N)
)
Check for
updates

RDIAS: Robust and Decentralized Image Authentication
System

ALI GHORBANPOUR and MOHAMMAD AMIN ARAB, School of Computing Science,
Simon Fraser University, Burnaby, British Columbia, Canada

MOHAMED HEFEEDA, School of Computing Science, Simon Fraser University, Burnaby, British
Columbia, Canadaand Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar

Recent Al tools can subtly manipulate images, eroding users’ trust in the authenticity of images they see on their
displays. Current image authentication methods either detect artifacts that may result from manipulations or
attach hashes of images as metadata for users to verify. The efficacy of the first approach is rapidly deteriorating
with the continuous improvements in Al tools, leading to missing many serious manipulations. Hashes become
invalid once images are subjected to any processing, such as re-sizing and transcoding. This makes the second
approach impractical as most platforms, e.g., Facebook and X, perform several legitimate operations on
images. Further, most platforms remove the metadata attached to images. We propose RDIAS, a robust and
practical image authentication system. RDIAS securely embeds representative fingerprints into images without
damaging their visual quality. We design these fingerprints to robustly detect malicious manipulations, e.g.,
adding/removing objects, while tolerating legitimate operations, e.g., image resizing and transcoding. Rigorous
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1 Introduction

Recent advances in Al have improved many aspects of everyday life, from assisting in the early
diagnosis of dangerous diseases to summarizing documents and generating content. However, such
advances have also introduced major concerns for society. One of these concerns is the erosion
of trust in the authenticity of visual content, especially images. Specifically, Al tools, e.g., Adobe
Photoshop [2], Adobe Firefly [1], Canva [15], and OpenAl DALL-E [38], have made it relatively
easy to manipulate images by, for example, adding, removing, or modifying objects to alter the
semantic meaning of images. Al tools can also blend various images and backgrounds as well as
generate new images from scratch.

The goal of this article is to partially address the content authenticity concern. Specifically, we
consider the problem of authenticating images published on arbitrary image-hosting platforms
such as social media and news Web sites. Addressing this complex research problem faces multiple
challenges. First, image-hosting platforms typically transcode images, remove/modify associated
metadata, and resize images to fit their storage systems and user interfaces. While these operations
do not change the semantic meaning of images, they may completely change the bits representing
these images. Thus, approaches that rely on computing digital signatures or hashes of images and
attaching them as metadata, e.g., [14, 19] would fail in practice. To demonstrate this, in Section
2.2, we evaluate the recent framework for image authentication developed by the Coalition for
Content Provenance and Authenticity (C2PA) [14] and show that it does not support common
social media sites such as Facebook and X, which is a major limitation.

The second challenge is the wide availability of Al tools and computing power that allow
attackers to manipulate images in sophisticated and hard-notice ways. We demonstrate examples
of such manipulations in Figure 1, which we easily created using the Adobe Firefly tool [1].
In addition, and perhaps more seriously, recent deep-learning models may enable attackers to
remove/change/transfer watermarks embedded in them. Specifically, several methods, e.g., [4, 8, 13,
21, 58] have been proposed in the literature to embed watermarks in images using deep-learning
models. These watermarks may carry authentication information, such as the identity of the image
creator. However, attackers can use Al models to, for example, extract the watermark from an
authentic image and embed it in a totally different one, tricking users into trusting manipulated
images. Embedding simple image hashes as watermarks may not solve this problem, as attackers
can replace them with hashes of the manipulated image. Attackers may also transcode the image
with a different encoder and/or quality factor as well as apply simple image filters, complicating
the authentication process as these operations invalidate the embedded watermarks.

The third challenge is that image quality is critically important for users. Thus, the authentication
system cannot degrade the quality of images for the sake of ensuring their authenticity. This makes
it harder to imperceptibly embed authentication information into images. It also limits the amount
of information that can be embedded.

Ensuring robustness is the fourth challenge for designing practical image authentication systems.
Robustness is the ability to reliably authenticate images in the presence of legitimate operations
performed by hosting sites, such as image resizing and transcoding. It also means detecting ma-
nipulations even if attackers attempt to hide them by applying operations such as image filtering
and noise addition. Robustness could potentially be achieved by embedding more information in
images to consider various operations. This, however, would negatively impact the visual quality.
Effectively managing the tradeoff between robustness and quality (or equivalently, imperceptibility
of the embedded information) further complicates this challenge for image authentication systems.

The fifth and final challenge is the massive volume of images that need to be authenticated. This
requires the image authentication system to be computationally efficient, i.e., scalable.
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(a) Original (b) Flag Removed (c) Original (d) Boat Added

Fig. 1. Examples of Al-powered image manipulations performed using Adobe Firefly.

In this article, we propose RDIAS, an end-to-end system for robust image authentication. We
design RDIAS to efficiently and practically address the above-mentioned challenges. At a high
level, RDIAS securely and robustly embeds representative authentication information into images
without damaging their visual quality. This authentication information, which we call fingerprint,
is created based on the image’s semantic contents using a perceptual hashing method. We design
fingerprints that detect malicious manipulations, e.g., adding/removing objects, while tolerating
legitimate operations, e.g., image resizing and transcoding. We secure the fingerprint embedding
by a private key held by the image creator, preventing attackers from changing the fingerprint or
transferring it to other images.

Veritying the authenticity of an image is done by first extracting the fingerprint and then
decrypting it using the image creator’s public key. However, fingerprint embedding and extraction
are done using deep-learning models, which produce non-deterministic results. This means some
bits of the extracted fingerprint may differ from the original ones, compromising the system’s
robustness. In addition, the various legitimate and malicious operations performed on the image
may also affect the fingerprint, further diminishing robustness. To achieve robust authentication, we
model the image as a noisy communication channel and the embedded fingerprint as the message
to be sent on that channel. We then utilize an Error-Correcting Code (ECC) to reliably embed
and extract fingerprints from images.

We note that this is a systems paper, which designs a novel and practical image authentication
system composed of several components, including perceptual hashing, watermarking, and ECC.
Numerous methods exist in the literature for each component, with different goals and assumptions
that do not necessarily consider the characteristics of the image authentication problem. Our
contributions include identifying the most suitable method for each component that meets the
requirements of image authentication and analyzing the tradeoffs among the various components.
In particular, the contributions of this article are as follows:

— We analyze the state-of-the-art image authentication framework, C2PA [14], and demonstrate
its limitations when deployed on social media platforms in Section 2.2.

— We propose a robust image authentication system, RDIAS, that meets the requirements of
common image-hosting sites, including image resizing and transcoding. This is presented in
Section 3.

— We analyze the suitability of current perceptual hashing methods for creating representative
fingerprints for image authentication systems in Section 4.

—We compare various methods for embedding information in images (aka watermarking) and
analyze their performance tradeoffs in Section 5.

— We propose utilizing ECCs to improve the robustness of image authentication systems, as
described in Section 6.
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—We implement all components of RDIAS and evaluate its performance with diverse image
datasets, complex manipulations, and transformations performed by social media platforms,
e.g., Facebook. We recruit ten human subjects to realistically manipulate 1,300 diverse images
using Al tools. Our results show the accuracy and robustness of RDIAS under a wide range of
practical scenarios. For example, RDIAS achieves an accuracy of up to 98.11% for detecting Al-
powered manipulations that add/remove/change objects in arbitrary images. For DeepFake face
manipulations, RDIAS achieves an accuracy of up to 99.0%, with 100% Recall (all manipulated
faces were identified) and 98.0% Precision (a very low false alarm rate of 2%). The results also
show that RDIAS is computationally efficient: it immunizes an image in under 850 ms and
verifies authenticity in under 50 ms on average, indicating that it can run in real time. Our
evaluation is presented in Section 7.

2 Related Work and Case Study

This section provides a brief background on image authentication and summarizes the related
works in the literature. It also analyzes the recent C2PA authentication framework as a case study.

