998 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21,

NO. 7, JULY 2010

On the Benefits of Cooperative Proxy Caching
for Peer-to-Peer Traffic

Mohamed Hefeeda, Senior Member, IEEE, and Behrooz Noorizadeh

Abstract—This paper analyzes the potential of cooperative proxy caching for peer-to-peer (P2P) traffic as a means to ease the burden
imposed by P2P traffic on Internet Service Providers (ISPs). In particular, we propose two models for cooperative caching of P2P
traffic. The first model enables cooperation among caches that belong to different autonomous systems (ASs), while the second
considers cooperation among caches deployed within the same AS. We analyze the potential gain of cooperative caching in these two
models. To perform this analysis, we conduct an eight-month measurement study on a popular P2P system to collect traffic traces for
multiple caches. Then, we perform extensive trace-based simulations to analyze different angles of cooperative caching schemes. Our
results demonstrate that: 1) significant improvement in byte hit rate can be achieved using cooperative caching, 2) simple object
replacement policies are sufficient to achieve that gain, and 3) the overhead imposed by cooperative caching is negligible. In addition,
we develop an analytic model to assess the gain from cooperative caching in different settings. The model accounts for number of
caches, salient P2P traffic features, and network characteristics. Our model confirms that substantial gains from cooperative caching
are attainable under wide ranges of traffic and network characteristics.

Index Terms—Peer-to-peer systems, caching, cooperative caching, traffic modeling.

1 INTRODUCTION

EER-TO-PEER (P2P) systems currently generate a major

fraction of the total Internet traffic [1], [2], accounting
for as much as 60-70 percent of the traffic in some Internet
Service Providers (ISPs). Furthermore, it is expected that the
amount of P2P traffic will even increase in the future [3].
Previous studies, e.g., [4], have shown that the huge volume
of the P2P traffic multiplies the load on ISP networks and
increases the possibilities of network congestion. Increasing
the traffic load on ISP networks escalates the costs incurred
by ISPs to provision and run their networks. These costs
will, eventually, have to be passed to customers. In
addition, since the Internet is a shared platform, higher
chances of network congestion may indirectly degrade the
performance of other Internet applications.

Several approaches have been proposed in the literature
to reduce the impacts of P2P traffic. These include
enhancing traffic locality [4], [5] and traffic caching [6].
More aggressive approaches using devices for traffic
blocking and shaping have also been used in practice [7],
[8]. These aggressive approaches, however, may not always
be feasible for some ISPs because many of their clients like
to participate in P2P systems and might switch to other ISPs
if they were blocked. We believe that multiple approaches
will likely be required to mitigate the problems created by
the enormous amount of P2P traffic. For example, caching
can be used in conjunction with locality-aware neighbor

e M. Hefeeda is with the School of Computing Science, Simon Fraser
University, 250-13450 102nd Ave, Surrey, BC V3T 0A3, Canada.
E-mail: mhefeeda@cs.sfu.ca.

e B. Noorizadeh is with Nokia, 9200 Glenlyon Parkway, Burnaby,
Vancouver, BC V5] 5]8, Canada. E-mail: behroozn@gmail.com.

Manuscript received 29 Feb. 2008; revised 18 Oct. 2008; accepted 30 July
2009; published online 5 Aug. 2009.

Recommended for acceptance by C. Shahabi.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2008-02-0080.
Digital Object Identifier no. 10.1109/TPDS.2009.130.

1045-9219/10/$26.00 © 2010 IEEE

selection algorithms [5] to further reduce the amount of
traffic downloaded from sources outside of the local
network domain.

We focus on exploring the full potential of caching P2P
file-sharing traffic (we refer to it simply as P2P traffic). In
particular, we study the models, benefits, and costs of
cooperative proxy caching for P2P traffic, where multiple
proxy caches cooperate with each other to serve P2P traffic.
Caching is a promising approach because objects in P2P
systems are mostly immutable [1] and the traffic is highly
repetitive [9]. In addition, caching does not require
changing the P2P protocols and can be deployed transpar-
ently from clients. Therefore, ISPs can readily deploy
caching systems to reduce their costs. In fact, several
commercial P2P caching products have already made it to
the market [10], [11], [12]. Efficient caching algorithms have
also been proposed in the literature [6], [13]. However, all of
these works and products are designed only for independent
caches, i.e., caches that are neither aware nor cooperate with
each other. Despite its great potential, as will be shown in
this paper, cooperative caching for P2P traffic has received
little attention in the literature. This is in contrast to the
significant research attention that has been paid to
cooperative caching of Web traffic, although its gain is
only achieved under certain conditions [14], [15], and even
in these cases, the gain may not be significant [16].

In this paper, we propose two models for cooperative
caching of P2P traffic. The first model enables cooperation
among caches that belong to different autonomous systems
(ASs), while the second considers cooperation among caches
deployed within the same AS. We analyze the potential gain
of cooperative caching in these two models. To perform this
analysis, we conduct an eight-month measurement study on
the Gnutella P2P system to collect traffic traces for multiple
caches. Then, we perform extensive trace-based simulations
to analyze different angles of cooperative caching schemes.
Our results demonstrate that: 1) significant improvement in

Published by the IEEE Computer Society

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on July 29,2010 at 00:12:59 UTC from IEEE Xplore. Restrictions apply.

HEFEEDA AND NOORIZADEH: ON THE BENEFITS OF COOPERATIVE PROXY CACHING FOR PEER-TO-PEER TRAFFIC 999

byte hit rate can be achieved using cooperative caching,
2) simple object replacement policies are sufficient to achieve
that gain, and 3) the overhead imposed by cooperative
caching is negligible. In addition, we develop an analytic
model to assess the gain from cooperative caching in
different settings. The analytic model complements our
simulation study, and it addresses questions such as what
happens if the P2P traffic characteristics and network
conditions were to vary over wide ranges of possible values.
The proposed model accounts for the number of caches,
salient P2P traffic features, and network characteristics. By
numerically analyzing the model, we confirm that substan-
tial gains from cooperative caching are attainable under
wide ranges of traffic and network characteristics.

The rest of the paper is organized as follows: In Section 2,
we summarize the related work. In Section 3, we describe
different models for caching P2P traffic. We present our
measurement study in Section 4. In Section 5, we present
trace-based simulation experiments to show the potential of
cooperative caching. In Section 6, we propose and analyze
several object replacement policies for cooperative caching.
We also analyze the overhead introduced because of
cooperation among caches. The analytic model is presented
in Section 7. Finally, we conclude the paper in Section 8.

2 RELATED WORK

Cooperative caching for Web traffic has been extensively
studied, see, for example, [14], [15], [16] and the references
therein. Using trace-based simulation and analytical analy-
sis, Wolfman et al. [16] argue that cooperation yields
marginal benefits for Web caching. Lee et al. [15] show that
cooperation may be beneficial only in certain environments.
The gain from cooperation in Web caching is debatable due
to the following:

1. Web objects are fairly dynamic.
A Web proxy cache may be able to store most of the
popular objects locally.

3. The overhead imposed is high relative to object
sizes.

4. Latency could be increased due to looking up and
downloading objects from other caches.

None of the above reasons exists in the case of cooperative
caching of P2P traffic. First, most objects in P2P systems are
immutable [1]. Second, because P2P objects are several
order of magnitudes larger than Web objects [1], [13], it is
unlikely that a single cache can hold a reasonable fraction of
popular P2P objects to achieve high byte rate. The large
object sizes in P2P systems also make the overhead paid to
find and retrieve a requested object from other caches
negligible. Finally, adding a few hundred milliseconds of
latency to a P2P download is not a critical concern because
many sessions take long periods (minutes and even hours)
and they usually run in the background [1]. This is unlike
Web sessions in which latency is crucial. Therefore, we
believe that cooperative caching has a stronger case in P2P
systems than it had in the Web.

