
Industrial Automation as a Cloud Service
Tamir Hegazy, Senior Member, IEEE and Mohamed Hefeeda, Senior Member, IEEE

Abstract—New cloud services are being developed to support a wide variety of real-life applications. In this paper, we introduce a new

cloud service: industrial automation, which includes different functionalities from feedback control and telemetry to plant optimization

and enterprise management. We focus our study on the feedback control layer as the most time-critical and demanding functionality.

Today’s large-scale industrial automation projects are expensive and time-consuming. Hence, we propose a new cloud-based

automation architecture, and we analyze cost and time savings under the proposed architecture. We show that significant cost and time

savings can be achieved, mainly due to the virtualization of controllers and the reduction of hardware cost and associated labor.

However, the major difficulties in providing cloud-based industrial automation systems are timeliness and reliability. Offering

automation functionalities from the cloud over the Internet puts the controlled processes at risk due to varying communication delays

and potential failure of virtual machines and/or links. Thus, we design an adaptive delay compensator and a distributed fault tolerance

algorithm to mitigate delays and failures, respectively. We theoretically analyze the performance of the proposed architecture when

compared to the traditional systems and prove zero or negligible change in performance. To experimentally evaluate our approach, we

implement our controllers on commercial clouds and use them to control: (i) a physical model of a solar power plant, where we show

that the fault-tolerance algorithm effectively makes the system unaware of faults, and (ii) industry-standard emulation with large

injected delays and disturbances, where we show that the proposed cloud-based controllers perform indistinguishably from the

best-known counterparts: local controllers.

Index Terms—Cloud computing, industrial automation, delay compensation, fault tolerance, feedback control

Ç

1 INTRODUCTION

1.1 Context and Motivation

CLOUD computing is proving to be an important area
that requires further research and development to

accommodate more applications [24]. It has attracted signifi-
cant interest from academia, industry, governments, and
even individual users not only because of the promised cost
savings, but also because it can improve existing computing
services, e.g., video streaming [13]. In addition, cloud
computing offers opportunities to create new services, e.g.,
robotics [8], [21] and manufacturing [35]. In this paper, we
introduce a new cloud service: industrial automation.
We show that the proposed service reduces the time and cost
incurred in deploying automation systems, which are quite
complex and require large human effort to build [26]. Further,
we address how to migrate vital automation functionality to
the cloudwithout compromising the systemperformance.

It is noteworthy that the work proposed in this paper fits
an ongoing trend that evolved several decades ago when
digital computers were first introduced to control systems
around the year of 1960 in the form of Direct Digital Control
(DDC) [34]. Ever since, evolution of control system has been
associated with the advancement of computing devices [34].

Several functionalities, e.g., monitoring, logging, optimiza-
tion, and asset management, have been added on top of the
core direct digital control functionality, forming an automa-
tion system. As a result, a current industrial automation sys-
tem is indeed a multi-tiered architecture entailing several
hierarchical layers of computation, communication, and
storage [33]. With such history, we see a great potential in
studying the application of an evolving computing model,
such as cloud computing to industrial automation systems,
which could provide several benefits to end users, including
cost saving and agility.

1.2 Background: Industrial Automation

The purpose of this section is to briefly introduce basic
industrial automation concepts relevant to this work. This
should help readers without enough industrial automation
background to better understand the rest of the paper. We
use a simplified, yet a real-life example to introduce the con-
cepts. Such example will be used later in the evaluation of
the proposed approach.

Consider the solar power plant, whose process diagram
is shown in Fig. 1, which is a simplified version of the
design in [17]. The operation of the solar power plant is
divided into four main process cycles: synthetic oil cycle,
salt cycle, steam cycle, and condensation cycle. The oil cycle
collects the solar energy, while the salt cycle stores it to
pump it in later. The steam cycle and the condensation cycle
are responsible for operating a steam turbine. The oil cycle
starts at the solar collector mirrors, which collect the sun
heat along horizontal pipes passing oil. Solar collectors can
be rotated to follow the sun direction. The oil absorbs the
heat and passes it in two branches to interact with the salt
cycle and the steam cycle. The salt cycle has two modes:
heat storage and heat pumping. If the heat absorbed by the
oil exceeds the required amount to run the plant, the salt is

� T. Hegazy is with the School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA. This work was done while
visiting Simon Fraser University.
E-mail: tamir.hegazy@ece.gatech.edu.

� M. Hefeeda is with the School of Computing Science, Simon Fraser Uni-
versity, Burnaby, BC, Canada, and the Qatar Computing Research Insti-
tute, Doha, Qatar. E-mail: mhefeeda@cs.sfu.ca.

Manuscript received 17 Mar. 2014; revised 11 Sept. 2014; accepted 18 Sept.
2014. Date of publication 22 Sept. 2014; date of current version 2 Sept. 2015.
Recommended for acceptance by Y. Cui.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2014.2359894

2750 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 10, OCTOBER 2015

1045-9219� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

pumped from the cold tank to the hot tank to store the
excessive heat. At times where solar energy drops below
required levels (e.g., cloudy weather), the salt flow direction
is reversed to pump heat into the oil. The oil is pumped into
a steam generator to heat up water to generate steam. A nat-
ural gas heater is used to maintain the evaporation tempera-
ture should the solar heat and the salt-pumped heat drop
below required levels. The pressurized steam is fed through
a steam turbine, which drives an electrical generator con-
nected to the electrical power grid. The last cycle is the
steam condensation required to create a vacuum at the
downstream side of the turbine, which is necessary for an
efficient steam cycle.

For the plant to operate as desired, several physical
quantities need to be maintained at constant values (e.g., oil
temperature) in spite of any disturbance, and other quanti-
ties need to follow a certain profile (e.g., solar collector
angular position). To automatically maintain the desired
performance, we need a system to keep monitoring the
physical quantities through sensors, and make necessary
adjustments through actuators. In our simplified example,
we identified nine control loops. Note that mega industrial
plants, however, could have tens of thousands of loops. The
nine loops are shown in Fig. 1: (i) three angular position
control loops for the the solar collector mirrors, where the
sensors are potentiometers and the actuator are DC motors,
(ii) three flow control loops; two for the oil cycle and one for
the steam cycle, where sensors are flowmeters and actuators
are pumps, and (iii) three temperature control loops, one for
the oil cycle, one for the steam cycle, and one for the con-
densation cycle, where sensors are thermocouples and
actuators are pumps and valves controlling the flow of heat-
ing/cooling material. Additional control loops (e.g., for the
turbine) are not shown for simplicity.

We now show how a present-day industrial automation
system such as the one shown in Fig. 2 is used to control the
solar power plant. First of all, we need field devices, which
are the sensors and actuators described in the previous par-
agraph. Field devices are shown at the very bottom of the
figure. Then, we need controllers, which are special-pur-
pose microprocessor-based computer systems running con-
trol algorithms on top of special-purpose operating
systems. A single controller can usually interact with sev-
eral control loops, depending on the processing speed as
well as the sampling rates and complexity of the control
algorithms. Controllers are hosted in or next to a control
room. Such controllers belong to layer L1 in Fig. 2. For
medium and large-scale systems, communication between

field devices and controllers takes place over a special
network called field-level network. Second, operators in the
control room need to continuously monitor the process
variables of the plant, such as oil flow rate, water tempera-
ture, and angular position of solar collectors. Therefore,
they need Human-Machine Interface (HMI). Also, opera-
tors need to supervise the operation of individual control
loops, e.g., change the desired oil temperature, through
Supervisory Control and Data Acquisition (SCADA).
Further, they need to log (or “historize”) the process vari-
ables constantly to review their trends later and assess
how the system health changes with time. L2 in Fig. 2 is
for HMI/SCADA and historization. Other functionalities
such as alarm management (e.g., when steam temperature
dangerously goes beyond a certain threshold) and control
software update (e.g., to improve a control algorithm)
also belong to L2. Communication between controllers
and HMI/SCADA machines take place over a special net-
work called control network. Third, to optimize the overall
operation of the solar power plant (e.g., across different
seasons or weather conditions), higher-level optimization
software (L3 in Fig. 2) is needed to coordinate the operat-
ing conditions of control loops so that the optimization
objectives are met. For example, in our solar power plant,
the objectives could be minimizing natural gas consump-
tion, or maintaining a certain production rate/quality.
Fourth, we need to link the plant to the outside world to
tie the energy production to market demands as well as
different assets, such as material and labor prices. L4 in
Fig. 2 is there to perform such enterprise-level manage-
ment. Plant optimization objectives in L3 are decided
based on the analysis performed in L4.