2.1 Background and Related Work

Image Authentication. The goal of image authentication methods is to verify the authenticity of
images by ensuring that they have not been manipulated [48]. These methods are essential in
systems and applications where image integrity is critical, such as digital forensics [5], medical
imaging [7], and photojournalism [41]. They are also useful in fighting misinformation and detecting
forged images [33].

We divide image authentication methods into two main categories: passive and active. The former
detects artifacts introduced by manipulations, while the latter computes and attaches authentication
information to images. We describe each category in the following.

Passive Authentication Methods. These methods generally rely on detecting inconsistencies and
artifacts left by manipulations to identify and sometimes localize image alterations. These methods
can further be divided into two sub-categories: those that depend on the type of forgery and those
that focus solely on artifacts. For example, some approaches target specific manipulation types, such
as copy-move forgeries [31, 53] and inpainting [52], leveraging the unique characteristics of each
to improve the detection accuracy. Others rely purely on the artifacts or inconsistencies introduced
by manipulations, such as forensic pattern analysis or error-level analysis, often combining these
techniques with deep neural networks for more effective classification and localization [3, 11].

The effectiveness of passive methods is diminishing due to recent advances in Al tools, which can
realistically edit images without leaving significant visual artifacts or inconsistencies. Nonetheless,
they remain useful, especially when an image has not been secured before distribution.

Active Authentication Methods. Active image authentication methods aim to proactively protect
images from future manipulations. They compute authentication information from the original
images. They can be divided into two sub-subcategories: digital signatures and data hiding. Digital
signatures involve generating a unique signature from the original image, which changes if the
image is manipulated or edited. By comparing the signatures of the original and the queried image,
we can determine whether the image has been altered and confirm its authenticity [17, 25, 50].
On the other hand, data hiding involves embedding information, such as a unique identifier or
a representation of the image, directly into the pixel values in a way that is imperceptible to the
human eye. This embedded information can later be extracted to verify the authenticity of the
image [26, 55, 56].

The key shortcomings of current active image authentication methods are their limited robustness
and accuracy. For example, digital signatures attached as metadata are usually removed by hosting
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sites. Even if not removed, signatures may become invalid because of normal operations that
hosting sites typically perform on images, such as resizing and transcoding. Similarly, current active
methods that embed information into images may be vulnerable in the presence of Al-powered
attackers [6]. Such attackers may remove the authentication information from image pixels, change
the image, and recompute and embed new authentication information without leaving noticeable
visual artifacts [28, 42].

The proposed system in this article belongs to the active image authentication category, as it
embeds authentication information into images. However, it is designed to be robust, secure, and
accurate even in the presence of powerful attackers.

Image Manipulations versus Transformations. Images can be subjected to numerous operations
during distribution. Some operations are malicious, i.e., performed by attackers to mislead users,
which we refer to as manipulations. Other operations can be performed by hosting sites and are
considered part of the normal processing; we call these operations transformations.

We consider Al-powered attackers, which use Al tools to alter images and blend the modifications
with the rest of the images, leaving minimal inconsistencies and visual artifacts, as shown by the
examples in Figure 1. This is unlike many previous image authentication works, which consider
simpler manipulations such as cropping out an area in the image and copying an object from one
location to another. Such manipulations are less challenging to detect.

We divide manipulations into three broad categories: (i) object addition, (ii) object removal, and
(iii) cropping. The first adds one or more objects to an image, while the second deletes object(s).
The third category removes areas from the image. All use Al to hide the modifications and smooth
out the resulting image. These three categories and their combinations cover all practical malicious
manipulations, including the ones reported in prior works.

For transformations, we consider realistic scenarios where hosting sites, e.g., Facebook and X,
typically perform multiple operations on images before storing and serving them. These include two
main operations: (i) transcoding and (ii) resizing. Transcoding means recompressing the image with
a different encoder and/or using different compression parameters. For example, as shown by the
case study below, Facebook transcodes all uploaded images to JPEG with a quality factor between
70 and 90, depending on the image size. Image resizing is also a common operation performed by
most hosting sites, where the size is adjusted to match the characteristics of the storage, processing,
and user interface systems of the hosting site.

In addition to the legitimate operations by hosting sites, we expand the considered transforma-
tions to include two other categories: (i) filtering and (ii) noise addition. The first allows different
filters to be applied to images, such as averaging neighboring pixels. The second category subjects
the image pixels to different types of noise, such as Gaussian noise. Including these additional
categories makes our authentication system more robust and practical. This is because sophisticated
attackers may apply various filters or add slight noise to images to hide their manipulations.

2.2 Case Study: Analysis of C2PA

Due to the increased importance of the image authentication problem, recent works in industry and
academia have started designing complete end-to-end frameworks, e.g., C2PA [14] and AMP [19].
C2PA is currently considered the most comprehensive, state-of-the-art framework. It is designed
by a coalition of major companies, including Adobe, BBC, and Microsoft.

C2PA defines APIs for publishers to compute hashes of their images and attach them as metadata.
When a user receives an image, they can compute the hash of the image and compare it against the
one in the metadata. C2PA also allows storing a copy of the hash on a secure cloud server in case
the metadata is removed from the image. In this case, the user downloads the original hash from
the cloud server.
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We analyze the suitability of C2PA for images distributed over social media platforms. We
implemented an image authentication application using the C2PA Python APIs [14]. We tested our
implementation with three social media platforms: Facebook, X, and Instagram. We computed the
hashes of 20 different images and attached them as metadata to the image files according to the
C2PA guidelines. We ensured the metadata’s correctness in all cases using the C2PA verification
tool and the C2PA online verification Web site. We then uploaded the image files to the three
platforms. Shortly after, we downloaded the same images to verify their authenticity locally. We
did not manipulate the images before or after uploading/downloading them. In addition, we kept
local copies of the metadata as if they were downloaded from a secure cloud server.

To our surprise, the authenticity verification of all 20 images downloaded from each of the three
social media platforms failed, even when we used the local copies of the metadata. We inspected
the downloaded files and found that all platforms removed the metadata. Thus, we had to rely
on the local copies of the metadata. However, each platform significantly changed the bits of the
images, invalidating the hashes and forcing the verification process to fail. For example, Facebook
resized any image with a dimension greater than 2,048 pixels down to 2,048 pixels. X performs
a similar adjustment for large images but resizes them to 4,096 pixels. Instagram takes a slightly
different approach: it reduces images with dimensions between 1,080 and 2,160 pixels down to
1,080 pixels and those exceeding 2,160 pixels down to 2,160 pixels on the larger side. Further,
each platform transcoded the images into different qualities and utilized various codecs. Thus, the
resulting images have vastly different sizes from the original ones. Specifically, the total size of the
original 20 images was 99.5 MB, whereas the total sizes of the downloaded ones from Facebook, X,
and Instagram were 17.7, 12.3, and 4.9 MB, respectively.

In summary, social media platforms remove the metadata containing the authentication informa-
tion, and they resize and encode images with different ratios and quality parameters, making the
C2PA framework fail when used with such platforms. C2PA is effective when images are hosted on
the publishers’ sites, e.g., BBC and CNN, where the metadata is kept and the operations performed
on images are limited and known ahead of time. Publishers’ sites, however, represent a tiny fraction
of locations distributing images.

3 Proposed Solution

This section first specifies the design objectives of RDIAS and summarizes our approaches to achieve
them. It then presents the overall architecture of RDIAS and its operation. Finally, it discusses
various practical considerations and limitations of RDIAS.

3.1 Design Goals and Approaches

RDIAS is an active image authentication system. It proactively protects images before distributing

them. We call this step immunization. Then, as images circulate on different sites, they could

be manipulated by malicious attackers or transformed through regular operations performed by

hosting sites. RDIAS strives to verify the authenticity of these images obtained from arbitrary sites.
Specifically, we design RDIAS to achieve the following goals:

— Robust against Legitimate Image Transformations. As discussed in Section 2, hosting sites, e.g.,
Facebook and X, perform various operations on images that do not change their semantic
meaning, such as resizing and transcoding. Image authentication systems should tolerate
these operations. RDIAS achieves this by computing fingerprints that represent the visual
content of images using perceptual hashing.