Caching of the P2P traffic has recently been studied in a
number of papers. The benefits of caching P2P traffic have
been shown in [9] and [4]. Leibowitz et al. [9] show that P2P

traffic is highly repetitive, and therefore, amenable to
caching. The study in [4] suggests deploying caches or
making P2P protocols locality aware to reduce the load on
ISP networks. No caching algorithms were proposed in [9],
[4]. Caching algorithms designed for P2P traffic have been
proposed in [6] and in our previous work [13], [17]. In [6],
two object replacement algorithms are suggested: Minimum
Relative Size (MINRS) and Least Sent Byte (LSB). The first
algorithm evicts the object which has the least cached
fraction, and the second one evicts the object which served
the least number of bytes from the cache. In our previous
work [13], [17], we proposed a caching algorithm based on
segmentation and partial caching of objects. We also
designed and implemented a prototype for a proxy cache
for P2P traffic [18]. Shen et al. [19] propose using already-
deployed Web caches to serve P2P traffic. This, however,
requires modifying the P2P protocols to wrap their
messages in HTTP format and to discover the location of
the nearest Web cache. Given the distributed and autono-
mous nature of the communities developing P2P client
software, incorporating these modifications into actual
clients may not be practical. Furthermore, previous works
have shown that the object replacement algorithms designed
for Web traffic may not yield good performance for the P2P
traffic [13]. All the of above works, including ours, target
independent caches and do not consider cooperation among
caches to further enhance the byte hit rate.

Finally, several measurement studies have analyzed
various aspects of P2P systems. Gummadi et al. [1] study
the object characteristics of P2P traffic and show that P2P
objects are mainly immutable, multimedia, large objects that
are downloaded at most once. The study demonstrates that
the popularity of P2P objects does not follow Zipf
distribution, which is usually used to model the popularity
of Web objects [20]. Sen and Wang [2] study the aggregate
properties of P2P traffic in a large-scale ISP and confirm that
P2P traffic does not obey Zipf distribution. Klemm et al. [21]
use two Zipf-like distributions to model query popularity in
Gnutella. While these measurement studies provide useful
insights on P2P systems, they were not explicitly designed
to study caching P2P traffic. They also did not provide
traces that can be used with different caches. Therefore, we
had to conduct our own measurement study.

3 MobDELS FOR CACHING P2P TRAFFIC
3.1 Independent Proxy Caches

In independent caching, a cache is deployed near the
gateway routers of ASs that choose to employ caching to
reduce the burden of P2P traffic. See Fig. 1a, but note that
caches in different ASs work independently from each
other. In order to take full advantage of a deployed cache
and to avoid modifying the source code of P2P client
software, the cache should work in a transparent mode. This
is similar to Web caching systems such as Squid [22], where
the gateway router detects HTTP requests and forwards
them to the Web cache. Detecting P2P traffic, however, is a
bit more involved because many P2P systems use dynamic
ports and some of them even encrypt control packets.
Nonetheless, there have been several works on identifying

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on July 29,2010 at 00:12:59 UTC from IEEE Xplore. Restrictions apply.

1000

Rest of the Internet

Transit Link ($$)

Peering Link

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21,

NO. 7, JULY 2010

Inter-ISP Link ($$)

Intra-ISP Link

Fig. 1. The proposed two models for cooperative caching of P2P traffic. (a) Cooperation among caches in different ASs. (b) Cooperation among

caches within a large ISP.

P2P traffic based on application signatures [23] and
connection patterns [24]. Many commercially available
P2P traffic shaping and blocking products, e.g., Packeteer
[7] and P-Cube [8], already identify most of the packets
belonging to P2P systems.

As argued in [6], [13], the primary goal of caching P2P
traffic is to reduce the load on backbone links, and hence,
reduce the operational costs of ISPs. To reflect this goal, we
choose the byte hit rate as the main performance metric for
evaluating caching systems for P2P traffic. The byte hit rate
(BHR) is defined as the ratio of the number of bytes served
from the cache to the total number of bytes transferred.
Note that, unlike the case of caching Web traffic, the hit
rate—defined as the ratio of the number of objects served
from the cache to the total number of objects transferred—
may not be well defined in the P2P case [6]. This is because
requests in P2P systems are typically issued for segments of
objects, not for entire objects.

3.2 Cooperative Proxy Caches in Different ASs

The first model for cooperation considered in this paper is
depicted in Fig. la. In this model, caches deployed in
different ASs cooperate with each other to serve requests
from clients in their networks. The cooperating ASs may
have a peering relationship to carry each other’s traffic, or
they can be located within the same geographical area such
as a city where the bandwidth within the region is typically
more abundant than the bandwidth on long-haul, intercity,
links. As a concrete example, consider the Metropolitan
Vancouver Area in British Columbia, Canada. Several
universities serve this area, including SFU, UBC, BCIT,
among others. Each university is a different AS with its own
network. All university ASs are interconnected through a
very high speed (gigabits per second optical links) network
called BCNET. The bandwidth among university ASs is
abundant. On the other hand, the university ASs are
connected to the rest of the Internet through commercial

ISPs such as Telus and Shaw. The links to the Internet have
much smaller bandwidth (tens of megabits per second) and
they cost significantly more money than BCNET. In this
example, if the universities in Vancouver were to deploy
caches for P2P traffic and enable cooperation among these
caches over BCNET, they would achieve significant reduc-
tion in their bills for accessing the Internet.

Caches cooperating with each other form what we call a
cache group. The cooperation in the cache group works as
follows: When a cache receives a request for an object that it
does not store locally, it first finds out whether another
cache in the cache group has the requested object. If any of
them does have the object, the object is directly served to the
requesting client. If otherwise, the request is forwarded to
external sources. Communication and object lookup inside
the cache group can be done in several ways. For example, a
centralized directory can be used, similar to the CRISP
protocol [25], [26] proposed for cooperative Web caching.
The lookup process is straightforward in this case and it
requires only two messages. However, the directory is a
single point of failure and it requires frequent updates from
participating caches. We adopt distributed lookup methods.
One distributed lookup method is using the Internet Cache
Protocol (ICP) [27], [28], which is implemented on top of the
open-source Squid Web cache [22]. We note that minor
modifications to ICP will need to be made to support the
P2P traffic case. For example, two fields should be added to
the query messages of ICP to indicate the start and end of
the requested byte range because clients in P2P systems
request segments of objects, not full objects at once.

3.3 Cooperative Proxy Caches within the Same AS

The second model for cooperation proposed in this paper is
for caches deployed within the same AS, as shown in Fig. 1b.
This model is suitable for a large ISP with multiple access/
exit points. The network of such ISPs is composed of multiple
points of presence (POPs) interconnected with high-speed

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on July 29,2010 at 00:12:59 UTC from IEEE Xplore. Restrictions apply.

HEFEEDA AND NOORIZADEH: ON THE BENEFITS OF COOPERATIVE PROXY CACHING FOR PEER-TO-PEER TRAFFIC

507

I
(e

Latitude

W
=)

-120 —-100

Longitude
(a)

1001

501

S
(e

Latitude

W
=

—-100
Longitude

(b)

Fig. 2. Locations of peers in two large ASs in US. (a) Cox Communications (AS 11715). (b) AT&T-Comcast (AS 1859).

optical links. ISPs provide Internet access to their customers
at POPs. The links inside an ISP are usually overprovisioned.
ISPs are attached to the Internet through inter-ISP links. Inter-
ISP links are usually the bottlenecks of the Internet and where
congestion occurs. In addition, the inter-ISP links are
expensive because an ISP either pays another ISP for carrying
its traffic (in a customer-provider relationship) or it needs to
mutually carry the same amount of traffic from the other ISP
(in a peer-to-peer relationship) [29]. Deploying cooperative
caches in such large ISPs would save a huge amount of P2P
traffic from going on the inter-ISP links, and thus, would
reduce the costs incurred by ISPs, because the cost of the
internal links (between caches) is much smaller than the cost
of inter-ISP links [30]. Caching would also benefit clients
because their traffic will traverse fewer inter-ISP links, which
are more susceptible to overload and congestion.

As concrete examples for this model of cooperative
caching, we show in Fig. 2 the distribution of clients in two
large ASs in US: AS 11715 (Cox Communications) and AS
1859 (AT&T-Comcast). We discuss how we created this
map in Section 5. Since ISPs provide Internet access to their
customers at POPs, they are the natural locations for
deploying caches. Therefore, caches would be near client
clusters, somewhere inside the rectangles in Fig. 2. Caches
would cooperate to serve requests from P2P clients in the
same AS in order to save traffic on expensive inter-ISP links.
The cooperation among these caches employs protocols
similar to the ones described in the previous section.

