) zooms in the small range between 0–5.

Sec. 4.1, the figure shows that higher coverage degrees result in smaller errors in FFMC
and FWI. Second, the figure exposes an important issue: the error in FFMC and FWI is
amplified in extreme conditions (high temperatures and low humidity), which is due to
the non-linearity of the complex equations that determine FFMC and FWI. For example,
Fig. 11(a) indicates that an error up to 2 units in FFMC could result whenk = 2 and the
temperature is10◦C, while this error could be as high as 12 units if the temperature is50◦C
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with the samek value. This means that in extreme conditions, which are the most important
for the forest fire detection system, even small errors in sensing the temperatures could lead
to significant errors in FFMC and FWI, which may lead the sensornetwork operators to
take incorrect actions. This also highlights the importance of unequal monitoring of forest
zones: host spots of the forest need to be covered with higherdegrees to provide accurate
assessment of the potential and intensity of fires. Furthermore, the results in Fig. 10 can
be used todynamicallyconfigure the sensor network such that higher coverage degrees
are enforced as the weather conditions get more severe. Dynamic configuration of the
sensor network (or parts of it) is easily achieved by ourk-coverage algorithm because of
its distributed nature, this is demonstrated in the next subsection.

In the previous experiment, the error in sensor reading is fixed. In our next experiment,
we analyze the tradeoff between the accuracy of the sensing boards and the required cov-
erage degree such that a given maximum error in FFMC and FWI is not exceeded. Since
forest fire detection is an important application for sensornetworks, sensor manufacturers
may customize or even create new products explicitly for this application. In this case, un-
derstanding the needed accuracy of the sensing module couldresult in significant savings
especially for mass production of sensors.

We consider a wide range of accuracy for sensing boards; the results presented here are
for temperature sensors, but the analysis can be carried outfor other weather conditions
as well. As mentioned in Sec. 4.1, the error in sensor readingis specified as2σT . We
vary the error in sensor reading from0.25◦C to 10◦C, which captures the the range of
accuracy achieved by very accurate and expensive sensors torough and cheap sensors. For
each value of the error reading, we compute the required coverage degreek to meet the
given error in FWI and FFMC using their equations. We repeat for a few target errors in
FWI and FFMC. We plot the results for the FWI index in Fig. 11; Fig. 11(a) shows the
results for the full error range, while Fig. 11(b) zooms in the small error range between
0–5 for illustration. The figure clearly exposes the tradeoff: for larger errors in sensor
readings (i.e., cheaper sensors), higher coverage degreesare required to meet the target
error in FWI and FFMC. For example, for a maximum error in FWI of 1.0 unit, a coverage
degree of 1 is needed when sensors that have temperature error readings up to1◦C are
deployed, whereas a coverage degree of 8 would tolerate temperature error readings up to
4.5◦C while achieving the same accuracy in FWI. Higher coverage degrees require keeping
more sensors active, which means that they will be depleted from energy faster. Therefore,
to achieve a target network lifetime, more sensors will needto be deployed for higher
coverage degrees. However, with mass production of less-accurate sensors, increasing the
degree of coverage could result in more cost-effective sensor networks that achieve the
same function.

5.2 Evaluation of the k-coverage Algorithm

We have implemented a packet-level simulator for our distributedk-coverage algorithm in
C++. Simulators like NS-2 did not scale to the number of nodes(in order of thousands)
needed to evaluate our algorithm. We fix an area of size1km×1km and vary the coverage
degreek between1 and8. We deploy up to 12,000 sensors uniformly at random with the
same density over the entire area. The large number of sensors is needed to support cov-
erage with high degrees. We assume that the sensing range of nodes is100m; using other
sensing ranges does not impact the operation of our algorithm, because it only changes the
fraction of active sensors. We employ the energy model in [Yeet al. 2003] and [Zhang and
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(c) Requestedk = 8

Fig. 12. Coverage with different degrees achieved by our algorithm.

Hou 2005], which is based on the Berkeley Mote hardware specifications. In this model,
the node power consumption in transmission, reception, idle and sleep modes are60, 12,
12, and0.03 mW, respectively. The results are summarized in the following.

Unequal Monitoring using Different Coverage Degrees.In this experiment, we validate
that our distributedk-coverage algorithm can maintain coverage with various degrees to
achieve unequal monitoring of different zones in the forest. We assume there are two hot
spots inside the forest that need higher coverage degrees than other areas, as shown in Fig.
9. The two spots are modeled as two polygons. The requested coverage degree in one spot
is 8 and in the other is4. Nodes outside the hot spots are requested to have a coverage
degree of1. We run our algorithm and notify nodes inside the hot spots ofthe different
coverage degrees. We let the algorithm converge, and we check the coverage degree of
every single point in the area. We plot the achieved coveragedistribution in each area in
Fig. 12. The results indicate that in each of the hot spots, our algorithm indeed achieves the
requested coverage degree while it provides1-coverage in the rest of the area. Fig. 12 also
shows that our algorithm does not over cover areas, because the fraction of nodes having
higher-than-requested coverage degrees decreases fast. This is important to save energy
and prolong network lifetime.