Fig. 2. Current automation system architecture.

Fig. 1. Process diagram of a solar power plant.

HEGAZY AND HEFEEDA: INDUSTRIAL AUTOMATION AS A CLOUD SERVICE 2751

1.3 Scope and Contributions

In this work, we show that if we adopt cloud computing to
host the industrial automation layers described above, great
cost and labor savings are achieved as we show in Section 6.
However, industrial automation is an application area that
requires tighter timeliness, reliability, and security than
most other cloud applications. As a result, multiple research
problems need to be addressed to enable cloud-based
industrial automation.

We propose and make the case for an architecture for
cloud-based industrial automation. Further, we solve the
most challenging problems stemming from moving
the automation functionalities to the cloud.We identify three
main challenges facing the proposed architecture, namely
timeliness, reliability, and security. We focus on the timeli-
ness and reliability challenges. Addressing security is out-
side the scope of this work. Moreover, we reason that
addressing the timeliness and reliability requirements for L1
poses the highest challenge, and hence, automatically
addresses the other layers. The reason is that application
timeliness and reliability requirements increase as we move
down the hierarchy towards layer L1, making L1 the most
demanding layer for the following reasons. First, closed-
loop communication for L1 could occur as frequently as
several times per second, whereas in L2 most of the commu-
nication is one way and it typically happens every 1-2 sec-
onds. Second, failures at L1 could have severe consequences
since L1 deals directly with the physical process, whereas
the interaction between L2 and the physical process is indi-
rect. L3 and L4 are even more relaxed in terms of timeliness
and reliability since they do not deal with time-critical
functionalities.

To maintain the operation of the controlled system under
large variable Internet delays, we propose a delay compen-
sator to mitigate such delays. Then, to handle controller/
link failures, we propose and theoretically analyze a distrib-
uted fault tolerance algorithm that smoothly switches
among redundant cloud controllers. Our theoretical analy-
sis shows that the proposed fault-tolerant, cloud-based con-
trollers guarantee zero overshoot and zero steady-state
error if the original local counterparts guarantee the same.
Further, the effect on the settling time is zero in most practi-
cal cases, and negligible in other rare, extreme cases.

To evaluate our approach, we designed and implemented
a physical model of the solar power plant system presented in
Fig. 1 and controlled its various processes through cloud con-
trollers. In addition, we implemented the solar power plant
model in an industry-standard emulation software system in
order to show the viability and robustness of our proposed
architecture under wide range of parameters. Specifically, to
evaluate the distributed fault tolerance algorithm, we
deployed redundant controllers on commercial clouds that
are located thousands of miles away from each other and
from the physical plant. Experimental results show that our
algorithms can effectively make the physical plant unaware
of link/controller failures. Further, to study the effect of very
large variable delays and different disturbance models on the
performance of the proposed system, we perform a series of
experiments where distant cloud-based controllers control
the emulated solar power plant hosted on a local machine in
our lab. Through emulation, we inject communication delays

and disturbances into the system. The results show that the
cloud-based controllers effectively mitigate the effect of
delays and perform indistinguishably from their local coun-
terparts under disturbance.

The rest of the paper is organized as follows. We discuss
related work in Section 2. Then, we introduce the proposed
architecture as well as the proposed delay mitigation and
fault tolerance components in Sections 3, 4, and 5, respec-
tively. We analyze and evaluate the cost/time savings of
our proposed approach in Section 6. Then, we experimen-
tally evaluate our approach in Section 7, and we conclude
the paper in Section 8.

2 RELATED WORK

Kumar et al. [21] proposed an approach for assisting auton-
omous vehicles in path planning based on cloud-collected
remote sensor data. Chen et al. [8] proposed “Robot as a
Service” or RaaS where the service is available in both hard-
ware and software. Also, Wu et al. [35] explored “Cloud
Manufacturing”, which is a cloud-based manufacturing
model that is service-oriented, customer-centric, and
demand-driven. RaaS and Cloud Manufacturing focus on
planning and optimization, while we consider the whole
automation hierarchy and focus on direct digital control,
which is much more challenging in terms of timeliness and
reliability. Several researchers/enterprises employed feed-
back controllers to manage their computing systems, e.g.,
[1], [23], [29]. The employed feedback controllers can be
acquired as a service through our proposed cloud-based
feedback control approach.

It has been recently proposed to offer certain industrial
automation components through the cloud. First, enterprise-
level (L4) asset management applications, such as SAP, are
now offered through the cloud. Second, plant optimization
(L3) can easily be offered through the cloud. For example,
Honeywell Attune [31] offers cloud-based services for
energy optimization. Although, it is mainly offered for build-
ing automation, the plant version is conceptually the same.
Third, HMI/SCADA (L2) is now offered in a virtualized
fashion as it is the case with Invensys Wonderware System
Platform 2012 [19], which indicates that offering L2 as a cloud
service is only amatter ofmoving the virtualmachines (VMs)
to the cloud. Finally, moving direct digital control (L1) to the
cloud is challenging due to timeliness and reliability require-
ments. We are not aware of any commercially available sys-
tem that offers direct digital control through the cloud,
although researchers have partially addressed some of these
challenges aswe present in the following paragraphs.

Yang et al. [36] designed two predictive compensators for
Internet delays in the feedforward and feedback directions,
while Chen et al. [9] proposed a single compensator block
for the feedforward path only. Yoo et al. [37] proposed the
use of Smith Predictor with constant buffer, which can
unnecessarily increase the settling time because it inserts
delay inside the control loop to keep the delay at its maxi-
mum possible value. In contrast, our proposed delay miti-
gation approach requires only one remote component that
adaptively compensates for the whole roundtrip delay with-
out affecting the original controller design or requiring
additional support from the controlled system.

2752 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 10, OCTOBER 2015

Most fail-stop failures in digital controllers are handled
through redundancy [7]. For example, Yokogawa FFCS [18]
employs double redundancy, and Invensys Triconex Tricon
[20] employs triple redundancy. While the former is used
for direct digital control, the latter is used for safety and
emergency shutdown control of mission-critical processes,
e.g., nuclear power plants. Our extensive literature review
did not yield any work where redundant controllers are
remote to both the process and the primary controller as we
propose in this paper.

In summary, we are not aware of any work that pro-
posed an architecture for the whole industrial automation
hierarchy, including its most demanding layer of direct dig-
ital control. In addition, to the best of our knowledge, there
is not any work that analyzes cost/time saving when using
cloud computing in industrial automation, as we do in this
paper. Furthermore, we have not come across any work
that addressed fault tolerance through redundant software
controllers when running on loosely coupled machines that
are far away from one another. Thus, in the evaluation sec-
tion, we compare the performance of our approach to the
best known counterpart: local, physical, and tightly coupled
controllers.

3 PROPOSED ARCHITECTURE OVERVIEW

In our proposed approach, we move all computing func-
tions of the automation system into the cloud in order to
provide full automation as a service. This makes it easier,

faster and less costly for users to deploy, maintain, and
upgrade their automation systems. Moreover, our design
supports switching to different cloud automation providers
since all VMs can be group-migrated to a different provider.
Some components are not movable to the cloud, such as
sensors, actuators, and safety/emergency shutdown control
functions. Fig. 3 illustrates our proposed automation archi-
tecture. Our proposed approach relaxes the existing systems
layers. Fig. 3 reflects the relationship between each compo-
nent and the layers shown in Fig. 2.

To connect sensors and actuators to the cloud, we use
field-level protocols that run on top of TCP, such as Mod-
bus/TCP and Profibus/TCP, which are either built in the
devices or provided through separate I/O modules. For
cases where advanced functions, such as security and mes-
sage-level scheduling are required, we dedicate a gateway
server, which could be replicated for more reliability.