We note that cooperation among caches within the same
AS would be easier to implement in practice than
cooperation among caches in different ASs. This is because
in the former case, all caches are owned and managed by a
single entity, while in the latter case, multiple parties are
involved. Moreover, political issues between different
parties might affect the decision of enabling cooperative
caching. Nonetheless, we hope that the significant potential
gains shown in this paper will motivate ASs to enable
cooperative caching. Finally, we mention that caching of
P2P traffic might raise some legal issues, similar to those
raised and addressed for caching of Web traffic about two
decades ago. Discussing these legal issues is outside the
scope of this paper.

4 MEASUREMENT STUDY AND TRACE COLLECTION

We are interested in studying the potential collaboration
among caches to reduce the WAN traffic imposed by P2P
systems. Ideally, we would like to have a trace showing
information about requested objects from each cache.
Although several P2P caching products have already been
introduced and deployed [10], [11], [12], we are not aware
of any public traces that can be used to study caching of P2P
traffic. Therefore, we conducted a measurement study on
the Gnutella file-sharing network [31] to collect and analyze
the characteristics of P2P traffic that would be observed by
many individual caches.

Gnutella has two kinds of peers: ultrapeers, character-
ized by high bandwidth and long connection periods, and
leaf peers, which are ordinary peers that only connect to
ultrapeers. Peers exchange several types of messages
including PING, PONG, QUERY, and QUERYHIT. We
modified a popular Gnutella client, called Limewire [32], to
run as a monitoring node. We ran our monitoring node in
the ultrapeer mode. It passively recorded the contents of all
QUERY and QUERYHIT messages passing through it
without injecting any traffic into the network.

Although we deployed only one ultrapeer, we configured
it to reach most of the Gnutella network as follows: We
increased the number of concurrent connections that it can
maintain to be up to 500. A regular ultrapeer allows up to 16
connections to other ultrapeers and up to 30 to leaf peers.
Effectively, our peer was worth more than 20-30 regular
ultrapeers. In many times, our peer was connected to more
than 350 other ultrapeers. Let us assume that each of these
350 ultrapeers connects to other 10 ultrapeers, on average,
each of them connects to other 10, and so on. Given that
queries in Gnutella are forwarded up to 7 hops among
ultrapeers, our peer was able to capture traffic from a huge
number of peers. In addition, our peer ran continuously for
eight months, while other peers joined and left the network.
This means that the 200-300 other peers connected to our
peer were continuously changing, which allowed our peer to
reach different and larger portions of the Gnutella network.

The measurement study was conducted between
16 January 2006 and 16 September 2006. Our measurement

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on July 29,2010 at 00:12:59 UTC from IEEE Xplore. Restrictions apply.

1002

pES | 5 Object Popularity
\s - - lef
v 2N — Mlef

Frequency

10" 2 " 6

10 10 10 10
Object Rank

Fig. 3. Popularity of objects in P2P systems is better modeled by a
Mandelbrot-Zipf distribution.

peer was located at Simon Fraser University, Canada. But
since the Gnutella protocol does not favor nodes based on
their geographic locations [21], we were able to observe
peers from thousands of ASs across the globe. During the
eight months of the measurement, we recorded more than
288 million QUERY messages and 134 million QUERYHIT
messages issued from approximately 38 million peers
distributed over more than 17 thousand different ASs. The
large scale of our measurement study enables us to draw
solid conclusions on the potential cooperation among
caches for P2P traffic. We mention that these traces are
rigorously analyzed in our previous work [13], which
studies independent P2P caches with no cooperation
among them.

We construct the traces for individual ASs as follows:
When a peer replies with a QUERYHIT message for an
object, it means that this peer has a copy of this object. This
also means that most likely, this peer downloaded the object
sometime in the past. Since most downloads are served by
peers from outside the AS in which the client peer resides
[1], a cache would have observed this download if it had
been deployed at the gateway router of the client peer’s AS.
Thus, the trace for an AS is constructed by having one
request for each replica downloaded by a peer in that AS.
We use only the first QUERYHIT message sent by a peer for
a particular object, which is identified by the source IP
address and the object ID. Peers that replied earlier with
QUERYHITs for an object are assumed to have downloaded
the object earlier. Note that, from the cache perspective, the
exact time when the object was downloaded is not
important. It is the relative popularity of objects and the
distance between similar requests in the trace that matter.
These two issues are captured by our sequences.

An important aspect in caching P2P traffic is object
popularity. The authors of [1] show that object popularity
has a flattened head, and our previous work [13] confirms this
flattened head nature and presents an analytic model for it.
We illustrate this model in Fig. 3, which shows the object
popularity in a sample AS from our traces. The figure shows
that a Zipf-like distribution will overestimate the popularity
of objects near the head of the curve, which is the most
important for the cache. The figure also shows that a

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21,

NO. 7, JULY 2010

TABLE 1
Summary Statistics for the P2P Traffic Observed by Our
Monitoring Node in 10 ASs in the West Coast of North America

AS Unique

AS# Name objects (TB)
2161 AT&T 30.41
9548 Road Runner 14.37
9406 Verizon 12.05
11394 Charter 14.99
11715 Cox 12.43
1859 AT&T-Comcast 59.67
1782 Shaw 27.96
233 Telus 19.02
18952 Comcast 17.51
105 Qwest 14.02

generalized form of Zipf-like distributions, called Mandel-
brot-Zipf [33], is a better model for object popularity in P2P
systems. The Mandelbrot-Zipf distribution defines the
probability of accessing an object at rank ¢ out of IV available
objects as:

K
(i+q)

where K =1/(3_N,1/(i+¢)"), a is the skewness factor,
and ¢ > 0 is a parameter that we call the plateau factor,
because it is the reason behind the plateau shape near to the
leftmost part of the distribution. We will use the Mandel-
brot-Zipf popularity distribution in our analysis throughout
the paper.

f@) = a (1)

5 THE POTENTIAL OF COOPERATIVE CACHING FOR
P2P TRAFFIC

In this section, we use our traces to study various aspects of
cooperative caching. We start by showing that cooperative
caching is needed to achieve high byte hit rates and to save
bandwidth on expensive links. Then, we demonstrate the
potential gain from cooperation in the two models
proposed in this paper.

5.1 The Need for Cooperation

We start our analysis by making the case for cooperative
caching of P2P traffic. We choose 10 different ASs from our
traces to see what would happen if each deployed a cache to
serve P2P traffic originated from a given geographical
region. As an example region, we select the West Coast of
North America. In this region, we choose the 10 ASs with the
largest amount of traffic seen in our traces to make our
results statistically significant. For each of these 10 ASs, we
find all requests issued from that AS. We use the IP
addresses of requests to map a request to an AS using the
GeolP database, which is fairly accurate for cities in North
America [34]. We refer to this process as IP-to-AS mapping.
Since an AS can span multiple geographical regions, we
need to remove requests from outside the West Coast. We do
this by finding the geographical locations of the IP addresses
of requests again using the GeolP database (this is referred to
as IP-to-geolocation mapping). Then, we remove all requests
that are not issued from clients in the West Coast. Table 1
lists the names and summary statistics for these 10 ASs.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on July 29,2010 at 00:12:59 UTC from IEEE Xplore. Restrictions apply.

HEFEEDA AND NOORIZADEH: ON THE BENEFITS OF COOPERATIVE PROXY CACHING FOR PEER-TO-PEER TRAFFIC

TABLE 2
P2P Traffic Statistics for Five ASs in Los Angeles

AS Unique

AS# Name objects (TB)

2161 AT&T 18.86

9548 Road Runner 18.29

9406 Verizon 10.91

11394 Charter 7.72

11715 Cox 5.39

As Table 1 shows, the total size of unique objects observed
in each AS is too large to fit in a single cache. Note that these
statistics are for the data our monitoring node was able to
capture from only one P2P system (Gnutella). The actual
amount of P2P traffic for each AS is indeed much larger than
that is shown in Table 1. Thus, the unique objects may not fit
into one cache. In addition, as indicated by the flattened
head of the object popularity distribution in Fig. 3, the
probability of accessing objects is not concentrated in a few
objects as in the Zipf-like distribution case. Rather, it is
spread across a much larger number of objects. This means
that a single cache may not be able to store enough popular
objects to achieve a high byte hit rate. We contrast the need
for cooperative caching in the P2P traffic case against that
need in the Web traffic case. Previous studies, e.g., [16],
indicate that an individual cache could store most of the
cacheable Web objects. This is because Web objects have
relatively small sizes, and many Web caching products limit
the size of objects that can be stored locally.