— Preserve Image Quality. Authentication systems should not significantly change the visual
quality of images, i.e., the minor changes performed by these systems to protect images should
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Fig. 2. Overview of the proposed image authentication system, RDIAS.

be imperceptible. To achieve this, RDIAS first determines the smallest size of fingerprints
that can reliably represent the visual contents of images. It then embeds these fingerprints in
images using deep-learning watermarking models that have minimal impact on quality.

— Secure against Powerful AI Attackers. To be relevant in the Al age, authentication systems
must be able to detect sophisticated manipulations performed by modern Al tools. Further,
authentication systems cannot rely on security by obscurity, i.e., hiding the details of the used
models and algorithms from attackers. To achieve this objective, RDIAS assumes attackers
have full access to all models and algorithms. It designs robust and representative fingerprints.
It then utilizes the well-established public key infrastructure security framework, where the
fingerprint is encrypted by the private key of the image creator/publisher and decrypted
by the corresponding public key. Further, since some bits of the (encrypted) fingerprints
may be changed because of the various image transformations and manipulation, rendering
these fingerprints unusable, RDIAS employs an error-correcting method to mitigate these bit
changes.

— Decentralized and Scalable. Authentication systems must scale to the massive volumes of
images they aim to protect. RDIAS achieves scalability through decentralization. Specifically,
since it embeds the authentication information inside the image itself, users can independently
verify the authentication of the image without relying on any central entity. This is in contrast
to some of the current image authentication systems, e.g., C2PA [14] that may store copies
of the authentication information on trusted locations (e.g., cloud servers), which not only
increases their vulnerability but also imposes significant storage and communication over-
heads, ultimately limiting their scalability. We note that users of RDIAS do need to obtain the
image publisher’s public key. However, there is only one key per publisher/creator (not per
image), and keys can easily be distributed and/or locally cached, as regularly done with, for
example, financial systems. Further, public keys do not leak any information about images,
and they are typically digitally signed to prevent forgery.

3.2 Architecture and Operation of RDIAS

The proposed system has two parts. The first is used to immunize an image before distributing
it, done once by the image creator/publisher. The second is used to verify the authenticity of an
image, which is done by each receiver/viewer of the image. Figure 2 illustrates the architecture of
each part.

For the immunization part, illustrated in Figure 2(a), RDIAS first computes a small fingerprint to
abstractly represent the visual contents of the input image using a carefully selected perceptual
hashing method, as detailed in Section 4. It then encrypts this fingerprint using the image creator’s
private key. Any of the well-known public key cryptography systems, e.g., RSA can be used in
this step. To mitigate potential bit changes in the encrypted fingerprint during distribution and
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increase robustness, RDIAS adds redundant bits to the fingerprint using an error-correcting method
customized for image authentication systems, as described in Section 6. Finally, the expanded
and encrypted fingerprint is embedded in the image using a watermarking method that retains
the image quality while achieving robustness to various image transformations, as described in
Section 5.

As illustrated in Figure 2(b), the verification part of RDIAS mostly has the reverse operations
of the immunization part. Specifically, the fingerprint is first extracted using the watermarking
method. Then, the error-correcting method recovers from the bit errors that may have occurred on
the fingerprint. Then, the image creator’s public key is used to decrypt the fingerprint. Finally, the
decrypted fingerprint is then compared against the one computed from the query image to decide
on the authenticity of the image.

We have implemented the verification part of RDIAS as a web browser plugin, which we describe
in Appendix A. The plugin automatically verifies images in real time, and it presents a small
authentic or manipulated mark at the top left corner.

3.3 Practical Considerations and Limitations

RDIAS utilizes a public-private key infrastructure. Such infrastructures are already available and
used by many organizations.

RDIAS embeds information in the image’s pixels. Thus, it may be less effective in verifying
the authenticity of low-resolution images (below 256 X 256 pixels). This is because it may not
have sufficient space to embed representative fingerprints in them. Further, excessive downscaling
of images (to lower than 256 X 256) may damage the embedded fingerprints. Such downscaling
also removes critical image details, which makes the verification process harder and RDIAS may
not produce accurate results in this case. We note, however, that most images that are target for
manipulations have high resolutions so that attackers can reasonably change their details.

By robustly embedding the authentication information directly into the pixels, RDIAS offers
resiliency to common operations performed by hosting sites, such as removing the metadata
associated with images. Although challenging, it is still possible for attackers to remove the
embedded authentication information from the images using recent deep-learning methods such
as [6, 32, 42]. These methods, however, often leave visible artifacts and significantly degrade the
image quality, making any potential manipulations easily detectable by users. Further, attackers
cannot re-generate new fingerprints after manipulating the images since they do not have access
to the private keys of the images’ owners.

Finally, RDIAS embeds authentication information into images before they are distributed.
Images released without this immunization step cannot be verified by RDIAS, and a complementary
passive image authentication would be needed in this case.

4 Image Fingerprinting

The goal of image fingerprinting is to represent an image by a small binary digest. Fingerprints
created by common hash functions like SHA-256 and MD5 do not tolerate any image changes.
Thus, they are unsuitable for robust image authentication systems, which must handle image
transformations such as resizing and transcoding. In this section, we first summarize the current
robust fingerprinting methods in the literature. Then, we analyze and compare their performance
to identify the most suitable method for image authentication.

4.1 Current Fingerprinting Methods

Robust fingerprinting methods strive to capture the visual and perceptual details of images, ideally
providing fingerprints that can tolerate benign operations that do not change the semantic meaning
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of images, e.g., transcoding. At the same time, they detect malicious modifications, e.g., adding/
removing objects. Many fingerprinting methods have been proposed in the literature [16], targeting
different application(s) with various requirements. However, at a high level, most involve a few
main steps. They first perform some preprocessing on the input image, e.g., transform it to the
frequency domain. Then, they extract features representing this image, such as color distribution,
edge maps, relative patterns between objects, or deep features obtained by neural networks. They
finally compute the fingerprint by applying a locality-sensitive hashing function that maps similar
features close to each other.

Image fingerprinting methods come in a wide variety [16]. We select six representative samples
covering the entire spectrum of possible fingerprinting methods in the literature, ranging from
simple pixel averaging to complex neural network methods. We provide brief descriptions of these
methods in the following:

— Average Hash (aHash) [43]: It first calculates the average pixel intensity. Then, each pixel is
compared to this average: if the pixel’s intensity is higher, it is represented as a 1 and as 0
otherwise. This process creates a binary map that captures the image’s overall appearance.

— Difference Hash (dHash) [49]: It also calculates the average intensity but computes the difference
between adjacent pixels. If the pixel on the right has a higher intensity than the one on the
left, it is represented as 1 and as 0 otherwise. This generates a map that reflects the image’s
gradients and edges.

— Wavelet Hash (wHash) [29]: It utilizes the Discrete Wavelet Transform to break down the
image into different frequency components. It then hashes the low-frequency components,
which represent the basic shapes and patterns of the image.

— Perceptual Hash (pHash) [24]: It applies the Discrete Cosine Transform (DCT) to trans-
form the image to the frequency domain, and it then hashes the most significant frequency
components that represent the essential features of the image.

— Facebook’s PDQ [20]: It is developed to identify and prevent the spread of harmful images, e.g.,
violent and inappropriate images on Facebook. Like pHash, it uses DCT, but it incorporates
various optimizations to increase the likelihood of detecting near-duplicate images.

— Apple’s NeuralHash [12]: It is designed to detect Child Sexual Abuse Material. It uses a neural
network to extract features from images.

4.2 Analysis of Fingerprinting Methods

Performance Metrics. We first define the following three performance metrics to analyze the various
dimensions of fingerprinting methods and their suitability for image authentication. We normal-
ize all three metrics and make their ranges between 0.0 and 1.0, where 0.0 indicates the worst
performance.