In our approach, direct digital control algorithms (L1)
run on cloud VMs instead of real hardware in the control
room. Also, in existing automation systems (Fig. 2), control-
lers communicate with sensors/actuators over a network
with mostly deterministic communication delays that are
negligible. Whereas in our design, communication occurs
over the Internet, which adds large and variable delays to
the control loop. Therefore, straightforward migration of
direct digital control algorithms to the cloud may affect the
functionality of the control loop or even make the system
unstable, and thus jeopardize the theoretical performance
guarantees offered by traditional controllers. As a result,

Fig. 3. Overview of the proposed architecture.

HEGAZY AND HEFEEDA: INDUSTRIAL AUTOMATION AS A CLOUD SERVICE 2753

more components are needed to mitigate the variable Inter-
net delays and the lack of reliability of Internet links and
VMs, which we design in this paper.

We propose providing the HMI/SCADA layer, L2, and
all the way to L4, through Platform or Software as a Service
(PaaS and SaaS) models. Thus, we provide engineers and
operators with access to the control room applications
through thin clients. In existing automation systems (Fig. 2),
a control room is a complex environment loaded with serv-
ers, workstations, network switches, and cables. In our pro-
posed design, a control room is comprised of a number of
thin clients, which requires less hardware and wiring, mak-
ing it a tidier environment [26]. In a manner similar to the
field gateway server, we propose a control room redundant
gateway server to reliably carry on advanced functions,
such as security and message scheduling.

To show how to maintain the timeliness and reliability of
migrated functionalities, we study L1, since it’s the most
challenging layer as we discussed in Section 1.3. We pro-
pose (i) an adaptive delay compensator (Section 4) which
mitigates the effect of communication delays on the
remotely-controlled physical plant, and (ii) a distributed
fault tolerance algorithm (Section 5) which enables the con-
trolled plant to maintain operation under controller/link
failures. Security is outside the scope of this work.

4 PROPOSED DELAY MITIGATION

The roundtrip delay between the cloud controllers and con-
trolled processes varies with time. In most cases, the Internet
roundtrip delay ranges from tens to a few hundreds of milli-
seconds. Meanwhile, the sampling periods used in most

industrial applications typically range from a few hundreds
of milliseconds to several seconds. Therefore, most of the
roundtrip delay will be absorbed within the sampling peri-
ods and will have no effect on the control loop [36], because
the controlled process will still be receiving one action per
sampling period. However, delay may occasionally change
in a random fashion beyond the sampling period because
of the dynamic nature of the Internet. To absorb such ran-
dom variations, we need an adaptive delay mitigation
approach.

In this section, we propose a method to handle vary-
ing communication delays. We start with the traditional
feedback control loop shown in Fig. 4a. Moving the con-
troller to a remote server as shown in Fig. 4b adds delay
in both directions. We model the loop as shown in
Fig. 4c, where CðzÞ and P ðzÞ are the transfer functions of
the controller and the controlled process, respectively,

and z�k and z�l denote the feedforward and feedback
delays, respectively.

We introduce an artificial delay block equal to z�l at the
entrance of the set point as shown in Fig. 4d. Introducing
such delay is insignificant to the system performance as we
discuss at the end of this section. We simplify the loop as
shown in Fig. 4e. Thus, we have managed to reduce our
cloud control problem to what is known as controlling a pro-
cess with dead-time [32], where there is a time delay between
the application of the process input and its effect on the out-
put, e.g., when material traverses a long path within the
process over a conveyor belt.

To control a process with dead-time, the controller is
usually coupled with a delay compensator. We propose our
adaptive version of Smith Predictor [30]. Thus, our compen-
sator does not require precise knowledge of the delay com-
ponent at design time. We first design the controller as if no
delay is encountered. Then, we measure the delay and
adjust the Smith Predictor. This is important because the
communication delay over the Internet changes dynami-
cally and cannot be known ahead of time.

The original design of Smith Predictor is as follows. Sup-

pose the process consists of a non-delay component P ðzÞ
followed or preceded by a pure time delay z�ðkþlÞ. If we first

consider the process without delay and design a controller

CðzÞ, the closed loop transfer function becomes T ðzÞ ¼
CðzÞP ðzÞ=ð1þ CðzÞP ðzÞÞ. The objective is to find a controller
�CðzÞ for the process P ðzÞz�ðkþlÞ such that the closed loop

transfer function is �T ðzÞ ¼ T ðzÞz�ðkþlÞ, which involves solv-

ing the following equation for �CðzÞ
�CðzÞP ðzÞz�ðkþlÞ

1þ �CðzÞP ðzÞz�ðkþlÞ ¼
z�ðkþlÞCðzÞP ðzÞ
1þ CðzÞP ðzÞ : (1)

The new controller is therefore given as:

�CðzÞ ¼ CðzÞ
1þ ð1� z�ðkþlÞÞCðzÞP ðzÞ : (2)

Fig. 5 shows our proposed design of the virtualized
controller, which has two main components: (i) controller
with delay compensator, and (ii) communication delay
estimator. The controller with delay compensator is shown
in the dashed box which is a block diagram of the

Fig. 4. Loop simplification for Internet delay mitigation.

2754 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 10, OCTOBER 2015

controller described by Eq. (2) with the combined feedfor-
ward and feedback delays z�ðkþlÞ, i.e., the roundtrip delay.
It uses CðzÞ which is the original controller designed for
the process P ðzÞ with no delays. It also needs an approxi-
mation of the process transfer function which is denoted

by P̂ ðzÞ. In practice, a simple first or second-order approxi-
mation is sufficient [28]. The second component is shown
in the black box in Fig. 5, and it estimates the roundtrip
delay between the process and the remote controller. The

roundtrip delay is used in the delay block z�ðkþlÞ. Our
delay estimator employs an exponentially weighted mov-
ing average to estimate the communication delay mean as
Di ¼ adi þ ð1� aÞDi�1, where Di is the estimated mean
delay and di is the measured delay at discrete time instant
i. Similarly, our estimator employs an exponentially
weighted moving variance to estimate the delay variance

as Vi ¼ aðdi� DiÞ2 þ ð1� aÞVi�1, where Vi is the estimated
variance at discrete time instant i. The delay value in the

delay block is adjusted to Dc ¼ bðDi þ hVi
1=2Þ=Tsc, where

Ts is the sampling period, and h is a positive parameter to
accommodate for delay values larger than the mean. Thus,
the estimator adjusts to changes of delay while not over-
reacting to short delay spikes.

Now, we go back to the delay block introduced in
Fig. 4d. Introducing such delay is insignificant to the
operation of the system for two reasons. First, set points
are kept constant for extremely long periods if not for the
entire system lifetime. In control theory, a delayed ver-
sion of such constant function is the same constant func-
tion. Second, even in the infrequent cases where set point
has to be changed, it is often performed by a human oper-
ator. Adding a few tens or even hundreds of milliseconds
of delay is insignificant to the operator response (several
seconds, to reach a knob or software slider and to update
the value).

In summary, the novelty of the proposed approach is
that adding a single artificial delay block outside the
control loop transformed the challenging cloud-based
control problem to that of controlling a process with
dead-time, which is solved using Smith Predictors. Using
our adaptive version of Smith Predictor enables moving
the controllers to a distant cloud provider without
changing the design of the original controller or the pro-
cess being controlled.

5 PROPOSED FAULT TOLERANCE

5.1 Overview

In this section, we design a distributed fault tolerance algo-
rithm which guarantees normal operation under failures,
and we theoretically analyze its performance. We also theo-
retically prove that for most real-life scenarios, cloud feed-
back control using our algorithm has virtually no effect on
the controlled process operation.

In most practical systems, controller failures are han-
dled by double redundancy as in [11], or at most triple
redundancy as in [20] for mission-critical processes. Upon
failure, redundant controllers take over in a stateful man-
ner. In current automation systems, redundant controllers
are closely located and tightly synchronized. Thus, they
easily share the control loop state periodically (typically
once ever a few tens of milliseconds). Providing similar
reliability for redundant cloud controllers is quite chal-
lenging because controllers would typically run on differ-
ent machines and preferably in different data centers or
even different cloud providers, through different Internet
providers (multihoming) as shown in Fig. 6. Using differ-
ent machines tolerates machine failures, whereas replicat-
ing across different data centers (or cloud providers) and
using different Internet providers add more robustness to
situations such as Internet link failures. Additionally,
fine-grained clock synchronization and maintaining the
state consistency on short time scales are complex and
costly for geographically distant machines communicat-
ing over the best-effort Internet.