In summary, given that individual caches may not have
enough capacity to store popular objects to achieve high
byte hit rate and that the P2P traffic can easily tolerate the
small delay that might result from cooperative caching, we
believe that cooperation among caches is needed to enhance
the byte hit rate and save more traffic from going on
expensive WAN links. It remains to see how much gain we
could achieve from cooperative caching, which we study in
the following two sections, and what costs are involved,
which we analyze in Section 6.3.

5.2 Gain from Cooperation among Caches in
Different ASs

We consider cooperation among ASs within the same city. We
select two large cities: New York City (NYC) and Los Angeles
(LA).Ineach city, we choose five popular ASs for the analysis.
Each AS is assumed to deploy a cache, and the five caches
form a cache group. Caches in the same group cooperate with
each other to serve P2P traffic originated from the city in
which they are located. Traces for caches in different ASs are
created using the same IP-to-AS and IP-to-geolocation
mapping methods explained in Section 5.1. Summary
statistics about the five ASs in LA are listed in Table 2.

To assess the potential of cooperative caching, we conduct
several simulation experiments to compare the byte hit rate
in the cooperative caching case versus the byte hit rate in the
independent caching case. We analyze the performance of
the two cache groups in LA and NYC. We consider two
realistic (online) replacement policies: cooperative Least
Recently Used (denoted by cLRU) and cooperative Least
Frequently Used (denoted by cLFU). Their counterparts in

1003

20

Byte Hit Rate (%)
= O

9}

—=—cLFU

0 1 2 3 4 =
Cache Size (TB)

O) 1)

Fig. 4. Comparison between independent and cooperative caching for
caches deployed in five ASs in Los Angeles. Sample results are shown
for AS 2161.

the independent caching case are referred to as iLRU and
iLFU, respectively. cLRU (and similarly cLFU) works as
follows: When a cache observes a miss and the object is
found in another cache in the group, the object is down-
loaded from that cache but it is not stored locally. In this case,
we have only one copy of any object within the cache group.
The remote cache updates its data structure as if it had a hit
from a local client. In this manner, all caches in the group
cooperate to implement a group-wide LRU policy.

We vary the size of individual caches from 100 GB to
5 TB, and we compute the byte hit rate achieved by iLRU
versus cLRU and iLFU versus cLFU for each cache in the
two cache groups. A sample of the results is shown in Fig. 4,
other figures are similar. The figure implies that significant
gains in byte hit rate can be achieved by cooperation among
caches. For example, with a cache of size 2 TB, the byte hit
rate achieved by cLFU is almost double that achieved by
iLFU. In addition, the gain improves as the cache size
increases, which is expected in the future as storage prices
keep dropping. Thus, cooperation among caches is bene-
ficial even when ASs deploy caches with large storage
systems (several terabytes) because of the huge of amount
of the P2P traffic.

In another experiment, we fix the cache size at 1 TB and
compute the potential improvement in byte hit rate due to
cooperation among caches in the same group. We compute
the percentage of improvement in byte hit rate, which is the
difference between the byte hit rates of cLRU and iLRU
normalized by the byte hit rate of iLRU. We repeat the
experiment for cLFU and iLFU. The results for the cache
group in LA are given in Fig. 5; the results for the cache
group in NYC are similar. The figure shows that up to
330 percent improvement in byte hit rate can be achieved for
some ASs. The average gain across all five ASs is more than
120 percent. Fig. 5 also indicates that different replacement
policies may yield different gains, and more importantly,
some ASs may benefit more than others from cooperation.
We elaborate more on this important issue in Section 6.2.

The experiments in this section show that the byte hit
rate could be doubled or tripled in some cases because of
cooperation. Considering the huge volume of the P2P

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on July 29,2010 at 00:12:59 UTC from IEEE Xplore. Restrictions apply.

1004
400 = .
. I cL.RU
S CcLFU
§ 300f 1
@
g
&
3 200_ | 4
O
g
S
£ 100+ : e §
g
3
0
2161 9548 9406 11394 11715 AVG
AS#

Fig. 5. Gain from cooperation using cLFU and cLRU replacement
policies for five ASs in Los Angeles.

traffic, even 1 percent improvement in byte hit rate accounts
to saving in the order of terabytes of traffic on the expensive
WAN links. Therefore, the large savings from cooperation
will serve as an incentive for ISPs to deploy caches and
enable cooperation among them.

5.3 Gain from Cooperation among Caches within
the Same AS

In this section, we study the potential gain from cooperation
between caches deployed within the same AS. We choose
several large ASs with clients distributed over many
locations in North America. For each AS, we use the GeolP
database to map the IP addresses of clients in that AS to
their geographical locations. The GeolP database returns the
latitude and longitude of a given IP address. We use Matlab
to plot these values on the map of North America. Fig. 2
shows the distribution of clients in two large ISPs in USA.
As mentioned in Section 3.3, the POPs of an AS are the
usual locations for deploying caches. The exact locations of
ISP’s POPs, however, are not public information." There-
fore, we had to approximate the locations of major POPs.
Intuitively, a POP will be near the clustering of many
clients. In Fig. 2, we draw rectangles around apparent
clustering of clients in our traces. We assume that the AS
deploys a cache somewhere in each of these rectangles.
Then, we create traffic traces for each cache by considering
only requests from clients falling inside the rectangle in
which the cache exists. Note that the approximate locations
of caches do not affect the analysis of cooperative caching
because they could only change the delay between a cache
and its clients by a few milliseconds, which is a negligible
effect in P2P traffic that runs in the background for much
longer periods (minutes).

Similar to the previous case, we study the gain from
cooperation under cLFU and cLRU policies versus iLFU
and iLRU policies, respectively. Some of the results are
shown for AS 11715 in Fig. 6. The results confirm that the
byte hit rate could be significantly increased with coopera-
tion among caches. Therefore, we can conclude that
cooperation improves byte hit rates in both cooperation
models considered in this paper.

1. We are aware of the Rocketfuel project [35], [36], which infers ISP
topologies. We did not, however, find the topologies of the ISPs considered
in our analysis in the data available from [36].

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21,

NO. 7, JULY 2010

20

-v-iLFU
—=&—cLFU

—_
W

Byte Hit Rate (%)
o

5t I Gl

0 0.5 1 L5 2
Cache Size (TB)

Fig. 6. Comparison between independent and cooperative caching for
caches deployed in the same AS. Sample results are shown for AS
11715.

6 REPLACEMENT PoLICIES AND COOPERATION
OVERHEAD

A replacement policy is used when a cache needs to evict an
object (or a few objects) to make room for a newly requested
one. The replacement policy is an important component of
any caching system, and it is specially so for a P2P cache
because of the large size of objects, and therefore, the
limited number of them that a cache can store. In addition,
replacement policies not only affect the total byte hit rate of
the caching system, but they also impact the relative gain of
individual caches in the cache group, as we will demon-
strate in this section. Furthermore, different replacement
policies impose different amounts of overheads, which are
important to analyze in order to assess the net benefits of
cooperative caching.

In this section, we first describe and analyze various
replacement policies for cooperative caching. Then, we
study the effect of the replacement policies on the gain
achieved by different ASs and evaluate the overhead
imposed due to cooperation among caches.

6.1 Replacement Policies for Cooperative Caching

We have already described two online replacement policies
for cooperative caching in Section 5.2: cLFU and cLRU.
cLFU and cLRU implement group-wide LFU and LRU
policies, respectively. The authors of [6] have proposed a
few replacement policies designed for caching P2P traffic.
The LSB was shown to outperform other policies proposed
in [6]. LSB works for individual caches and it evicts the
object that has the minimum number of bytes transmitted
from the cache. We consider the cooperative version of LSB,
which is denoted by cLSB, as a candidate policy for
cooperative caching. cLSB implements a group-wide LSB.
All of the cLFU, cLRU, and cLSB replacement policies try to
increase the total byte hit rate across all caches. In that sense
they are global in nature. Therefore, they may evict locally
popular objects from their caches if the global popularity of
these objects is not high compared to other objects in the
cache group. That is, the byte hit rate of some caches might
be sacrificed for enhancing the total byte hit rate of the
whole cache group. This uncertainty in the gain from

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on July 29,2010 at 00:12:59 UTC from IEEE Xplore. Restrictions apply.

HEFEEDA AND NOORIZADEH: ON THE BENEFITS OF COOPERATIVE PROXY CACHING FOR PEER-TO-PEER TRAFFIC

cooperation might discourage ASs from enabling coopera-
tion among caches.