— Sensitivity n: It is the ability to differentiate between original images and their manipulated
versions, and it is computed as the normalized Hamming distance between their fingerprints:

|F|
n(FFY) = o S (R @ Y, 1)
i=1

where F and FM are the fingerprints of the original and manipulated images, respectively,
and & is the bitwise XOR operation. Manipulations refer to the malicious modification of
images by, for example, adding/removing objects or cropping areas to change the semantic
meaning of images. Higher n values indicate the fingerprinting method has greater sensitivity
to manipulations, i.e., it offers higher chances of detecting them.
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— Robustness p: It measures the ability to tolerate legitimate transformations performed on
images and is given by:
T 1 ¢ T
IF] Z PO

where FT is the fingerprint after applying legitimate transformations on the image by hosting
sites, such as compression and resizing. These transformations may also include image filtering
and noise addition, which attackers can perform to make it harder for the system to detect
their manipulations. Higher p values imply that the fingerprint does not significantly change
because of transformations, providing higher system robustness.

— Discrimination §: It measures how well fingerprints uniquely represent images. It indicates
the chances of two different images having the same fingerprint, i.e., collision. It is given by:

6(r) =1-Pc(2), 3)

where P, (1) is the collision probability of fingerprints, and  is a threshold for considering two
images as visually identical. If 7 = 2, for instance, two images would be considered visually
identical if their fingerprints have a Hamming distance < 2, i.e., the fingerprints differ only in
two or fewer bits.

The Hamming distance between two fingerprints F! and F? is computed as the summation
over X; = Fi1 <) Fl.2. Considering each X; as a random variable, then, by the Central Limit
Theorem, the Hamming distances between fingerprints can be approximated by a Normal
distribution. A collision occurs if the distance > 7. Thus, the collision probability can be
computed as:

1 H—r
P.(1r) = = -erfc (—), 4)
c 2 \/55
where p and o are the mean and standard deviation of the Normal distribution of the Hamming
distances between fingerprints and erfc(-) is the complementary error function, which com-
putes the probability of the normally distributed Hamming distances exceeding the parameter
of the function.

Implementation and Experimental Setup. We implemented all considered fingerprinting methods.
We evaluate and compare their performance on 2,000 randomly selected images from the diverse
datasets described in Section 7. We compute the fingerprint of each image using each of the six
fingerprinting methods. PDQ only creates fingerprints of size 256 bits, whereas NeuralHash only
creates 96-bit fingerprints. The other four methods (aHash, dHash, wHash, and pHash) can be
configured to create fingerprints of different sizes, but the sizes must be square numbers. Thus,
for fair comparisons, we consider two fingerprint sizes for them: 256 and 100 (the closest square
number to 96).

After computing the fingerprint, we then randomly subject the image to the various manipulations
and transformations described in Section 2, where each manipulation and transformation can have
multiple configuration parameters. We compute the averages of the three performance metrics,
1, p, and J across the entire dataset.

Summary of the Results. The sensitivity of all considered fingerprinting methods is plotted in
Figure 3(a) and (b) for two fingerprints of sizes 100 and 256 bits, respectively. Multiple observations
can be made on this figure. First, the results show that pHash consistently provides the highest
sensitivity 7 in all scenarios. This means pHash will likely detect more malicious image manipula-
tions than other methods, which is the most critical aspect for authentication systems. Second,
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Fig. 3. Sensitivity and robustness of different fingerprinting methods for various thresholds .

Table 1. Collision Probability (= 1 — ) for Different Fingerprinting Methods across
Representative Fingerprint Sizes and Threshold Values

Method Size =0 T=4 Size =0 r=4
aHash 100 | 1.02x107°  4.67x107° | 256 | 9.68x1077  2.15x107°
dHash 100 | 1.01x107"% 975x10713 | 256 | 1.07x1073° 6.98x107%
wHash 100 | 554%x1077  3.67x107° | 256 | 1.22x107®  259x107°
pHash 100 | 6.38x 10721 2.24x 10718 | 256 | 1.09x 1071 3.53 x 107!
NeuralHash | 96 | 2.69x107'° 6.16x107 | 96 - -
PDQ 256 - - 256 | 4.22x 107>  1.24x 107

Smaller values indicate better discrimination by the fingerprint method. Bold numbers indicate the
best-performing results in each column.

the sensitivity for fingerprint sizes of 100 bits quickly deteriorates with increasing the threshold
value 7, compromising the accuracy of detecting manipulations. However, 256-bit fingerprints
produce a sensitivity close to 1.0 for multiple thresholds for pHash and PDQ.

We plot the robustness p of all considered fingerprinting methods in Figure 3(c) for fingerprints
of size 256 bits. The results show that pHash consistently produces the best robustness for threshold
7 > 2. This means that pHash tolerates more benign image transformations, e.g., resizing and
transcoding, than other methods. We compute the collision probability, which is equal to 1 — &, for
all fingerprinting methods and summarize the results in Table 1. The table confirms that pHash
produces the best performance in most cases. For example, for 7 = 4 and a fingerprint size of
256 bits, the discrimination value is close to 1.0, i.e., the probability of fingerprint collision is almost
zero. Thus, we select pHash for image authentication.

Next, we determine the most suitable fingerprint size for pHash, which supports different sizes,
unlike PDQ and NeuralHash. We consider all possible (square) fingerprint sizes between 64 and
400 bits. We repeat the above experiments and measure the robustness p and sensitivity # achieved
for each fingerprint size as the threshold 7 varies between 0 and 12. The results, in Figure 4, show
that a fingerprint size of 256 bits yields the best overall performance. In addition, the results show
that the threshold 7 offers a tradeoff between 5 and p: increasing 7 reduces 5 but improves p.
By jointly inspecting the results for both n and p versus 7z, we found that 7 values between 3
and 8 represent the acceptable operating range for the fingerprinting method. In our end-to-end
evaluation of the entire system in Section 7, we analyze the accuracy across this range.

In summary, our analysis shows that pHash with 256-bit fingerprints is the most suitable method
for image authentication systems.
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Fig. 4. Performance of pHash with different fingerprint sizes.

5 Embedding Information in Images

After computing a representative fingerprint of an image, we need to embed this fingerprint in the
pixels of the image. This embedding should not damage the quality of the image, i.e., it should be
imperceptible. Embedding information into images is sometimes referred to as watermarking in the
literature. In recent years, many deep watermarking methods have been proposed. Generally, there
are two primary approaches for designing watermarking methods. The first targets watermarking
outputs of generative Al models. This helps in distinguishing these outputs from other works,
providing clear content ownership and facilitating digital rights management. Methods in this cat-
egory, e.g., [22, 51, 54] typically integrate watermarking directly into the image generation pipeline
(often using Latent Diffusion Models), ensuring robust and high-quality watermark embedding.
The second approach, known as post hoc watermarking, is designed as a post-processing step for
arbitrary images, e.g. [4, 21, 58]. Our research belongs to the second approach because we aim to
protect all types of images, whether Al-generated or captured by cameras.

In this section, we analyze the state-of-the-art methods for embedding information in images
and identify the most suitable one for image authentication.

5.1 Current Embedding Methods

We summarize the main methods for embedding information in images in the following:

—ReDMark [4]: ReDMark improves upon HiDDeN [58], an early deep neural network for
embedding data in images. HiDDeN employs adversarial perturbations to manage diverse
image transformations. It uses an end-to-end deep-learning approach, where the encoder and
decoder are trained jointly. However, it does not effectively handle important transformations,
such as compression. ReDMark addresses this issue by introducing a differentiable module to
approximate JPEG compression. ReDMark also has deeper and more complex encoder and
decoder architectures based on ResNet [27].

—FIN [21]: FIN employs invertible neural networks [9] instead of the conventional encoder/
decoder architecture. FIN uses the same neural network for the encoder and decoder, unlike
previous works that designed separate networks and trained them jointly. This allows FIN to
ensure the encoder does not embed redundant data that the decoder does not need to extract,
which enables FIN to embed more information and improve visual quality.