Load Balancing. We study the average load on individual nodes and on the network
lifetime under ourk-coverage algorithm. We measure the load on a node by the energy
consumed by that node. Once a node runs out of energy, it is assumed to be failed or dead.
We run our algorithm till all nodes are dead. After each roundof the algorithm, we count
the number of alive nodes. We plot the percentage of alive nodes versus time. We repeat
the whole experiment for various coverage degrees, fromk = 1 to 8. Sample of the results
are shown in Fig. 13. As the figure shows, most of the nodes stayalive for a long period
(more than 200 days). Then, they gradually die. This means that the algorithm did not over
utilize some nodes in early rounds, otherwise, they would have died earlier. Notice that the
energy of a node is enough for it to be active in a few days, and if a node were chosen as a
cluster head for several times, it will probably survive foronly a few hours. These results
confirm that our algorithm distributes the load uniformly across all deployed nodes. This
is critical in order to keep nodes alive for the longest possible period and achieve more
reliable coverage. This also extends the network lifetime as shown by our next experiment.
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Fig. 13. Ourk-coverage algorithm balances load across all nodes, since most of them stay
alive for long periods.
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Fig. 14. Ourk-coverage algorithm prolongs network life, because100% of the area is
k-covered is over long periods.

Network Lifetime and Node Failures.Next, we analyze the sensor network lifetime
under ourk-coverage algorithm as sensors dynamically fail when they run out of energy.
We define the network lifetime as the time till the coverage drops below100%, i.e., there
are some points in the area that have coverage less thank. Analyzing the network lifetime
is critical in a forest fire detection system, because the sensor network should last for at
least one fire season. We use the same setup as in the previous experiment, except we
measure coverage not the number of alive nodes. We run the simulation for a long time
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and periodically check the coverage degree for every singlepoint in the area. A point is
considered covered if its coverage degree is at leastk. We varyk between1 and8 and
plot some of the results in Fig. 14. The figure shows that100% coverage of the area
is maintained through a long period of time, more than 200 days. This is because our
algorithm uniformly distributes load on nodes.

Fig. 14 also shows that coverage decreases at a slower rate than the number of alive
nodes in Fig. 13. For example, in Fig. 13(a), the number of alive nodes starts to drop
below 100% around day 200, while100% coverage is maintained till almost day 300 as
shown in Fig. 14(a). This demonstrates the robustness of ouralgorithm against node
failures. In addition, the results in Fig. 14 imply that alive nodes are not grouped in
certain subareas, rather, they are uniformly distributed in the whole area. Therefore, our
k-coverage algorithm prolongs the network lifetime becauseit uniformly balances the load
across all nodes and it keeps alive nodes distributed throughout the whole area.

6. CONCLUSIONS

We presented the design of a wireless sensor network for early detection of forest fires.
Our design is based on the Fire Weather Index (FWI) System, which is backed by decades
of forestry research. The FWI System is comprised of six components: three fuel codes
and three fire indexes. The three fuel codes represent the moisture content of the organic
soil layers of forest floor, whereas the three fire indexes describe the behavior of fire. By
analyzing data collected from forestry research, we showedhow the FWI System can be
used to meet the two goals of a wireless sensor network designed for forest fires: (i) provide
early warning of a potential forest fire, and (ii) estimate the scale and intensity of the fire
if it materializes. To achieve these goals, we designed our sensor network based on two
main components of the FWI System: the Fine Fuel Moisture Code(FFMC), and the Fire
Weather Index (FWI). The FFMC code is used to achieve the first goal and the FWI index
is used to achieve the second.

We modeled the forest fire detection problem as ak-coverage problem, withk ≥ 1. We
computed the required coverage degrees to achieve a given accuracy level in estimating dif-
ferent components of the FWI System. We then described the application of our distributed
k-coverage algorithm to solve thek-coverage problem. Our algorithm is simple to imple-
ment and does not require any specific node deployment schemes. Therefore, nodes can be
uniformly deployed by, for example, throwing them from an aircraft. This significantly fa-
cilitates node deployment in real life. We showed through simulations that our algorithm:
(i) balances load across all deployed nodes, and therefore maintains reliable coverage and
significantly prolongs the network lifetime; and (ii) can provide various coverage degrees
at different areas of the forest, and thus can achieve higherdetection accuracy in important
areas such as near residential or industrial neighborhoods.
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