To mitigate this problem, we propose a simple model for
object replacement in cooperative caching. We call this
model cooperative caching with selfish replacement. Under
this model, a cache cooperates by serving requests issued
from other caches in the cache group if it has them. The
object replacement policy, however, bases its decision to
evict objects only on local information of individual caches.
We apply the selfish model on the three object replacement
policies described above. This results in three new policies:
sLFU, sLRU, and sLSB, where the prefix “s” means that the
policy is “selfish.” For example, a cache running sLRU
replaces objects that have not been requested for the longest
period of time from its clients, i.e., clients from the AS in
which the cache is deployed.

We use our traces to analyze the performance of different
replacement policies. We implemented the six policies
described above: sLRU, sLFU, sLSB, cLRU, cLFU, and cLSB
in our cooperative caching simulator. For each policy, we
run four simulation experiments: 1) two for cooperation
among caches in different ASs (the five caches in LA and
the five caches in NYC) and 2) two for cooperation among
caches within the same AS (AS 11715 and AS 1859).
Therefore, we have a total of 24 simulation experiments,
and each is run on an eight-month trace of requests. We
study the replacement policies along multiple performance
metrics. First, we consider the total byte hit rate achieved by
each cache, which is defined as the number of bytes served
from any cache in the group (including the local one) over
the total number of bytes requested by the clients behind
that cache. Then, we differentiate between bytes served
from the local cache and bytes served from other caches in
the cache group. We make this distinction because bytes
served from other caches typically cost more (in terms of
bandwidth and latency) than bytes served locally. We use
L-BHR to refer to the byte hit rate achieved by serving
objects only from the local cache, and G-BHR to refer to the
byte hit rate from the whole cache group excluding the local
one. Clearly, the total byte hit rate is the summation of L-
BHR and G-BHR.

A sample of our results for the cache group in LA is
shown in the bar charts in Fig. 7. The figure shows the
average byte hit rates (L-BHR and G-BHR) for the five ASs
in LA. Similar results were obtained for the other cache
groups in NYC, AS 11715, and AS 1859. The results shown
in Fig. 7 indicate that cLRU outperforms all other policies in
terms of the total byte hit rate (L-BHR + G-BHR). However,
the simpler (selfish) sLRU is not too far from it. In fact,
sLRU is better in terms of local byte hit rates, which are
more valuable. The reason that both LRU versions perform
well is that the P2P traffic observes a good degree of
temporal locality [17], as popular objects tend to stay
popular for some time, then they gradually lose popularity.

6.2 Replacement Policies and Relative Gain from
Cooperation

We noticed in Section 5.2 that some ASs may benefit more

than others from cooperation. The experiments in that

section are limited to only five ASs and they are all fairly

large in terms of the amount of traffic seen in each AS. In

1005
50 : ‘
I L-BHR
—-BHR
4ot G
X
[<b)
+ 30F
o
£ 20t
Q
&
10t

sLRU cLRU sLFU cLFU sLSB cLSB

Fig. 7. Comparison among six replacement policies in terms of achieved
group (G-BHR) and local (L-BHR) byte hit rates when cooperation is
done among caches in different ASs in Los Angeles.

this section, we expand the level of cooperation to include
64 ASs with different sizes and we study the relative gain of
each AS. For each of these 64 ASs, we create a trace file that
contains requests observed in that AS. Then, we determine
the number of objects seen in each trace file. We rank the
ASs based on the number of objects that are requested in
their corresponding trace files.

We simulate a cooperative cache group that contains all
of the 64 ASs. We repeat the experiment several times, and
each time, we use a different replacement policy to compute
the gain in byte hit rate for each AS. For example, if cLFU is
used, we measure the byte hit rate achieved by each AS
when it cooperates with the others. We also measure the
byte hit rates when ASs do not cooperate with each other,
but each of them deploys a cache that uses iLFU. We
compute the gain in byte hit rate due to cooperation (cLFU-
iLFU) and normalize it by the byte hit rate of iLFU. We
summarize the results in the scatter diagram in Fig. 8, where
the x-axis represents the number of objects seen in an AS and
the y-axis represents the percentage of improvement in byte
hit rate observed by that AS because of cooperation.

Our results, two samples of them are shown in Fig. §,
imply that: 1) the selfish replacement policies (sLRU, sLFU,
and sLSB) sort of equalize the relative gain from cooperation
across all ASs and 2) among the selfish policies, sSLRU
produces the smallest improvement gap between ASs. For
example, comparing Fig. 8a versus Fig. 8b indicates that
there are a fewer number of ASs that achieve gain less than
10 percent under sLRU than under sLFU. Moreover, most of
the dots representing gains of different ASs for sLFU in
Fig. 8b are spread over a larger range of the y-axis than they
are for sSLRU in Fig. 8a. We note that the few ASs that did not
gain much from cooperation are the ones with few objects
(concentrated at the lower left part of the figure). These ASs
achieved relatively high byte hit rates with independent
caching, and thus, the relative improvement from coopera-
tion was not significant. Therefore, cooperation may not be
beneficial for ASs with small amount of P2P traffic.

In summary, the experiments in this section show that
sLRU achieves high byte hit rates and produces the smallest
differences in byte hit rate improvement among ASs with
different sizes. In addition, as will be shown in the next

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on July 29,2010 at 00:12:59 UTC from IEEE Xplore. Restrictions apply.

1006

700
6007

W
(=
(=]

4001 @ i J
300f g
200F e ®‘...... O ® ...]

Gain over iLRU (%)

100p-® 4 T e s J

0 1 2 3 4 5 6
#of unique objects % 10°
(@)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21,

NO. 7, JULY 2010

700
600 ... 4
£ 500}, . 1
[]
E g °
— 400 e ® o L Y N
o ° °
8 300F@- P .’Q.?]
g ° e o
e o e ° L]
g °* % °
-g 2007% e, .’. S ° 1
L]
1003 o ®]
0 X : : : ' :
0 1 2 3 4 5 6
#of unique objects % 10°

(b)

Fig. 8. Relative gain in byte hit rates when 64 ASs of different sizes cooperate with each other. (a) sLRU Gain. (b) sLFU Gain.

section, sSLRU imposes the least amount of overhead.
Therefore, we believe that the simple sLRU replacement
policy is a good candidate for realizing the potential
benefits of cooperative caching for P2P traffic.

6.3 Overhead Analysis in Cooperative Caching

Analyzing the overhead imposed by cooperative caching
schemes is critical in understanding the net benefit of
employing these schemes [14]. In cooperative Web caching,
the overhead is one of the factors that plagued its wide
deployment. We show below that this is not the case in
cooperative caching for P2P traffic.

By overhead we mean the additional number of bytes
transmitted beyond the transfer of the requested objects
themselves. As mentioned in Section 3.2, we use the ICP [27],
[28] to facilitate communication and object lookup among
caches. We have implemented the ICP protocol in our
cooperative caching simulator. We compute the overhead
imposed by different replacement policies. As before, we
consider the two caching groups in LA and NYC and the two
caching groups within AS 11715 and AS 1859. We count the
number of bytes that are exchanged by the ICP protocol and
divide that number by the total number of transferred bytes.
The results for the cache group in LA are shown in Fig. 9. The
figure implies that the maximum overhead imposed by
cooperative caching is less than 0.003 percent for all policies,
which is indeed negligible. The figure also shows that sSLRU
has the smallest overhead. This is because sLRU has higher
local byte hit rate (L-BHR), as discussed in the previous
section. Local hits do not impose overhead because they do
not require sending ICP queries to other caches.

7 ANALYTIC MODEL

In this section, we analyze the benefits of cooperative
caching for P2P traffic using a simple analytic model.

7.1 Model Parameters and Assumptions

The model captures the most important parameters in the
caching system, including object popularity, number of
caches, and the relative cost of network links inside an AS

and across ASs. The model considers m caches deployed in
different ASs and cooperating with each other. We refer to
these m caches as a cache group. We use abstract costs in
our analysis to make the model more general. For example,
if the costs are set as delays, the model can be used to
analyze the average latency perceived by clients (as it is
usually done in Web caching). On the other hand, if we set
the costs as dollars per bytes, the model would allow us to
analyze the average saving in the operational costs
observed by an AS because of cooperative caching.
Analyzing the saving is more relevant to ASs that are
interested in deploying caches to reduce the burden
imposed by the sheer volume of the P2P traffic.