— FlexMark [8]: FlexMark offers an adaptable design that can effectively control the tradeoff
between the size of the embedded information and the system’s robustness. FlexMark is
trained once, and the size of the embedded information can be dynamically adjusted during
inference without the need to retrain the model, which is a desirable feature for practical
systems. It also includes a comprehensive transformation emulation module, which improves
its robustness to a wide range of transformations.
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— TrustMark [13]: TrustMark focuses on handling images of different resolutions. This is an
important advantage because hosting sites tend to change image resolutions to fit their
systems. In addition, TrustMark includes a combined GAN-based [30] module that can handle
various transformations, including compression, color distortions, and additive noises.

5.2 Analysis of Embedding Methods

Performance Metrics. We define the following metrics to rigorously assess the performance of
embedding methods.

— Capacity: is the amount of information that can be embedded in an image, measured in Bits
Per Pixel (bpp).

— Robustness: assesses resiliency to various transformations. It is defined as the Bit Accuracy
Rate (BAR), which is the fraction of bits of the embedded information that is correctly
extracted.

— Imperceptibility: refers to how unnoticeable the embedded information is within the image. It
is assessed by measuring the quality of the image after embedding the information relative to
the original image. We consider three quality metrics: Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index (SSIM), and Learned Perceptual Image Patch Similarity
(LPIPS) [57]. LPIPS is a relatively recent image quality metric that uses deep neural networks.
It compares the activations of image patches within a pre-trained neural network. These
activations capture complex features that are more aligned with human perception compared
to traditional pixel-wise metrics like PSNR. It is trained on a dataset where human judgments
of image similarity are available. This training helps LPIPS to better reflect how humans
perceive differences between images. Lower LPIPS values indicate higher similarity between
images and, therefore, better imperceptibility.

Implementation and Experimental Setup. We implemented all four considered information em-
bedding methods, starting from their public repositories. We trained and tested each of them
on randomly selected 2,000 images from the datasets described in Section 7.1. Every image was
subjected to 11 transformations, each with three different parameter configurations. Thus, in total,
each information embedding method was evaluated on 66,000 images. For fair comparisons, we
fixed the capacity for all methods at 256/(512 X 512) bpp.

Summary of the Results. We summarize the average robustness and imperceptibility of the
four embedding methods in Tables 2 and 3, respectively. The details of the results for individual
transformations are given in Appendix D. The results highlight a clear overall advantage for
TrustMark compared to the other methods. Specifically, TrustMark achieves significantly higher
average bit accuracy across various categories of transformation, demonstrating superior robustness.
In contrast, the alternative methods either fail to maintain accuracy or exhibit substantially lower
performance under the same conditions.

Regarding imperceptibility, TrustMark consistently outperforms the other methods, as reflected
by its higher PSNR and SSIM and lower LPIPS values. This indicates that the resulting images after
embedding the information using TrustMark are nearly indistinguishable from the original images.

In summary, our analysis shows that TrustMark is the most suitable for information embedding in
image authentication systems.

6 ECCs

ECCs add redundancy to the original data to allow errors to be detected and corrected without
retransmitting the data. In RDIAS, we model an image as a communication channel that carries
the embedded fingerprint as a message. We then model the impact of the changes that occur on
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Table 2. Robustness of Different Information Embedding
Methods, Quantified by the BAR

‘ReDMark FlexMark FIN TrustMark

Transcode 84.46 84.72 67.06 98.56
Resize 81.42 50.00 85.22 99.84
Noise 100.0 89.94 99.98 99.84
Filter 87.38 90.06 88.45 98.08
Average ‘ 88.315 78.68 85.18 99.08

Bold numbers indicate the best-performing results in each row.

Table 3. Imperceptibility of Different Information
Embedding Methods, Quantified by Three Quality Metrics

‘ReDMark FlexMark FIN TrustMark

PSNR T 43.02 35.15 35.90 44.04
SSIM T 0.988 0.939 0.872 0.997
LPIPS | 0.002 0.012 0.171 0.001

Bold numbers indicate the best-performing results in each row.

images, e.g., transcoding and resizing, as bit errors in the fingerprint. Then, we use an ECC method
to correct these bit errors. In this section, we analyze various ECC methods and identify the most
suitable one for the proposed image authentication system.

6.1 Current ECC Methods

Many ECC methods have been proposed for different communication and storage systems. Each
method is typically optimized for target communication channels, message lengths, and error
patterns. We summarize the main categories of ECC methods in the literature in the following:

— Polar Codes [10]: Polar codes are based on the principle of channel polarization. The idea
is to transform communication channels into a mix of reliable and unreliable subchannels
using recursive transformations. During encoding, information bits are assigned to reliable
subchannels while the others are frozen. Polar codes achieve optimal performance in theory
but require long messages, large block sizes, and complex decoding.

— Low-Density Parity-Check (LDPC) Codes [35] and Turbo Codes [44]: LDPC and Turbo codes
are iterative ECCs rooted in graph theory and probabilistic reasoning. LDPC codes utilize
sparse bipartite graphs to define parity-check matrices, enabling efficient message-passing
algorithms for decoding. Turbo codes leverage parallel concatenation of convolutional codes
and iterative decoding to approach Shannon’s channel capacity. They both approach optimal
performance for long messages (thousands of bits) in noisy environments but lose efficiency
for short messages.

— Reed-Solomon (RS) Codes [40]: RS codes are block-based error-correction codes grounded
in finite field (Galois field) arithmetic. They are optimal for correcting burst errors, as their
structure divides data into symbols and operates over blocks of data. RS codes work by
representing data as polynomials and encoding them with redundant parity symbols. Errors
are detected and corrected through interpolation and root-finding techniques, making RS
codes widely used in storage media, CDs, and QR codes. RS codes are suitable for burst errors
but less efficient for random errors.
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— Bose—Chaudhuri—-Hocquenghem (BCH) Codes [45]: BCH codes are cyclic block codes de-
signed to correct multiple random errors. They leverage the properties of Galois fields
to construct parity-check equations that detect and correct errors efficiently. The codes
are defined by their generator polynomials, which are algebraically designed for specific
error-correction capabilities. BCH codes are particularly effective in applications like mem-
ory storage and digital communications, where precise control over error correction is
required. They offer robust error correction for short messages and are computationally
efficient.

6.2 Analysis of ECC Methods

ECC methods have been used mainly in communication and storage systems, where the error
patterns have been heavily studied. Image authentication systems, however, have quite different
characteristics, and it is unclear which ECC method(s) would suit these systems. Thus, we first
model and analyze the error pattern resulting from embedding and extracting fingerprints in
images. Then, we analyze the performance of candidate ECC methods and identify the most suitable
one for RDIAS.

Modeling Bit Errors in Image Authentication. We define three important parameters to analyze
the bit errors that result from embedding and extracting fingerprints in images, which are: (i) error
distribution, (ii) bit flip pattern, and (iii) burstiness index.

Error distribution shows how bit errors are distributed within the received message (embedded
fingerprint in our case). It indicates whether errors are concentrated in specific areas or are
randomly distributed throughout. This is important because if, for example, errors are predominantly
concentrated in one area, a localized ECC method can be used for this area, which can be different
from the one(s) used for other areas.

To analyze error distribution, we embed fingerprints in images. Then, we randomly subject
these images to various transformations. Then, we extract the fingerprints and compare them to
the original ones. We repeat this experiment for 2,000 images and four transformations including
transcoding, resizing, filtering, and noise addition. We compute the normalized error frequency
for each bit location in the fingerprint, and we plot the results in Figure 5. The results indicate
that fingerprint embedding/extraction and image transformations collectively yield a fairly uni-
form distribution of errors in the fingerprint. Thus, a single ECC method is sufficient for our
case.