To achieve reliability in the proposed feedback control
cloud service, we propose a distributed fault tolerance algo-
rithm that is run asynchronously by all redundant controllers.
We call this algorithm Reliable Cloud Control (RCC). RCC
supports double and higher redundancy levels and pro-
vides the following guarantees:

G1 If the primary controller fails, the secondary con-
troller is automatically hot-swapped in. This guar-
antee is generalizable to higher redundancy. For
example, in triple redundancy, if the primary and
secondary controllers fail, the tertiary controller is
hot-swapped in.

G2 If the failed primary controller recovers, it takes over,
forcing the secondary controller out of action. This
guarantee is desirable when the secondary VM and/
or link are chosen to be of less quality than the pri-
mary for cost savings. This guarantee is also general-
izable to higher redundancy.

Fig. 6. Redundant cloud-based controllers for mitigating link/controller
failures.

Fig. 5. Proposed virtualized controller that compensates for variable
communication delays.

HEGAZY AND HEFEEDA: INDUSTRIAL AUTOMATION AS A CLOUD SERVICE 2755

G3 Handover of controllers is performed smoothly caus-
ing no undesirable transient response artifacts.

For RCC to provide such guarantees, we define the
system state as the tuple ða; u1; u2; u3; . . .Þ, where a is the
last controller action executed by the actuator, and ui is
the time elapsed since the last action performed by the
redundant controller Ci. To be visible to all controllers,
RCC stores the state tuple in the memory of the control
I/O interface module as shown in Fig. 6. The state tuple
is initialized when the I/O interface is first turned on.
The last action a can be initialized arbitrarily according
to the process design. The time since last action ui is
initialized to 1 to indicate that the controller Ci has
never acted.

We note that RCC does not require any clock synchro-
nization. First, RCC does not use absolute timestamps to
measure the time ui elapsed since a controller Ci last
acted. Instead, it performs relative delay measurements
through time counters in the control I/O interface. Sec-
ond, RCC is a periodic, soft real-time task whose relative
deadline is equal to its sampling period. As a result, the
core control algorithm is executed on every sampling
period and is required to finish any time before the begin-
ning of the next period. Delaying a control action within
the same sampling period does not compromise the run-
ning control algorithm [36] because the process will still
be receiving one action per sampling period. For these
two reasons, RCC can run asynchronously on all VMs,
and backup controller(s) could be started any time after
the primary is started, without having to synchronize the
clocks of the VMs hosting the controllers.

5.2 Detailed Operation

Fig. 7 shows the pseudocode of RCC which runs on top of
every controller. We refer to the algorithm line numbers

between parentheses. In addition to the Initialization step,
RCC runs three steps in each sampling period: Polling, Com-
puting, and Conditional Acting. The Initialization step (lines
2-7) runs on the very first cycle, where RCC initializes the
ID i (line 4) and the engagement threshold Di (line 5) for
controller Ci to guarantee that only one controller is
engaged at a time. IDs are set as 1 for the primary, 2 for the
secondary, and so on. Also, for any controller pair ðCi, CjÞ
where i > j, the engagement thresholds must satisfy
Di > Dj � Ts, where Ts is the sampling period. Then, the
main steps are executed with every sampling period. The
Polling step (lines 8-13) fetches the following variables from
the I/O interface (line 9):

(i) procVar: the current sensor measurement.
(ii) lastActn: representation of the state variable a, i.e.,

the last action executed by the actuator.
(iii) lastActnAge: a time counter array, where las-

tActnAge(i) represents the state variable ui, i.e.,
the time elapsed since Ci was last engaged.

If the Polling step times out, e.g., due to link failure, the
controller skips the current sampling period after resetting
its firtCycle flag to TRUE (line 11). This is important for
guarantee G3 as will be shown in Section 5.3.

Then, the Computing step (lines 14-23) decides the con-
troller mode. For a given controller Ci, if there is another
controller Cj with a smaller ID (j < i) that is alive, then Ci

will decide to run in the standby mode. On the other hand,
for all Cj where j < i, if the age of the last action uj is older
than Di, then Ci will decide to run in the engaged mode as
it assumes that all controllers Cj have failed. Thus, RCC
evaluates the flag iAmEngaged using the for loop that is
scanning lastActnAge for controllers with lower IDs
(lines 16-21). Then, RCC runs the control algorithm con-

troller() (line 22), which normally requires the sensor
measurement procVar only. For some control algorithms,
guarantee G3 dictates passing more parameters as dis-
cussed in Section 5.3.

Finally, the Conditional Acting step (lines 24-28) sends
the computed action to the process (line 26) if the iAmEn-

gaged flag is TRUE (line 25). It further sends zero to reset
the action age counter. Otherwise, if the iAmEngaged flag
is FALSE, the step performs no actions.

Without loss of generality, we now focus on the triple
redundancy case to illustrate the interaction among 3 con-
trollers under RCC. The iAmEngaged flag of the primary
controller is always TRUE since it has the smallest ID. As
the secondary controller polls lastActnAge(1), it con-
tinuously checks whether the primary controller is alive.
If the primary controller fails, the secondary controller
will detect the failure when lastActnAge(1) exceeds
the secondary controller’s engagement threshold. In this
case, iAmEngaged for the secondary controller will stay
TRUE throughout the for loop. Thus, the secondary con-
troller will run in the engaged mode and hence reset its
counter lastActnAge(2) entry in the I/O interface to
indicate it has just acted. Although the tertiary controller
will also detect the failure of the primary, its engagement
threshold is higher than that of the secondary controller.
Before the value of lastActnAge(1) crosses the tertiary
controller’s engagement threshold, the secondary

Fig. 7. Pseudocode of the proposed distributed fault tolerance algorithm:
RCC.

2756 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 10, OCTOBER 2015

controller will have already acted. Thus, when the tertiary
polls the state on the following sampling period, las-

tActnAge(2) will have incremented to d, such that
0 � d � Ts which is less than the tertiary’s threshold, forc-
ing the iAmEngaged flag for the tertiary controller to
become FALSE. The tertiary controller will get engaged if
and only if both the primary and secondary controllers
become unavailable. This addresses guarantee G1.

If the primary controller recovers from failure, it will gain
control over the process since it always operates in the
engaged mode, forcing the secondary controller into the
standby mode. Upon resetting lastActnAge(1) for
the primary controller, the secondary will detect the recent
primary action whose age is less than the secondary’s
engagement threshold. As a result, the iAmEngaged flag
for the secondary controller will turn FALSE, causing it to
operate in the standby mode. The same discussion applies
to any two controllers when the lower-ID controller recov-
ers from failure, achieving guarantee G2.

5.3 Smooth Controller Handover

Switching between controllers may result in a “bump” in
the process output, which would violate guarantee G3.
This occurs if the final value of the original controller
action is not equal to the initial value of the new controller
action. The main reason for this is that the redundant con-
trollers do not necessarily start at the same time. With most
controllers having an integrator component, the output of
the controllers will not be the same since their integration
intervals have different start times. To achieve smooth
handover between cloud controllers, we propose to use the
bumpless transfer concept from control theory [5], [32] in
our cloud controllers. Bumpless transfer is originally
designed to support switching from “manual” to “auto”
control, and it is supported by most commercial PID con-
trollers, which constitute more than 90 percent of the con-
trollers employed in the industry [6], [12]. Bumpless
transfer for PID controllers is achievable through adjusting
the initial value of the integrator [32]. Other bumpless
transfer methods have been proposed for advanced “auto”
controllers, e.g., [5].