We denote the cost of retrieving an object by a client
from: 1) its local cache by 7;; 2) another cache in the group
byr,; and 3) an external source (i.e., other peer(s) in the P2P
network) by 7.. The total number of objects in the system is
denoted by N. The relative popularity of an object i is given
by f(i), which follows the Mandelbrot-Zipf model de-
scribed in Section 4.

For the feasibility of the analysis, we make the following
assumptions: In Section 7.4, we relax most of the assumptions
used in deriving the analytic model and validate our analysis

-3
2.8X 10

Traffic Overhead (%)
o o
o 9

>
W

24

sLRU cLRU sLFU cLFU

sLSB cLSB

Fig. 9. Comparison among six replacement policies in terms of traffic
overhead. Data are shown for five cooperating ASs in Los Angeles.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on July 29,2010 at 00:12:59 UTC from IEEE Xplore. Restrictions apply.

HEFEEDA AND NOORIZADEH: ON THE BENEFITS OF COOPERATIVE PROXY CACHING FOR PEER-TO-PEER TRAFFIC

using simulation. First, all caches have the same storage size.
Second, since objects in P2P systems are divided into equal-
sized segments, we carry out our analysis in terms of
segments. BitTorrent, for example, typically divides an object
into 16 KB segments. All segments of the same object are
assumed to have the same popularity. This is not unrealistic
in P2P file-sharing systems, which unlike video streaming
systems download segments in random order and all
segments are needed for the object to be useful. Therefore,
for clarity of the presentation, we treat segments as small
objects. Given the first assumption, each cache can store up to
k segments. Our third assumption in the analysis is that
caches observe similar relative popularity of objects. That is,
popular objects in one AS are likely to be popular in other
ASs. This is also not unrealistic in P2P systems, which have
no sense of network locality and in which popular objects
typically attract global client populations. Our traces confirm
this intuition as discussed in Section 7.4.

7.2 Performance of Cooperative Caching

The goal of our analysis is to determine the saving achieved
due to cooperation. To do this, we first compute the cost in
the independent caching case. Then, we compute the cost in
the cooperative caching case and compare them.

For the independent caching case, no cooperation among
caches is performed, and we assume that each cache uses a
popularity-based local replacement policy such as the least
frequently used (LFU) policy. Given the above assumptions,
the cost of serving NV objects from clients in an AS is given by

N N
Cind =T Z f('L) + 7e Z f(Z)v (2)
i=1 i=k+1

where f(7) is the probability of accessing the object at rank s,
and 7; and 7, are the costs of downloading an object from the
local cache and an external source, respectively. Note that
objects are ranked based on their relative popularity such
that f(i) > f(j) for all ¢ < j. The above equation represents
the average cost because, for large N, in the steady state, the
cache stores the most k popular objects. The second term in
(2) is the cost of retrieving objects k+1,k+2,..., N from
external sources because the first k objects are stored in the
cache. The first term is the cost of all objects because they
impose local 7; cost regardless whether they are stored in the
cache or not. Note also that because of the lack of cooperation
and by the similar relative popularity of objects assumption,
all caches will end up storing the same top k popular objects.

In the cooperative caching case, when a cache receives a
request for an object that it does not store, it first forwards
this request to other caches in the cache group. If any of
them has the requested object, the object is served to the
client (with a cost 7,+ 7). If otherwise, the object is
downloaded from an external source (with a cost 7. + 7).
In addition, the caches coordinate the replacement of
objects. In particular, when an object eviction needs to be
made by a cache, that cache chooses the least popular object
in the cache group. The cost of serving N objects from
clients in an AS in the cooperative caching case has three
components: cost of serving locally stored objects, cost of
serving objects stored on other caches in the cache group,
and cost of serving objects from external sources. Thus, the
total cost is given by

1007
N mk N
Ccoop = TZZ]C(Z) +Tq Zf + e Z f(Z) (3)
i=1 i=mk+1

Note that the middle term in (3) represents the additional
objects stored in the cache group. Since 7, <7, the
cooperative caching model will keep at most one copy of
any object in the cache group. Thus, the total number of
objects stored in the cache group is mk. Consider any cache
in the cache group. If this cache receives a request for any of
the mk objects stored in the cache group, it will serve it
locally with probability 1/m, and from another cache in the
group with probability (m — 1)/m. In the latter case, there is
an additional cost of 7, to serve the object.

We define the relative saving in cost due to the
cooperation as U = (Cig — Ceoop)/Cing- After substituting
the Mandelbrot-Zipf popularity model in (2) and (3), we get
the following:

Te Zznéﬁ—l L+q - Ty ml ka l+1q
U= . 4)
T3 i 1+q Trgm T Te D ikt (1+1q)

To simplify the above equation, we set the local cost 7; to 0
because it is typically much smaller than the external cost 7,
and the intercache cost 7. Inaddition, 7; isincurred in both the
independent and the cooperative caching cases. Thus, itis not
a differentiating factor in determining the potential gain of
cooperation. We further define T = 7, /7., which is the relative
cost of serving an object from the cache group to the cost of
serving it from an external source. We carry out our analysis
in terms of 7. We also denote the expression) 7/ G +q T by
S(z,y) for clarity. Thus, the saving in the cost due to the
cooperation among m caches is given by

Stk +1,mk) — 7" L5 mk)|. (5)

1

- S(k+1,N) ’ m
The gain from cooperative caching in the above equation
models the three most important aspects of the system:
1) traffic characteristics in terms of a and ¢ of the
Mandelbrot-Zipf popularity distribution; 2) network char-
acteristics captured by 7; and 3) the cache group character-
istics captured by the number of caches m and the capacity

of each cache k.

7.3 Numerical Analysis
We numerically analyze the gain (or saving in the cost) due
to the cooperative caching given by (5). We consider one
parameter at a time, while fixing all others at reasonable
values. We start by studying the impact of traffic character-
istics on the gain from cooperative caching. In our analysis,
the traffic characteristics are modeled by the skewness
parameter o and the plateau parameter ¢ of the Mandelbrot-
Zipf popularity distribution. We fix the number of caches m
at 8 and 7 at 0.1. We also fix the storage capacity of
individual caches. The storage capacity is represented as the
ratio of objects that can be stored in the cache k to the total
number of objects /N. Note that N is the number of unique
objects, not the total amount of P2P traffic. We call k/N the
relative cache size, and it is set to 0.5 percent.

In Fig. 10a, we vary a between 0.4 and 1.2. Larger «
values mean that the popularity curve is more skewed,
which implies that the top-ranked objects receive higher

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on July 29,2010 at 00:12:59 UTC from IEEE Xplore. Restrictions apply.

1008

IS
=3

40

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21,

NO. 7, JULY 2010

40

[N MZipf(c,0) < [~ PP MZipf(1,0)
& |- - MZipf(a,20) g g - - -MZipf(1,20)
j 30| ——MZipf(2,100) i i 10 —— MZipf(1,100)
o o =}
1 N et f f
c | g 5] D
220 : 2 220
S S 3
g 10 g 10 i g 10 h
& 10 e MZipf(0.8,q) & o
g g - - -MZipf(1.0,q) = N
3 3 —— MZipf(1.2,q) 3 .
0 0 :
Ly 0.6 0.8 1 12 10° 10" 10° 0 0.1 0.2 0.3 0.4

Skewness Parameter o

(@)

Plateau Parameter ¢

(b) (©)

Fig. 10. Numerical results of the analytic model. (a) and (b) The impact of traffic characteristics on the gain from cooperative caching. (c) The impact
of changing the relative cost of internal to external links 7 on the gain from cooperative caching.

fractions of the requests. We plot the gain from cooperation
VU versus « for three representative ¢ values: 0, 20, and 100.
As shown in the figure, a significant gain of up to 40 percent
can be achieved by cooperative caching. Fig. 10a demon-
strates an interesting feature in cooperative caching: the gain
is more robust against larger values of the skewness
parameter o for P2P traffic than for Web traffic. Web traffic
follows a Zipf-like distribution [20], which is a Mandelbrot-
Zipf with ¢=0. Thus, as shown in Fig. 10a, when «
increases, the gain from cooperation diminishes quickly for
Web traffic. On the other hand, the plateau factor ¢
somewhat mitigates the effect of large o values for P2P
traffic. This is because the Mandelbrot-Zipf distribution has
a flattened head (see Fig. 3), which indicates that even with
large o values, the requests are spread over more objects in
the head of the popularity distribution. Since more objects in
the head of the popularity distribution require larger storage
capacities, cache cooperation will be more beneficial.