Bit flip pattern indicates whether there is a bias toward flipping more bits to either 1 or 0, i.e.,
whether we need a symmetric or asymmetric ECC method. We compute the percentages of bits
that were flipped from 1 to 0 and vice versa during the experiments mentioned above. The results,
summarized in Table 4, show that there is no significant bias in the bit flip pattern. Thus, a symmetric
ECC method is desirable for our image authentication system.
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Table 4. Bit Flip Pattern and Burstiness Index of Bit
Errors in Fingerprints

Transformation ‘ 0-1 1-0 ‘ Burstiness Index

Transcode 50.47 49.50 0.979
Resize 51.87 48.13 0.993
Noise 51.29 48.71 0.992
Filter 5072 49.28 0.963
Average | 51.09 4891 | 0.982

Burstiness index indicates whether errors tend to occur in clusters (bursts of size > 2 bits) or
individually. It is calculated as:

Number of Error Bursts
Total Number of Error Bits "

Burstiness Index =

A burstiness index closer to 1 suggests that errors are more dispersed and random, while a value
closer to 0 indicates that errors are more likely to cluster in bursts. We compute and summarize
the burstiness index in Table 4, which shows that errors in image authentication systems are not
bursty.

Identifying the Most Suitable ECC Method. Polar codes, LDPC, and Turbo codes provide optimal
efficiency. However, they require large message sizes (thousands of bytes). Fingerprints in image
authentication systems are in the order of a few hundred bits (as discussed in Section 4). In addition,
these ECC methods have high computational complexity due to their iterative and probabilistic
designs. Thus, they are not suitable for image authentication systems.

On the other hand, BCH and RS methods can work with short messages as needed by image
authentication systems. Both have simple encoding and decoding operations, which help with
the real-time nature of image authentication. We conduct experiments to compare BCH and RS
methods to choose the most suitable one. Specifically, we compute the efficiency achieved by each
method in the context of image authentication. Efficiency is defined as the original message size
divided by the message after adding redundancy by the ECC method. Figure 6 summarizes the
results, which show that BCH consistently outperforms RS over the whole range of bit error rates.

In summary, our analysis shows that BCH is the most suitable ECC method for image authentication
systems.

7 End-to-End Evaluation of RDIAS

RDIAS is composed of multiple components. We have analyzed each component separately in
Sections 4-6. These analyses guided the selection of the most suitable method for each compo-
nent and the recommended parameters for each method. Specifically, RDIAS employs: (i) fin-
gerprinting using pHash with 256-bit fingerprints, (ii) information embedding using TrustMark,
and (iii) error correction using BCH. Once chosen, these methods and parameters are fixed in
RDIAS.

In this section, we evaluate the end-to-end performance of RDIAS on large and diverse datasets.
We consider various malicious manipulations performed using Al tools, where we recruit par-
ticipants to act as attackers and realistically change images. We also consider the usual image
transformations imposed by hosting sites. In addition, we demonstrate the accuracy and robust-
ness of RDIAS in complex scenarios where images are sequentially uploaded to multiple social
platforms. For example, protected images are first uploaded to Facebook, then downloaded and
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uploaded to Telegram, and finally posted on WhatsApp. Each platform performs different image
transformations. Finally, we analyze all overheads imposed by RDIAS and show they are negligible.

Due to space limitations, some details and results are presented in Appendices A-D. We have
also implemented the verification component of RDIAS as a web browser plugin, which seamlessly
verifies image authenticity and displays the results in the top left corner of the image in real time.
This plugin is described in Appendix A.

7.1 Datasets and Performance Metrics

Datasets. We use the following four diverse image datasets:

— DIVerse 2K (DIV2K) [18]: It consists of 1,000 high-resolution (2K) images of various real-world
scenes, such as urban environments, natural landscapes, plants, and animals.

— Challenge on Learned Image Compression (CLIC) [36]: It has high-quality photographs sourced
primarily from specialized platforms like Unsplash.

— Flickr-Faces-HQ (FFHQ) [47]: It contains 70,000 high-resolution (1,024 X 1,024 pixels) images
of human faces of various ages, ethnicities, and backgrounds. Faces may also have different
accessories like eyeglasses, sunglasses, and hats.

— ArtBench-10 [34]: It is a curated dataset of paintings with 60,000 images representing 10 distinct
artistic styles. It encompasses many art forms, including paintings, murals, and sculptures
from the 14th to the 21st century.

Performance Metrics. The goal of RDIAS is to distinguish authentic from manipulated images,
which is a binary classification problem. Thus, we compute all important standard metrics to
comprehensively analyze the performance of RDIAS, including Precision, Recall, Accuracy, F1 Score,
the Receiver Operating Characteristic (ROC) curve, and the Precision-Recall curve. All these
metrics are computed based on the correctness of the binary outcome (Positive or Negative) of the
system. Specifically, True Positive means a manipulated image is correctly identified as manipulated,
whereas False Positive means an authentic image is incorrectly declared as manipulated (i.e., false
alarm). Similarly, True Negative means correctly declaring an authentic image as not manipulated,
and False Negative means a manipulated image was identified as authentic.

7.2 Results for Detecting Al Manipulations

Experiments. We randomly selected 2,600 images from three datasets: DIV2K [18], CLIC [36], and
ArtBench [34]. Using the immunization module of RDIAS, we processed all these images to make
them immune to potential manipulations by embedding authentication information in them.

Then, we recruited ten volunteers and instructed them to “manipulate the images to change their
semantics to deceive users.” Each participant was assigned 130 images and asked to apply at least
one manipulation to each image using Adobe Firefly [1], ChatGPT DALL.E3 [38], Meta LLaMA 4
[37], and Google Gemini FLASH2.5 [39] which all are Al-powered image editing and generation
tool. Participants employed various techniques, including cropping image borders, expanding and
filling borders with generative Al, adding and removing objects using the magic brush, and writing
prompts to generate new objects and blend them with the images. They also removed any artifacts
left by the manipulations to make the images appear realistic and undetectable. An illustration of
this process can be found in Appendix B.

Each of the 10 participants freely edited 130 images, resulting in a total of 1,300 manipulated
images. We then upload these 1,300 manipulated images and the other 1,300 unmodified ones to
three widely used platforms: Facebook (1,000 images), WhatsApp (1,000 images), and Telegram
(600 images). The 2,600 images were in .png format. The three platforms transcoded all images
to JPEG, but with different quality parameters according to the settings of each platform. Each
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Fig. 7. Sample Al manipulations detected by RDIAS. Top: original. Bottom: manipulated.

Table 5. Summary of the Performance of RDIAS on Detecting
Al-Powered Manipulations of General Images

Threshold 3 4 5 6 7 8
Accuracy 94.07 | 96.88 | 97.15 | 97.84 | 98.11 | 97.77
Recall 99.69 | 99.46 | 99.46 | 99.08 | 99.00 | 98.07

Precision 89.61 | 94.58 | 95.07 | 96.69 | 97.27 | 97.47
F1-Score 0.943 | 0.969 | 0.972 | 0.978 | 0.981 | 0.977

The presented results are averages across the three platforms: Face-
book, WhatsApp, and Telegram.

platform also scaled down large images to lower resolutions according to its settings. Further, all
platforms removed the metadata from the uploaded images.

Sample Visual Results. We first present some qualitative results to demonstrate our approach
in Figure 7, where we show multiple original images (top row) and their manipulated versions
created by participants (bottom row). Original images have green bounding boxes, and manipulated
images have red boxes. The manipulations included seamlessly adding/removing objects and subtly
changing some image areas. RDIAS was able to correctly identify all original and manipulated
images in these cases, even in the presence of these sophisticated Al manipulations and the various
transformations and scaling operations performed on the images.

Overall Objective Performance. We report the Accuracy, Precision, Recall, and F1-Score for different
threshold values 7 in Table 5. The best performance is achieved for 7 = 7, where the overall Accuracy
is 98.11%. The Recall, which measures how successful the system is in detecting manipulations,
is even higher at 99.00%. This means that RDIAS missed only 1.0% of these sophisticated Al
manipulations. The Precision is also high at 97.27% (indicating a very low false alarm rate), which
is important for authentication systems. Further, the F1-Score is close to 1.0, indicating a good
balance between Precision and Recall.

In addition, Table 5 shows that RDIAS performs well across multiple threshold values, specifically
7 between 4 and 8; the performance gradually drops outside this range. This shows the practicality
and robustness of the system, as it does not need to be fine-tuned on a specific threshold value.