The smooth handover feature is implemented within the
controller() function introduced in Fig. 7. Assume we
have two standard PID controllers: a primary Ci in the
engaged mode, and a backup Cj in the standby mode.
After each of the controllers computes the proportional
component, P, and the derivative component, D, the modi-
fied controller() function for each of the controllers
evaluates the following logical condition: (not iAmEn-

gaged) or firstCycle. If the condition is TRUE, it will
adjust the integrator initial value as follows: integI-

nitVal = lastActn - P - D;, which means that integra-
tor initial value will be modified by subtracting the
proportional and the derivative components P, D. This
means that except for the first sampling period, the engaged
controller Ci runs the PID control algorithm without apply-
ing the modification because the logical condition is FALSE
(note that (not iAmEngaged) is FALSE for the engaged
controller). On the other hand, for the standby controller
Cj, the overall condition will be TRUE, so it overrides the

regular value of the PID integrator by forcing it to be equal
to the last control action (which was computed by the
engaged controller, Ci) by subtracting P, D. In short, the
smooth handover feature corrects any deviation of the inte-
grator of Cj so it matches the integrator of Ci. Conse-
quently, if Ci fails, and Cj takes over, then Cj starts with
an action that is equal to the last action of Ci.

On the initial sampling periods (i.e., when firstCycle is
TRUE), all controllers are required to correct the initial val-
ues of their integrators. This enables smooth handover
between a recovered Ca with the currently engaged control-
ler Cb if a < b. This is why RCC sets firstCycle to TRUE

upon timeouts in Fig. 7. Consider a case where an engaged
controller Ca suffers a link failure whereby the Polling step
times out, and a backup controller Cb is swapped in. If the
link recovers, then Ca takes over again after performing
smooth handover with Cb because upon recovery, the
firstCycle flag of Ca will be TRUE.

5.4 Analysis

We consider the fail-stop failure model [7] for the con-
troller software, the hosting VM, the hosting server, the
network switch, and the Internet link. In the following,
we formally prove our guarantees. Proofs are given in
Appendix B, which can be found on the Computer Soci-
ety Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2014.2359894

Theorem 1. The proposed RCC algorithm guarantees normal
operation of the controlled process as long as there is at least
one operating controller that is accessible through at least one
link.

Theorem 2. If the original control algorithm guarantees zero
overshoot and zero steady-state error under no failure, then
RCC algorithm guarantees the same overshoot and steady-state
error performance under failure, provided that there is one
operating reachable controller.

Theorem 3. The worst case increase in the settling time ts under
one failure is upper-bounded by the Internet roundtrip delay
RTTj and the engagement threshold Dj of the backup
controller Cj, and is given by Dts ¼ dðRTTj þDjÞ=Tse � 2,
where Ts is the sampling period.

Theorem 4. The RCC algorithm guarantees no change in process
response upon controller recovery.

6 COST/TIME ANALYSIS AND EVALUATION

We present simple, parametrized models that can be used to
estimate the savings in cost and time of different automation
systems when they are offered from the cloud. We also pres-
ent a realistic case study to show the range of achievable sav-
ings. Due to space limitations, we only present a summary of
our analysis and results; more details can be found in
Appendix A and in [15], which is available online.

6.1 Analytical Models

In [15], we showed that the total cost saving due to adopting
the cloud-based model can be estimated as:

SCost ¼ sUCU þNsRCR

CU þNCR
; (3)

HEGAZY AND HEFEEDA: INDUSTRIAL AUTOMATION AS A CLOUD SERVICE 2757

where sU , sR respectively denote the saving in upfront and
running costs due to adopting cloud-based automation
model, CU , CR respectively denote the upfront and running
costs of the current automation system, and N denotes the
lifetime of the system. In turn, we showed that [15]:

sU ¼ sHCH þ sLCL þ sCCC

Ch þ CL þ CC
; sR ¼ sM � CV

CM
; (4)

where sH , sL, sC , and sM respectively denote the saving in
hardware, labor, commissioning/start-up, and maintenance
costs due to the adoption of the cloud-based model. Labor
cost corresponds to monetary compensation for engineers/
technicians. And CM and CV denote the annual mainte-
nance cost and the annual VM leasing cost.

Under cloud-based automation, the upfront cost can be
reduced significantly. First, a big portion of the hardware is
now replaced with cloud-based VMs, which counts towards
running cost, not upfront cost. Second, the engineering
labor is also reduced since hardware testing is greatly
reduced. Third, the commissioning labor is reduced since
hardware configuration and wiring is highly reduced.

Similarly, the running cost (mainly maintenance) will be
reduced due to virtualization, which eliminates a lot of
expensive hardware. Another source of reduction is by
transferring most of the site labor into office labor. The
hourly rate for an office engineer is around one-third of that
of a site engineer [26]. The cloud-based approach will, how-
ever, incur an extra running cost component: VM leasing
cost. Such additional cost is overcome by the saving in
maintenance as we show in the case study (Section 6.2).

Next, we consider the time saving due to the adoption of
cloud-based automation systems. We define time to start up
(TTSU) as the duration between the point in time where all
system components have been ordered and become avail-
able and the point in time the automation system is first
turned on. The project goes through four main phases. In
practice, negligible or no overlap exists between the project
phases. Therefore, TTSU is composed of:

i) TE : time for automation system engineering, where
automation hardware is set up and configured, and
automation software is implemented.

ii) TF : factory acceptance testing, where automation sys-
tem functions are tested against design specifications.

iii) TS : system shipping from engineering location to
site.

iv) TC : site acceptance testing and commissioning,
where the automation system is tested to make sure
it, once installed in real conditions, is operating and
interacting properly with the plant.

Thus, TTSU saving can be approximated as [15]:

STTSU ¼ T � T̂

T
¼ sETE þ TF þ TS þ sCTC

TE þ TF þ TS þ TC
; (5)

where sX is the achieved saving in time component TX.
Thus the total saving increases linearly with both the saving
in engineering and commissioning times, sE and sC .

6.2 Case Study

We focus on a case study inspired from the real industrial
automation world. Particularly, we focus on the field and
control room levels because we believe these are the most
challenging components to be provided as a service. Con-
sider an automation system for a large oil and gas plant.
This system is characterized by the top part of Table 1,
which is the standard method of characterization for
designing automation systems. The case was carefully cho-
sen to demonstrate a large plant and automation system. At
the same time, the size is far from the extreme examples as
some plants possess multiple the size of this case. A current
automation system requires the software and hardware
components listed in the lower part of Table 1.

Next, we discuss the impact on the required hardware
and software components when adopting cloud-based auto-
mation systems. Software design of the cloud automation
system follows that of the present-day system. Therefore,
we assume the same block count estimated above in addi-
tion to extra blocks for delay compensation and distributed
fault tolerance. We conservatively assume that the number of
blocks increases by 50 percent, leading to 367,500 blocks. In
the following, we show that if VMs of equivalent processing
power are employed, then we need 300 VMs. The HMI/
SCADA size remain unchanged in terms of number of dis-
plays, number of historian points, and other applications.

Bare-metal controllers will be replaced by VMs. Assum-
ing that a dedicated VM with medium utilization can
replace a physical controller, the number of VMs will be
50 percent more than the number of physical controllers
since we have 50 percent increase in the number of software
blocks for delay compensation and distributed fault toler-
ance. The I/O modules can be abandoned if all sensors and
actuators are wireless TCP/Ethernet-enabled. However, to
simplify our comparison, we assume traditional sensors
and actuators but wireless TCP/Ethernet-enabled I/O mod-
ules with adequate intrinsic safety characteristics to be
placed in or close to the field. We assume 50 percent
increase in the cost per module due to the new wireless and
intrinsic safety properties [26]. Cabinets are totally aban-
doned since the controllers are replaced by VMs, the I/O
modules are scattered over the plant, and no need for
marshaling since addressing is done by IP addresses, port
numbers and channel numbers. VM-based controllers can

TABLE 1
Real-Life System Used in Our Case Study

2758 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 10, OCTOBER 2015

load the relevant addressing data of loop variables from a
cloud-based database.

For the engineering and HMI/SCADA, all the servers
and workstations are replaced by high-utilization dedicated
VMs, in addition to thin clients. The workstation/server
typically have multiple users logging through different
accounts. While some thin clients can follow the same
model, others are personal devices, e.g., cell phones. There-
fore, we assume that the number of thin clients is more than
the number of workstations/servers.