Next, we analyze the impact of changing the plateau
parameter ¢. InFig. 10b, we vary g between 0 and 100, and plot
the gain from cooperation ¥ for three values of a.. The results
in Fig. 10b indicate that large values of ¢ achieve higher gains
from cooperation. This is because when ¢is small, the head of
the popularity distribution is less flattened and the impact of
the skewness parameter on the gain is higher. Nonetheless,
for typical ¢ values (more than 10 as shown in [13]), the gain
from cooperation is at least 20 percent.

Next, we vary 7 and study the gain from cooperation.
Fig. 10c shows that the gain from cooperation is still
achievable even if the relative cost of serving an object from
the cache group to the cost of serving it from external
sources is fairly large. This is more apparent when the
plateau parameter is not zero, which is the typical case in
P2P traffic. This confirms the viability of cooperative
caching for P2P traffic in different environments. Finally,
we analyze the impact of the cache group characteristics on
the gain from cooperative caching. We vary the number of
caches from 2 to 24 and compute the gain from cooperation.
The results, shown in Fig. 11, indicate that the cooperation
is beneficial for cache groups of different sizes.

7.4 Analysis Validation Using Simulation

In this section, we relax the assumptions made in the
analysis and verify that our results still hold. We simulate a
cooperative caching group that uses the online replacement
policies: iLFU and cLFU. Our simulator uses synthetic
traces with controlled (realistic) object and popularity
characteristics, which are generated as follows: We create

10° objects and we choose their sizes based on the object
size distribution observed in our traces collected from the
widely deployed Gnutella P2P system. The popularity for
these objects is assigned using the Mandelbrot-Zipf dis-
tribution with different values for a and ¢. We use eight
caches in the simulation. A total of 10° requests are
generated for all caches. We also randomly assign 7 values
for the caches, i.e., the cost of downloading an object from
another cache is no longer a constant. As in the analytical
analysis, we define the gain from cooperation ¥, as the total
cost of iLFU minus cLFU normalized by iLFU.

We study the impact of all parameters on the gain V¥,
including «, ¢, cache size, and 7. Samples of our results are
shown in Figs. 12a and 12b. In Fig. 12a, we vary the
parameters of the popularity distribution and measure the
achieved gain. The figure shows very similar pattern as
Fig. 10a: the gain in cooperative caching is robust against
wide ranges of o and ¢ values. The figure also shows that
for ¢ =0 (i.e,, Web traffic), the gain drops quickly as the
skewness parameter « increases. In Fig. 12b, we vary the
network parameter 7. Again, simulation results are similar
to the analytical results in Fig. 10c. The results confirm that
in P2P systems where q is large, the gain from cooperation is
significant for different network environments. Note that
our goal from this simulation is to validate the behavior (not
the exact performance values) of cooperative caching
predicted by our analytic analysis. We used different (more

]
o

(o)
(=]

20 @ MZipf(1,0)]
- + - MZip£(1,50)
(

—e— MZipf(1,100)

4 8 12 16 20 24
Number of Caches m

Gain from Cooperation ¥ (%)
o
S

Fig. 11. The impact of number of caches on the gain from cooperation.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on July 29,2010 at 00:12:59 UTC from IEEE Xplore. Restrictions apply.

HEFEEDA AND NOORIZADEH: ON THE BENEFITS OF COOPERATIVE PROXY CACHING FOR PEER-TO-PEER TRAFFIC

60 '
o |[= MZipf(,0)
= 5ol - + - MZipf(a,20)
= —e— MZipf(«,100)
o
:l —
- X
230 oy
N
- ,a\\
= 20 “)
S :
‘£,
3
S, . ‘ |
0.4 0.6 0.8 ! h2

Skewness Parameter o

(@)

1009

@ MZip[(1,0)
- + -MZipf(1,20) |
—e— MZipf(1,100)

W
(=]

N
[w]

[N}
(=]

Gain from Cooperation ¥ (%)
5 2

(=}

Fig. 12. Validation of our analytic results. (a) and (b) Simulation experiments using online policies on actual traces yield similar behavior as our

analytic model.

realistic) parameters in the simulation than the ones used in
the numerical analysis in Section 7.3.

Finally, we verify that the assumption of similar object
popularity in different ASs is realisticc. We study the
popularity of objects in different ASs from our Gnutella
traces. We choose the most popular 100 objects across all
ASs, ie. objects that received the highest number of
requests in all ASs combined (global popularity). Then,
we find the most popular 100 objects in each AS (local per-
AS popularity). We compute for each AS the percentage of
objects that are common in the top 100 globally popular
objects and the top 100 locally popular objects. The results
are shown in Fig. 13 for 10 different ASs (the dark bars). The
figure shows that for any of the 10 ASs, at least about
30 percent of the locally popular objects are also globally
popular. The figure also compares the top 100 locally
popular objects versus the top 200 globally popular objects
(the light bars). The results show that a significant portion
of the locally popular objects observes high popularity in all
ASs. We repeated the experiment for the top 1,000 and 2,000
popular objects and obtained similar results.

80

- anllong' 10()'
[__Jamong 200

N
=]

Common Objects (%)
S I
S S

3 4 5 6 7 8 9 10

AS#

Fig. 13. Validating the assumption that objects in P2P systems observe
somewhat similar popularity in different ASs.

8 CONCLUSIONS

In this paper, we analyzed the potential gain of cooperative
caching for P2P traffic. We proposed two models for
cooperation: 1) among caches deployed in different ASs
and 2) among caches deployed within a large AS. In both
models, caches cooperate to save bandwidth on expensive
WAN links. We collected traces from an eight-month
measurement study on a popular P2P system. The traces
describe object requests that would have been seen by many
caches if they were deployed in ASs operating in different
geographical regions and have different number of clients.
We designed many trace-based simulation experiments to
rigorously analyze various aspects of cooperative caching.
Our results show that cooperative caching is viable for P2P
traffic because it could improve the byte hit rate by up to
330 percent in some cases. Considering the huge volume of
the P2P traffic, even 1 percent improvement in byte hit rate
accounts to saving in the order of terabytes of traffic on the
expensive WAN links. The large savings from cooperation
could serve as an incentive for ISPs to deploy caches and
enable cooperation among them. Our results also show that
the overhead imposed because of cooperation among caches
is negligible, less than 0.003 percent of the total traffic.

In addition, we proposed simple models for object
replacement policies in cooperative caching systems. These
models allow an individual cache to cooperate with other
caches, but without harming its own performance. This is
done by making the decision to replace an object from the
cache based only on local information from that cache.
Furthermore, we used an analytic model to assess the gain
from cooperative caching under different traffic and net-
work characteristics. Our model confirms that substantial
gains from cooperation are possible under wide ranges of
traffic and network characteristics. We validated the results
from our analysis using simulations, where most of the
assumptions made in the analysis were relaxed.

ACKNOWLEDGMENTS

This work is partially supported by the Natural Sciences
and Engineering Research Council (NSERC) of Canada.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on July 29,2010 at 00:12:59 UTC from IEEE Xplore. Restrictions apply.

1010

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21,

REFERENCES

(1]

(2]

(3]

(4

(5]

(6]

[7]
8]

%]

[10
[1
[12
[13

[14]

[15]

[10]

(171

(18]

[19]

[20]

(21]

(22]

(23]

(24]

[25]

[20]

K. Gummadi, R. Dunn, S. Saroiu, S. Gribble, H. Levy, and J.
Zahorjan, “Measurement, Modeling, and Analysis of a Peer-to-
Peer File-Sharing Workload,” Proc. ACM Symp. Operating Systems
Principles (SOSP '03), pp. 314-329, Oct. 2003.

S. Sen and J. Wang, “Analyzing Peer-to-Peer Traffic across Large
Networks,” IEEE/ACM Trans. Networking, vol. 12, no. 2, pp. 219-
232, Apr. 2004.

T. Karagiannis, A. Broido, N. Brownlee, K.C. Claffy, and M.
Faloutsos, “Is P2P Dying or Just Hiding?” Proc. IEEE Global
Telecomm. Conf. (GLOBECOM '04), pp. 1532-1538, Nov. 2004.