Detailed Analysis. We plot the ROC and the Precision-Recall curves in Figure 8 to demonstrate
the performance of RDIAS across all possible thresholds. We plot an ROC curve for each social
media platform and also include the overall average ROC curve. ROC curves show the tradeoff
between the True-Positive Rate (TPR) and False-Positive Rate (FPR) achieved by RDIAS.

The results in Figure 8 can be used to configure RDIAS for different scenarios in practice. For
example, some applications may tolerate a higher FPR for the sake of minimizing the risk of missing

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 21, No. 10, Article 303. Publication date: October 2025.



RDIAS: Robust and Decentralized Image Authentication System 303:19

100 100
_. 90 . X 90
e\‘i 80 Facebook c go| — Facebook
WhatsApp o —— WhatsApp
E 70 Telegram N 70 — Telegram
~ 60 Average 8 60/ — Average
Random Classifier E """" Random Classifier
50
2% 10 20 30 40 50 50 60 70 80 90 100
FPR (%) Recall (%)
(a) ROC Curve (b) PR Curve

Fig. 8. Detailed performance analysis of RDIAS for each platform.

any manipulation. As the figure shows, RDIAS is capable of achieving an average TPR of 99.69%,
but in this case, the FPR is 11.54%. This is obtained by setting 7 = 3. On the other hand, a balanced
performance can be achieved by setting 7 = 7, as indicated in Table 5. In this case, the TPR is 99.00%,
and the FPR is 2.78%. In addition, Figure 8(b) demonstrates the stability of RDIAS, because both the
Precision and Recall stay fairly high and consistent for most r values.

Robustness of RDIAS in Challenging Scenarios. We next stress-test RDIAS by considering challeng-
ing but practical scenarios, where images can spread from one site to another. Specifically, users
may immunize their images and post them on a platform, say Facebook. Attackers may download
these images, manipulate them, and repost them on Facebook. Facebook typically transcodes images
using a specific set of parameters and scales them to suit its storage and processing pipelines.
These operations affect the embedded watermarks, making it harder for the protection system to
detect manipulations. Nonetheless, we have shown above that RDIAS can accurately detect such
manipulations.

Attackers, however, may post the manipulated images on another platform, e.g., Telegram.
Telegram, in turn, performs an additional set of transformations on the images, further complicating
the job of the image protection system. We note that Telegram resized and compressed images with
lower quality factors than Facebook and WhatsApp. It resized high-resolution images so that the
longer side was 1,280 pixels (compared to 2,048 for Facebook and 1,600 for WhatsApp), keeping
the aspect ratio unchanged. It also applied JPEG compression with an average quality factor of 75
(compared to 92 for Facebook and 80 for WhatsApp). This caused more errors for RDIAS, leading
to a slightly lower accuracy in the case of Telegram. To analyze the performance of RDIAS in these
challenging scenarios, we consider sequentially uploading and downloading images to three quite
different platforms: Facebook, Telegram, and WhatsApp. Specifically, we randomly selected 400
images from our combined dataset, where half had been manipulated by participants and the other
half were authentic. We first upload all images to Facebook. Then, download them after being
processed by Facebook. Then, upload these images to Telegram and download them again. Finally,
we upload the images to WhatsApp and download them. We then use RDIAS to authenticate the
images after all such transformations and manipulations.

Table 6 summarizes the final results, i.e., after the images have sequentially been posted to three
different social media platforms. The results show that RDIAS still achieves an accuracy above
93% even in these challenging scenarios. All other performance metrics are also fairly high. We
present a detailed analysis in Figure 9, which shows the ROC and Precision—-Recall curves after each
stage of uploading and downloading images to the different platforms. The results in Figure 9 show
the minor drop in performance due to the successive and extensive image processing operations
performed by various platforms. The results confirm the robustness and accuracy of RDIAS in
realistic scenarios. The details of the results for Various Transformations and Manipulations are
given in Appendix C.
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Table 6. Performance of RDIAS in Challenging Scenarios, Where
Protected Images Are First Uploaded to Facebook (F), Then
Downloaded from Facebook and Uploaded to Telegram (T), and
Finally Downloaded from Telegram and Posted on WhatsApp (W)

Threshold 3 4 5 6 7 8
Accuracy 81.50 88.75 90.25 91.75 93.25 93.25
Recall 99.00 99.00 99.00 99.00 99.00 98.00

Precision 73.33 82.16 84.26 86.46 88.79 89.50
F1-Score 0.8426 | 0.8980 | 0.9103 | 0.9231 | 0.9362 | 0.9356

Each social platform performs different image transformations. Yet, RDIAS
still achieves a fairly high accuracy.

100 100

A 0 § 90_‘“@%
X c 80
<80/, 5 —
E 70{|| — F+T LD T70] — F+T
v}
[ 60 — F+T+W D go| —— F+T+W
P Random Classifier E ——————— Random Classifier
50
5OO 10 20 30 40 50 50 60 70 80 90 100
FPR (%) Recall (%)
(a) ROC Curve (b) PR Curve

Fig. 9. Detailed performance analysis of RDIAS in challenging scenarios. While various social media platforms
transcode and store images differently, RDIAS achieves robust and consistent performance.

Fig. 10. Sample DeepFake manipulations detected by RDIAS. Top: original. Bottom: manipulated.

7.3 Results for Detecting DeepFake Face Manipulations

Experiments. We consider two DeepFake manipulations on faces: Expression Change and Face
Swap. Expression Change involves altering a person’s facial expression, such as making them
appear happy, sad, drowsy, or blinking. We performed these manipulations using a well-known Al
model [23] available on HuggingFace. We show sample images in Figure 10.

For Face Swap, we utilized the tool in [46], which transfers a face from a source image to a target
image. This process allows placing someone’s face onto another person, making them appear in
contexts they were not originally present in (see Figure 11).

For our experiments, we randomly selected 100 images from the FFHQ dataset. We applied Face
Swap manipulations to 50 images and Expression Change manipulations to the remaining 50.
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Fig. 11. Sample Face Swap manipulations detected by RDIAS. Top: original. Middle: target. Bottom: output.

Table 7. Summary of the Overall Performance of
RDIAS on Detecting DeepFake Face Manipulations

Threshold 3 4 5 6 7 8

Accuracy 97.0 | 98.5 | 98.5 | 98.5 | 99.0 | 99.0
Recall 100 | 100 | 100 | 100 | 100 | 100
Precision 943 | 97.0 | 97.0 | 97.0 | 98.0 | 98.0
F1-Score 097 | 098 | 0.98 | 0.98 | 0.99 | 0.99

In addition, we applied image transformations similar to those performed by Facebook. Specifically,
we transcoded all images using JPEG with a quality parameter between 70 and 90, and we randomly
scaled images by ratios between 0.5 and 0.9.

Summary of the Results. First, for subjective demonstration, all sample cases shown in Figures 10
and 11 were correctly identified by RDIAS.

Next, we summarize the objective results of all DeepFake face manipulations in Table 7. The
results confirm the high accuracy of RDIAS in detecting such serious and increasingly common
attacks. A Recall of 100% is reported for all threshold values, indicating that RDIAS was able to
identify all manipulated faces. A Precision of 98.0% is reported for the best threshold (z = 7),
indicating a very low false alarm rate of 2%. The overall Accuracy and F1-Score achieved by RDIAS
are 99.0% and 0.99, respectively. Collectively, all performance metrics indicate the robustness,
stability, and accuracy of the performance of RDIAS.

We note that the results in Table 7 are slightly better than the ones reported in Table 5 for the
general Al manipulations of scenes. This is because manipulations changing facial expressions or
swapping faces impact a substantial portion of the image, making such alterations less challenging
for RDIAS to identify compared to single object addition or removal in general images.