6.3 Cost/Time Saving Evaluation

Two samples of our analysis results are shown in Figs. 8 and
9. Fig. 8 shows the total cost saving under the proposed
cloud system versus the system lifetime, computed accord-
ing to Eq. (3). The figure contains eight lines, each line corre-
sponds to a different engineering labor saving value, sL. It is

noteworthy that the total cost saving is at least 43 percent
under 10 percent engineering labor reduction in a system
with a lifetime of 10 years. As the system lifetime increases,
the saving in running cost dominates as we spend more on
running cost than upfront cost. Therefore, if the upfront
cost saving is higher than the running cost saving, then the
overall saving will decrease as in the case of sL ¼ 0:8. The
opposite is also true as in the case of sL ¼ 0:1.

Next, we evaluate TTSU under the proposed system for
different values of engineering time saving (sE) and
commissioning labor saving (sC). In [15], we show that
TTSU in the considered oil and gas plant example is 17
months using the current automation system. In contrast,
Fig. 9 plots the TTSU values for a cloud-based automation
system for a range of sE (engineering time saving) values
between 0.1 and 0.8. In each case, the commissioning time
saving is conservatively set to sC ¼ sE=2. As we can see
from the figure, TTSU can drop to less than 13 months for
sE ¼ 0:1 and to less than 2.5 months when sE ¼ 0:8, achiev-
ing time saving of 25 and 85 percent, respectively according
to Eq. (5). We estimate that in practice sS will fall in the
range of 0.3 to 0.6, which, according to the figure, achieves a
total saving in time in the range of about 40 to 70 percent.
This means that an automation system development and
setup can be accelerated by more than three times. More
details are presented in Appendix A, available online.

7 EXPERIMENTAL EVALUATION

In this section, we rigorously assess the performance of
the proposed approach. We show how cloud-based con-
trollers can effectively control an industrial plant that is
more than 8,000 miles away. We also show that our
approach can dynamically switch among redundant con-
trollers upon failure to achieve smooth and reliable func-
tioning of the controlled industrial plant and we compare
our algorithms versus local controllers as they are the
best known counterparts.

7.1 Experimental Setup

We designed and implemented a physical model (Fig. 10a)
of the solar power plant presented in Fig. 1. We placed the
physical model in our lab in Vancouver, Canada. For each
plant process, we deployed two cloud controllers on the fur-
thest (in terms of delay) Amazon cloud locations from our
plant that we could find: Singapore and Sao Paulo, Brazil
(Fig. 10c). In addition, to stress-test our approach, we

Fig. 10. Experimental testbed: (a) Physical model of the solar power plant, (b) TCP/Ethernet-enabled I/O interface used to connect plant to cloud con-
trollers, (c) Geographic locations of plant and its cloud controllers.

Fig. 8. Total cost saving under proposed cloud-based automation sys-
tem for different values of sL.

Fig. 9. TTSU saving under proposed system.

HEGAZY AND HEFEEDA: INDUSTRIAL AUTOMATION AS A CLOUD SERVICE 2759

implemented an emulated version of the plant in LabVIEW,
where we inject very high communication delays and distur-
bances. LabVIEW is a standard software for control and
emulation in both automation industry and lab testing [22].
We evaluated our approach with the PID control method
because it is, by far, the most commonly used in practice [6].
We deployed our cloud controllers according to the follow-
ing stack:

� Packages: LabVIEW PID and Fuzzy Logic, NI

Modbus packages.
� Control software: LabVIEW 2011 SP1 (32 bits).
� OS: Windows Server Datacenter.
� Cloud: Amazon Web Services EC2, regions: Asia

Pacific (Singapore) and South America (Sao Paulo).
In additi on to the physical model of the solar power

plant, Fig. 10b shows one of the four commercial I/O mod-
ules we used [2], [3]. The I/O modules convert the analog
signals to sampled data wrapped in Modbus/TCP packets
and vice versa, which is necessary for the sensors/actuators
to communicate with the cloud controllers.

We will present performance results from representative
control loops, which we introduced in Section 1.2; We
derived the transfer functions of these loops and designed
their PID cloud controllers using the Ziegler-Nichols method
[38], and fine-tuned them by trial and error. The sampling
period is typically set to 10 percent of the dominant time con-
stant of the process [14].Most continuous industrial processes
have sampling periods in the range of 0.5 to 2.0 seconds [26].
We computed the dominant time constants for the control
loops considered in the evaluation, and we conservatively set
the sampling periods as 10 percent of these time constants
with a maximum sampling period of 1 second. Smaller sam-
pling periods stress our cloud-based control approach, as

they require faster responses. Experimental parameters for
each experiment are summarized in separate tables below.

7.2 Performance under Controller Failure

This section shows how cloud-based controllers can achieve
(i) desired performance under real Internet delay and (ii)
smooth handover in case of failures. We conduct the experi-
mentwith two redundant controllers; one placed in Singapore
and the other in Sao Paulo, Brazil (Fig. 10c). We compare the
time response of our RCC algorithm under failures to that of
no failures. In our experiment, we introduce a step input to
the flow process (FT1, FC1) shown in Fig. 1, while all plant
processes (including other interacting flow processes) have
been activated using step activation functions. The detailed
experimental parameters are shown in Table 2.

We plot the response of the flow process in Fig. 11a
against the set point step input (dotted line). Under only
Internet delay and no failures, the dashed line shows that
system reaches the steady state. This is the same result
obtained when we used a local controller (not shown for
clarity). The delay did not impact performance in this case,
because the average measured delay was around 200 ms,
i.e., much less than the loops time constant (around 2 s).

To examine our fault tolerance algorithm, we fail the pri-
mary controller by disconnecting it at t ¼ 22 s, and return it
back to operation at t ¼ 78 s. These time instants are
selected so that there is one handover event during the tran-
sient state and another during the steady state. The results
show that the RCC algorithm successfully mitigated the fail-
ure and the performance appears as if there are no failures
(solid line in Fig. 11a). Not employing RCC would leave the
flow process at an intermediate value between t ¼ 22 and
t ¼ 78, which is highly undesirable. Also, if the primary

Fig. 11. Robustness of cloud controllers under failures.

TABLE 2
Fault Tolerance Experimental Parameters

Parameter Value Parameter Value

Sampling period (Ts) 200 ms Flow set point 0:69þ 0:35uðt� 5Þ gal/min;
uðtÞ is unit step

Flow process time constant 2 s Primary controller failure, recovery
time instants

t ¼ 22 s, t ¼ 78 s, respectively

Average roundtrip delay 200 ms Control algorithm, tuning method PI, Ziegler-Nichols [38]

2760 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 10, OCTOBER 2015

controller took longer to return, this would lead to severe
financial/safety risks.

To illustrate the importance of the smooth handover
method, we conduct the same experiment while the smooth
handover feature of RCC is disabled and plot the results in
Fig. 11b. Controllers with no smooth handover capability
(“RCC (No S.H.)”) introduced two “bumps” in the process
output during handover events. The negative impact of
such phenomenon can range from compromising the effi-
ciency of the controlled plant to damaging part or all of the
plant. Thus, the smooth handover feature is important for
providing the desired seamless performance under failure.

7.3 Performance under Variable Internet Delay

The observed real Internet delay in the previous section did
not challenge our delay compensator because it was not sig-
nificantly high. In this section, we show the performance
under very large emulated delays. We consider the most
common control-theoretic performance metrics [4]: (i) maxi-
mum overshoot percentage (Mp): normalized difference
between the maximum overshoot and the final value; (ii)
steady-state error (ess): difference between set point and
final value of step response; and (iv) settling time (ts): time
taken by response to stay within 5% of final value.

We consider the flow process (FT3, FC3) with the experi-
mental parameters shown in Table 3. Again, all plant pro-
cesses are activated using step functions. To further stress-
test the system, we artificially insert large random delay on
top of the long Internet delay. We use delay distributions
similar to the one in [10], with approximate values of
(mean m, standard deviation s, and maximum max) of
(100, 70, 500) ms, but wemultiply the x-axis by a scaling fac-
tor to substantially increase the delay. We use scaling
factors of 10, 20, 30 and 40 and appropriately scale the prob-
ability distribution so that the area under the curve remains
equal to 1. This scaling yields the excessive delay values

shown in Table 3. Thus, the inserted delay is up to two
orders of magnitude larger than the sampling period. Fur-
ther, highly variable delay causes packets to arrive out of
order or even get lost under extreme delay values. TCP will
ensure that lost packets are retransmitted and it will order
the out-of-order packets. Such scenarios lead TCP to
deliver several consecutive control actions to the Modbus
protocol all at once. When Modbus receives such control
actions, it will, in turn, write them to the actuator register in
the I/O interface all at once. This is equivalent to executing
only the last action and ignoring the rest of the “batch”.
Such scenario imposes even more challenge to our delay
compensator.