T. Karagiannis, P. Rodriguez, and K. Papagiannaki, “Should
Internet Service Providers Fear Peer-Assisted Content Distribu-
tion?” Proc. ACM Conf. Internet Measurement (IMC '05), pp. 63-76,
Oct. 2005.

R. Bindal, P. Cao, W. Chan, J. Medved, G. Suwala, T. Bates, and A.
Zhang, “Improving Traffic Locality in BitTorrent via Biased
Neighbor Selection,” Proc. IEEE Int’l Conf. Distributed Computing
Systems (ICDCS '06), pp. 1-9, July, 2006.

A. Wierzbicki, N. Leibowitz, M. Ripeanu, and R. Wozniak,
“Cache Replacement Policies Revisited: The Case of P2P Traffic,”
Proc. Int'l Workshop Global and Peer-to-Peer Computing (GP2P '04),
pp. 182-189, Apr. 2004.

Packeteer Web Page, http:/ /www.packeteer.com/, 2008.

P-Cube IP Service Control Web Page, http://www.p-cube.net/
indexold.shtml, 2008.

N. Leibowitz, A. Bergman, R. Ben-Shaul, and A. Shavit, “Are File
Swapping Networks Cacheable? Characterizing P2P Traffic,” Proc.
Int’l Workshop Web Content Caching and Distribution (WCW '02),
Aug. 2002.

Home Page of CacheLogic, http://www.cachelogic.com/, 2009.
Home Page of PeerCache, http://www joltid.com/, 2009.

Home Page of Sandvine, http:/ /www.sandvine.com/, 2009.

M. Hefeeda and O. Saleh, “Traffic Modeling and Proportional
Partial Caching for Peer-to-Peer Systems,” IEEE/ACM Trans.
Networking, vol. 16, no. 6, pp. 1447-1460, Dec. 2008.

S. Dykes and K. Robbins, “Limitations and Benefits of Cooperative
Proxy Caching,” IEEE]. Selected Areas Comm., vol. 20, no. 7,
pp- 1290-1304, Sept. 2002.

K.-W. Lee, K. Amiri, S. Sahu, and C. Venkatramani, “Under-
standing the Potential Benefits of Cooperation among Proxies:
Taxonomy and Analysis,” IBM Research Report RC22173, Sept.
2001.

A. Wolman, G. Voelker, N. Sharma, N. Cardwell, A. Karlin, and
H. Levy, “On the Scale and Performance of Cooperative Web
Proxy Caching,” Proc. ACM Symp. Operating Systems Principles
(SOSP ’99), Dec. 1999.

O. Saleh and M. Hefeeda, “Modeling and Caching of Peer-to-
Peer Traffic,” Proc. IEEE Int'l Conf. Network Protocols (ICNP '06),
pp- 249-258, Nov. 2006.

M. Hefeeda, C. Hsu, and K. Mokhtarian, “pCache: A Proxy Cache
for Peer-to-Peer Traffic,” Proc. ACM SIGCOMM, Aug. 2008.

G. Shen, Y. Wang, Y. Xiong, B. Zhao, and Z. Zhang, “HPTP:
Relieving the Tension between ISPs and P2P,” Proc. Int’l Workshop
Peer-to-Peer Systems (IPTPS '07), Feb. 2007.

L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web
Caching and Zipf-Like Distributions: Evidence and Implications,”
Proc. IEEE INFOCOM, pp. 126-134, Mar. 1999.

A. Klemm, C. Lindemann, M.K. Vernon, and O.P. Waldhorst,
“Characterizing the Query Behavior in Peer-to-Peer File Sharing
Systems,” Proc. ACM Internet Measurement Conf. (IMC '04), pp. 55-
67, Oct. 2004.

Squid Web Proxy Cache Home Page, http://www.squid-cache.
org/, 2009.

S. Sen, O. Spatscheck, and D. Wang, “Accurate, Scalable In-
Network Identification of P2P Traffic Using Application Signa-
tures,” Proc. Int’l World Wide Web Conf. (WWW "04), pp. 512-521,
May, 2004.

T. Karagiannis, M. Faloutsos, and K. Claffy, “Transport Layer
Identification of P2P Traffic,” Proc. ACM Internet Measurement
Conf. (IMC '04), pp. 121-134, Oct. 2004.

S. Gadde, J. Chase, and M. Rabinovich, “A Taste of Crispy Squid,”
Proc. Workshop Internet Server Performance (WISP), 1998.

S. Gadde, M. Rabinovich, and J. Chase, “Reduce, Reuse, Recycle:
An Approach to Building Large Internet Caches,” Proc. Workshop
Hot Topics in Operating Systems, pp. 93-98, May, 1997.

NO. 7, JULY 2010
[27] D. Wessels and K. Claffy, Internet Cache Protocol (ICP), Version 2,
RFC 2186, Sept. 1997.

D. Wessels and K. Claffy, “ICP and the Squid Web Cache,” IEEE].
Selected Areas Comm., vol. 16, no. 3, pp. 345-357, 1998.

X. Dmitiropoulos, D. Krioukov, M. Fomenkov, B. Huffaker, Y.
Hyun, K. Claffy, and G. Riley, “AS Relationships: Inference and
Validation,” ACM SIGCOMM Computer Comm. Rev., vol. 37, no. 1,
pp- 31-40, Jan. 2007.

W. Norton, “The Evolution of the US Internet Peering Ecosystem,”
http:/ /www.nanog.org/mtg-0405/norton.html, white paper,
Nov. 2003.

Gnutella Home Page, http://www.gnutella.com, 2008.

Limewire Home Page, http://www limewire.com/, 2009.

Z. Silagadze, “Citations and the Zipf-Mandelbrot’s Law,” Complex
Systems, vol. 11, pp. 487-499, 1997.

GeolP Database Home Page, http://www.maxmind.com, 2009.
N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measur-
ing ISP Topologies with Rocketfuel,” IEEE/ACM Trans. Network-
ing, vol. 12, no. 1, pp. 1-14, Feb. 2004.

“Web Page of Rocketfuel: An ISP Topology Mapping Engine,”
http://www.cs.washington.edu/research/networking/rocket
fuel/, 2009.

(28]

(29]

(30]

(31]
(32]
(33]

[34]
(35]

[36]

Mohamed Hefeeda (S’01, M'04, SM’09) re-
ceived the BSc and MSc degrees from Mansoura
University, Egypt, in 1994 and 1997, respec-
tively, and the PhD degree from Purdue Uni-
versity, West Lafayette, Indiana, in 2004. He is an
assistant professor in the School of Computing
Science, Simon Fraser University, Surrey, British
Columbia, Canada, where he leads the Network
Systems Lab. His research interests include
multimedia networking over wired and wireless
networks, peer-to peer systems, network security, and wireless sensor
networks. Mohamed has served as the program chair of the ACM
International Workshop on Network and Operating Systems Support for
Digital Audio and Video (NOSSDAV 2010) and as the vice chair of the
Distributed Multimedia Track in the International Conference on
Embedded and Multimedia Computing (EMC 2010). He has served on
many technical program committees of major conferences in his research
areas, including ACM Multimedia, ACM Multimedia Systems, ACM/SPIE
Multimedia Computing and Networking (MMCN), IEEE Conference on
Network Protocols (ICNP), and IEEE Conference on Communications
(ICC). He is on the editorial boards of the Journal of Multimedia and the
International Journal of Advanced Media and Communication. He served
as the guest editor of the special issue on high-quality multimedia
streaming in P2P environments of the International Journal of Advanced
Media and Communication. His paper on the hardness of optimally
broadcasting multiple video streams with different bit rates won the Best
Paper Award in the IEEE Innovations 2008 conference. In addition to
publications, he and his students develop actual systems, such as
PROMISE, pCache, svcAuth, pCDN, and mobile TV testbed, and
contribute the source code to the research community. The mobile TV
testbed software developed by his group won the Best Technical Demo
Award in the ACM Multimedia 2008 conference. He is a senior member of
the IEEE and a member of the ACM SIGCOMM and SIGMM.

Behrooz Noorizadeh received the BSc degree
in computer engineering from Sharif University
of Technology, Iran, in 2005, and the MSc
degree in computing science from Simon
Fraser University, British Columbia, Canada,
in 2007. He is currently a software engineer at
Nokia, Vancouver, British Columbia, Canada.
His research interests include peer-to-peer
systems, Internet caching algorithms, and
distributed networks.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on July 29,2010 at 00:12:59 UTC from IEEE Xplore. Restrictions apply.