For each delay distribution, we conduct an experiment
with our delay compensator and another without it. We set
the delay block in our delay compensator to bðmþ 3sÞ=Tsc,
where Ts is the sampling period. Therefore, for the four
delay distributions under consideration, the delay block is

set to z�10, z�20, z�30 and z�40, respectively. We compare the
compensated and uncompensated performance to the zero-
delay case as a baseline. To highlight the compensation ben-
efit, we repeated each experiment several times and picked
the worst performance for the compensated case, and the
best performance in the uncompensated case.

We note that under large delays, the settling time has two
components. The first component is due to the delay itself.
The second component is due to the real distortion in the
time response caused by the delay. To measure the real per-
formance distortion, we define a metric called pure settling
time as tps ¼ ts �Dc, where Dc is the value of the delay
which the compensator is set to compensate for.

The results of this experiment are shown in Fig. 12 for the
delay distributions plus the no delay case. The two distribu-
tions described by (m, s, max) = (3, 2.1, 15) and (4, 2.8, 20)
yielded very similar results. Thus, to avoid redundancy, we
only show the results of the latter distribution, and skip the

Fig. 12. Robustness of the proposed approach under large random delays.

TABLE 3
Delay Compensation Experimental Parameters

Parameter Value Parameter Value

Sampling period (Ts) 300 ms Flow set point unit step: uðtÞ gal/min
Flow process time constant 3 s Roundtrip delay (m, s,max) (1, 0.7, 5), (2, 1.4, 10), (3, 2.1, 15),

(4, 2.8, 20) seconds
Smith predictor delay formula bðmþ 3sÞ=Tsc Smith Predictor delay values z�10, z�20, z�30 and z�40

Delay generator DS2 [10] Control algorithm, tuning method PI, Ziegler-Nichols [38]

HEGAZY AND HEFEEDA: INDUSTRIAL AUTOMATION AS A CLOUD SERVICE 2761

former. The figure shows that as we introduce larger delays,
the “Uncompensated” cloud control loop overshoots
(Figs. 12a and 12b) and eventually goes unstable (Figs. 12c).
Whereas our method maintains smooth response with no
apparent overshoots. Further discussion on the results are
given in Appendix C, available online.

In summary, we tested our proposed system under
extreme conditions: abrupt set point change under
extremely large, variable delay, up to 20 s, i.e., 66 times the
sampling period. Under such extreme conditions, our pro-
posed cloud-based automation system kept the controlled
process from overshooting or deviating from the final value.

7.4 Performance under Disturbance

In addition to the above results, we conducted several
other experiments to show the robustness of the proposed
cloud-based automation system under disturbances that
may occur in real plants; details are given in Appendix D.
We considered two control loops for two quite different
processes (Fig. 10): (i) the solar collector positioning pro-
cess marked by (AT1, AC1), and (ii) the temperature con-
trol process marked by (TT1, TC1) where the salt stores or
pumps heat to regulate the oil temperature. We used Lab-
VIEW to inject random and deterministic disturbances to
these two processes. Our results confirmed that the per-
formance of the proposed cloud controllers (deployed
thousands of miles away) is indistinguishable from the
performance of local controllers.

8 CONCLUSIONS

Cloud computing is proving beneficial to many real-life
applications, including industrial automation. We proposed
an architecture for offering industrial automation as a cloud
service, which simplifies automation system design and
saves time and cost. We focused on satisfying the timeliness
and reliability requirements for feedback control as the
most challenging industrial automation component. We
presented and theoretically analyzed novel delay mitigation
and distributed fault tolerance algorithms.

We evaluated our proposed approach using a physical
model of a real-life plant, and deployed its controllers on the
Amazon cloud. Our experimental results revealed that the
our approach can effectively make the controlled plant
unaware of controller/link failures, even when controllers
are thousands of miles away from the plant. Further, we con-
ducted emulation experiments with the purpose of injecting
random and deterministic delays and disturbances. The
results showed that our cloud-based controllers performed
indistinguishably from local controllers, as the best known
counterparts. By addressing the most challenging industrial
automation layer, we have implicitly proved that the other
layers are addressable. Hence, we can conclude that indus-
trial automation can be offered as a cloud service.

Other than proving that cloud-based industrial automa-
tion is possible, another contribution of this paper is open-
ing new horizons to employ cloud controllers in various
scenarios, including:

� The soft real-time controllers used to manage many
computing and communication systems, such as

those designed for distributed caching [29], resource
management in virtualized data centers [1], and video
streaming [25], can now be offered as cloud services.

� Cloud controllers can act as backups for physical
controllers of mission-critical systems. This is more
economic than replicating all physical controllers.

� Cloud controllers can be used to temporarily manage
systems while their physical controllers are being
upgraded or replaced due to failures. This is inline
with the on-demand nature of cloud services.

� Controllers can be deployed over private clouds to
serve multiple facilities of the same company, consol-
idating automation functionalities in one data center.

ACKNOWLEDGMENTS

This work was supported in part by the Natural Sciences
and Engineering Research Council (NSERC) of Canada.

REFERENCES

[1] T. Abdelzaher, Y. Diao, J. L. Hellerstein, C. Lu, and X. Zhu,
“Introduction to control theory and its application to computing
systems,” in Performance Modeling and Engineering. Boston, MA,
USA: Springer, 2008, ch. 7, pp. 185–215.

[2] Acromag, Inc. 972EN, 973EN Ethernet Analog Output Modules
[Online]. Available: http://www.acromag.com/sites/default/
files/972EN_973EN%20Ethernet%20Analog%20Output%20Mod-
ules.pdf, 2010.

[3] 968EN Ethernet Analog Input Modules [Online]. Available:
http://www.acromag.com/sites/default/files/968EN%20Ether-
net%20Analog%20Input%20Modules.pdf, 2010.

[4] M. Bandyopadhyay, Control Engineering Theory and Practice. New
Delhi, India: Prentice-Hall, 2006.

[5] J. Bendtsen, J. Stoustrup, and K. Trangbaek, “Bumpless transfer
between advanced controllers with applications to power plant
control,” in Proc. IEEE Conf. Decision Control, Dec. 2003, vol. 3,
pp. 2059–2064.

[6] S. Bhattacharyya, A. Datta, and L. Keel, Linear Control Theory:
Structure, Robustness, and Optimization. Boca Raton, FL, USA: CRC
Press, 2009.

[7] J.-L. Boulanger, Safety Management of Software-based Equipment.
Hoboken, NJ, USA: Wiley, 2013.

[8] Y. Chen, Z. Du, andM. Garcia-Acosta, “Robot as a service in cloud
computing,” in Proc. IEEE Int. Symp. Serv. Oriented Syst. Eng., Jun.
2010, pp. 151–158.

[9] Z. Chen, L. Liu, and X. Yin, “Networked control system with net-
work time-delay compensation,” in Proc. Ind. Appl. Conf.,
Oct. 2005, vol. 4, pp. 2435–2440.

[10] DS2:Delay Space Synthesizer [Online]. Available: http://www.cs.
rice.edu/~eugeneng/research/ds2/, 2006.

[11] Emerson. DeltaV Controller Redundancy [Online]. Available:
http://www2.emersonprocess.com/siteadmincenter/PM%
20DeltaV%20Documents/ProductDataSheets/PDS_DeltaV_Con-
trollerRed.pdf, 2013.

[12] L. Desborough and R. Miller, “Increasing customer value of indus-
trial control performance monitoring—Honeywell’s experience,”
in Proc. Preprint Chem. Process Control, Jan. 2002, pp. 153–186.

[13] V. Gabale, P. Dutta, R. Kokku, and S. Kalyanaraman, “InSite: QoE-
aware video delivery from cloud data centers,” in Proc. Int. Symp.
QoS, 2012, pp. 8:1–8:9.

[14] M. Gopal, Digital Control Engineering. New Delhi, India: New Age
International, 1998.

[15] T. Hegazy and M. Hefeeda. (2013, Jun.). The case for industrial
automation as a cloud service, Tech. Rep. SFU-CMPT TR 2013-25-
1, Simon Fraser University, Burnaby, BC, Canada [Online]. Avail-
able: http://nsl.cs.sfu.ca/techrep/SFU-CMPT_TR_2013-25-1.pdf

[16] T. Hegazy and M. Hefeeda. (2013, Sep.). Making industrial auto-
mation a cloud service, School Comput. Sci., Simon Fraser Univ.,
Burnaby, BC, Canada, Tech. Rep. SFU-CMPT TR 2013-25-3
[Online]. Available: http://nsl.cs.sfu.ca/techrep/SFU-CMPT_TR
_2013-25-3.pdf

2762 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 26, NO. 10, OCTOBER 2015

[17] U. Herrmann, B. Kelly, and H. Price, “Two-tank molten salt stor-
age for parabolic trough solar power plants,” Energy, vol. 29,
nos. 5–6, pp. 883–93, Apr. 2004.

[18] K. Hiroyoshi, T. Hiroyuki, M. Hideo, and K. Kiyotaka. (2004).
FFCS compact control station in CENTUM CS3000 R3, Yokogawa,
Sugar Land, TX, USA, Tech. Rep. 38 [Online]. Available: http://
www.yokogawa.com/rd/pdf/TR/rd-tr-r00038-002.pdf

[19] VMware, Inc. (2012). Wonderware system platform 2012 superior
agility with VMware vSphere 5 [Online]. Available: http://www.
vmware.com/resources/techresources/10314

[20] Invensys Operations Management. (2011). Tricon triple modular
redundant (TMR) digital system for feedwater control and safety
application in nuclear power plants [Online]. Available: http://iom.
invensys.com/EN/pdfLibrary/ProductSpec_Triconex_Trident_03-
10.pdf

[21] S. Kumar, S. Gollakota, and D. Katabi, “A cloud-assisted design
for autonomous driving,” in Proc. SIGCOMM MCC Workshop
Mobile Cloud Comput., 2012, pp. 41–46.

[22] National Instruments. (2009, Mar.). Why Use LabVIEW? [Online].
Available: http://www.ni.com/white-paper/8536/en/

[23] C. Lu, Y. Lu, T. Abdelzaher, J. A. Stankovic, and S. Son, “Feedback
control architecture and design methodology for service delay
guarantees in web servers,” IEEE Trans. Parallel Distrib. Syst.,
vol. 17, no. 7, pp. 1014–1027, Sep. 2006.

[24] NSF. (2012). NSF Report on Support for Cloud Computing
[Online]. Available: http://www.nsf.gov/pubs/2012/nsf12040/
nsf12040.pdf

[25] P. Patras, A. Banchs, and P. Serrano, “A control theoretic scheme
for efficient video transmission over ieee 802.11e EDCAWLANs,”
ACM Trans. Multimedia Comput. Commun. Appl., vol. 8, no. 3,
pp. 29:1–29:23, Aug. 2012.

[26] “Private communication with senior automation engineers, proj-
ect managers, site managers, and global technical managers serv-
ing the oil/gas industry,” 2013.

[27] J. Rossiter,Model-Based Predictive Control: A Practical Approach, 2nd
ed. Boca Raton, FL, USA: CRC Press, 2004.

[28] Siemens Industry Sector. (2009, Jul.). Smith Predictor for Control
of Processes with Dead Times [Online]. Available: http://sup-
port.automation.siemens.com/WW/view/en/37361207

[29] G. Smaragdakis, N. Laoutaris, I. Matta, A. Bestavros, and I. Stavra-
kakis, “A feedback control approach to mitigating mistreatment in
distributed caching groups,” in Proc. IFIP-TC6 Conf. Netw. Tech-
nol., Serv., Protocol, 2006, pp. 331–343.

[30] O. Smith, “Closer control of loops with dead time,” Chem. Eng.
Progress, vol. 53, no. 5, pp. 217–219, May 1957.

[31] Honeywell Building Management. (2012). Attunetm Advisory
Service [Online]. Available: https://buildingsolutions.honeywell.
com/en-US/newsevents/resources/Publications/honeywell-hbs-
service-attune%20advisory%20overview-brochure.pdf

[32] H. Wade, Basic and Advanced Regulatory Control: System Design
and Application, 2nd ed. Research Triangle Park, NC, USA:
ISA, 2004.

[33] L. Wang and K. Tan,Modern Industrial Automation Software Design.
Hoboken, NJ, USA: Wiley, 2006.

[34] T. Williams, “Advances in industrial automation: Historical
perspectives,” in Handbook of Automation. New York, NY, USA:
Springer, 2009, pp. 5–11.

[35] D. Wu, M. Greer, D. Rosen, and D. Schaefer, “Cloud manufactur-
ing: Strategic vision and state-of-the-art,” J. Manuf. Syst., vol. 32,
no. 4, pp. 564–579, 2013.

[36] S. Yang, X. Chen, L. Tan, and L. Yang, “Time delay and data loss
compensation for internet-based process control systems,” Trans.
Inst. Meas. Control, vol. 27, no. 2, pp. 103–118, Jun. 2012.

[37] J. Yoo, Y. Zhou, S.-M. Lee, M. G. Joo, and J. H. Park, “An adaptive
delay compensation technique for wireless sensor and actuator
network,” Int. J. Smart Home, vol. 6, no. 4, p. 187, Oct. 2012.

[38] J. Ziegler and N. Nichols, “Optimum settings for automatic
controllers,” ASME Trans., vol. 64, pp. 759–68, 1942.

Tamir Hegazy received the MS and PhD
degrees from Virginia Tech and Georgia Tech, in
2001 and 2004, respectively. He is currently with
the ECE Research Faculty of Georgia Tech,
where he also serves as a program manager for
the Center of Energy and Geo Processing. He
maintained a fine career balance between acade-
mia and industry in the period from 2005 to 2012.
During this period, he held an adjunct assistant
professor status at Virginia Tech. His position
involved teaching, research, and administrative

roles for Virginia Tech for Middle East and North Africa (VT-MENA),
which serves as an extended campus of Virginia Tech in the region. He
also held an assistant professor position at Mansoura University, Egypt.
He simultaneously occupied several industry positions including
research and development manager and global technical support man-
ager at Invensys, a large, multinational automation firm. In 2012, he
decided to focus on academic research. He was at Simon Fraser Univer-
sity, Canada between 2012 and 2013, where he researched real-time
cloud computing services, and since 2013, he has been with Georgia
Tech. He serves as a technical program committee member for IEEE
conferences. His research interests include computer vision, human-
computer interaction, real-time systems, industrial automation, and
green energy. He is a senior member of the IEEE.

Mohamed Hefeeda received the BSc and MSc
degrees from Mansoura University, Egypt, in
1997 and 1994, respectively. He received the
PhD degree from Purdue University, in 2004. He
is a professor in the School of Computing Sci-
ence, Simon Fraser University, Canada, where
he leads the Network Systems Lab. He is also a
principal scientist in Qatar Computing Research
Institute, Doha, Qatar. His research interests
include multimedia networking over wired and
wireless networks, peer-to-peer systems, mobile

multimedia, and cloud computing. In 2011, he was awarded one of the
prestigious NSERC Discovery Accelerator Supplements (DAS), which
are granted to a selected group of researchers in all Science and Engi-
neering disciplines in Canada. His research on efficient video streaming
to mobile devices has been featured in multiple international news ven-
ues, including ACM Tech News, World Journal News, SFU NEWS, CTV
British Columbia, and Omni-TV. He serves on the editorial boards of
several premier journals such as the ACM Transactions on Multimedia
Computing, Communications and Applications (TOMM), and he has
served on many technical program committees of major conferences in
his research area, such as ACM Multimedia. He has coauthored more
than 80 refereed journal and conference papers and has two granted
patents. He is a senior member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

HEGAZY AND HEFEEDA: INDUSTRIAL AUTOMATION AS A CLOUD SERVICE 2763

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