8 Conclusion

The rise of advanced Al tools has made image manipulation more accessible and sophisticated,
posing serious challenges to the authenticity of digital content. In this article, we introduced
RDIAS, a robust and decentralized system for image authentication that addresses these challenges
by embedding semantic fingerprints directly into images. RDIAS integrates perceptual hashing,
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deep-learning-based information embedding, secure encryption, and ECCs to provide a scalable
and practical solution capable of withstanding benign transformations and detecting malicious
manipulations. We analyzed various methods for each system component and identified the most
suitable option for image authentication systems. We also analyzed the tradeoffs among components
to maximize the end-to-end performance of RDIAS.

We conducted extensive evaluations with diverse datasets and scenarios, including Al-powered
attacks like DeepFake manipulations. Our experiments considered common transformations per-
formed by various social platforms and image-hosting sites, such as transcoding, resizing, and
removing metadata. They also considered image transformations that attackers may use to hide their
manipulations, such as adding noise and/or applying filters. Our results demonstrated the RDIAS’s
effectiveness, achieving up to 99% accuracy in distinguishing authentic from manipulated images
in these challenging scenarios. In addition, RDIAS preserves image quality, operates efficiently in
real time detailed in Appendix E, and eliminates the need for centralized verification, making it
suitable for widespread adoption across various platforms.
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Appendices
A  RDIAS Plugin for Web Browsers

To demonstrate the effectiveness of RDIAS and evaluate its real-world performance, we developed
a browser plugin that verifies images in real-time as users browse the web. By installing this
plugin, users can automatically see verification results regarding the authenticity of images on Web
sites such as social media platforms or news sites. These images may have undergone common
transformations applied by online platforms or have been altered using Al tools to modify their
content. The RDIAS plugin automatically verifies images and presents the results to users in a clear
and visually minimal format positioned at the top left corner of the Web page. In Figure A1, we
showcase examples of our plugin in action on the Chrome browser for images shared on Facebook.
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Fig. A1. Web browser plugin for image authentication using the RDIAS verification module tested on Facebook.
A green checkmark or a red cross is displayed at the top left corner of the Web page, indicating the verification
result based on the plugin’s analysis in real time.

B Image Manipulation Using Adobe Firefly

Figure B1 shows the procedure of applying manipulations to an image. Starting from an original
image, one object has been added, and another object has been removed from the original image.

(d)

Fig. B1. An example of using Adobe Firefly to manipulate an image from left to right: (a) An original image
uploaded to Adobe Firefly. (b) An object added to the image using magic brush and prompt. (c) An object
removed from the image using magic brush. (d) Manipulated image.

C Detailed Analysis of Various Transformations and Manipulations

We analyze how different transformations and manipulations affect our system’s performance. To
evaluate the system at scale, we developed a pipeline that includes the RDIAS immunization and
verification modules. The pipeline randomly applies transformations and manipulations to images
to stress-test RDIAS.

Initially, we immunized 2,000 images from the aggregated dataset. For each immunized image, we
independently applied one transformation or manipulation from Table C1, generating seven new
images per original image. This experiment resulted in individually transformed or manipulated
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images. We verified each of them independently, and the results are presented in Tables C2 and C3.
In total, we evaluated 14,000 images, all of which were either transformed or manipulated.

Table C1. Operations and Parameter Ranges for Automated
Transformation/Manipulation

Category Transformation | Parameter | Range
Benign Transcode Quality 70-90
Transformations | Resize Ratio 0.5-0.9
Noise Std 0.1-0.5
Filter Radius 0.1-0.5
Malicious Cropping Ratio 0.5-0.75
Manipulations Object addition Scale 0.04-0.16
Object removal Scale 0.04-0.16

Table C2. Summary of the Performance on Randomly Chosen
Individual Benign Transformations to Stress-Test RDIAS

Threshold | 3 4 5 6 8

Transcoding | 88.55 94.20 94.85 9580 9625 96.50
Resizing 92.85 9830 9835 9830 99.00 99.05
Noise addition [ 93.35 98.00 9825 98.90 98.95 99.00
Filtering 9380 9815 9840 99.00 99.05 99.05

Table C3. Summary of the Performance on Randomly Chosen
Individual Malicious Manipulations to Stress-Test RDIAS

Threshold 3 4 5

6

8

Cropping 100.0 100.0  100.0

100.0 100.0 100.0

Object addition | 99.85 99.85 99.85

99.65 99.65 99.45

Object removal | 99.90 99.60 99.55

99.20 99.20 98.10

Table C4. Summary of the Performance on Combinations of
Randomly Chosen Transformations and Manipulations to
Stress-Test RDIAS

Threshold 3 4 5

6

8

Transformation | 89.65 94.85 95.65 96.80 96.95 97.40

Manipulation 99.85 99.80 99.80 99.50 99.50 99.00

In another experiment, we evaluated the effect of combined operations. For transformations, we
randomly applied two transformations to each image. For manipulations, we randomly applied one
manipulation and two transformations to each image, mimicking the environment of image-hosting
Web sites where transformations are routinely applied to uploaded images. In this experiment,
we evaluated 4,000 images, each of which underwent a combination of transformations and/or
manipulations. The results are presented in Table C4.
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D Detailed Analysis of Embedding Methods

To assess the embedding methods and their suitability for our system, we evaluated their robustness
against various image transformations, as summarized in Table D1. The evaluation covered a range
of transformation levels to analyze the effects of each transformation comprehensively. TrustMark
[13] demonstrated consistent performance across a wide range of transformations, unlike other
methods, which exhibited inconsistent results. While some methods achieved excellent performance
(e.g., greater than 99%) for specific transformations, they generally lacked robustness against key
transformations such as transcoding and resizing—critical factors for our system. Consequently,
TrustMark [13] emerged as the most suitable choice. This evaluation was conducted on 2,000 images
for each transformation-parameter pair, resulting in 66,000 image variations tested per method.

Table D1. Robustness of Different Information Embedding Methods, Quantified by the
BAR over Different Image Transformations (T) and Parameters (P)

Category T P | ReDMark FlexMark FIN TrustMark
50 60.93 78.03 66.23 97.97
JPEG 70 71.57 81.14 67.43 99.14
Transcoding 90 98.10 88.11 68.08 99.73
50 83.72 85.29 65.20 96.75
WebP 70 92.45 87.43 66.76 98.12
90 99.99 88.32 68.66 99.60
0.5 54.55 50.0 85.03 99.85
Resize Resize 0.75 89.82 50.0 85.29 99.84
1.5 99.90 50.0 85.35 99.84
0.02 100 92.06 99.98 99.84
Noise Gaussian 0.04 100 90.08 99.98 99.84
0.08 100 87.68 99.98 99.84
1 100 95.47 99.99 99.84
G. Blur 3 50.32 84.89 99.53 99.64
5 49.59 72.04 23.30 95.42
1 100 95.48 99.99 99.84
Median Blur 3 73.09 91.56 99.98 99.80
5 67.28 88.92 99.83 99.74
1 100 95.48 100 99.83
Average Filter 3 36.13 93.08 100 99.81
5 64.79 92.74 99.98 99.32
0.5 100 96.54 83.06 99.25
Filter Contrast 1.5 99.93 95.78 85.16 95.85
2 99.58 93.05 83.40 90.46
0.5 100 90.23 81.95 99.40
Brightness 1.5 98.69 90.46 76.89 94.49
2 95.56 89.23 70.03 89.06
0.5 100 84.12 99.99 99.73
Saturation 1.5 100 83.72 99.94 99.66
2 100 80.21 99.82 99.12
0.5 100 93.69 84.06 99.83
Sharpness 1.5 100 93.10 84.92 99.83
2 100 91.53 85.72 99.81
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E Computational Analysis and Overheads

We assess all overheads associated with RDIAS.

Quality Overhead. Embedding fingerprints in images may impact their visual quality. We measure
the visual quality after embedding the fingerprints using three metrics PSNR, SSIM, and LPIPS.
We compute the quality of images with fingerprints relative to the original images. We report the
average results across 2,600 images, which are: PSNR of 43.91, SSIM of 0.995, and LPIPS of 0.001.
These results show that the reduction in quality is negligible and imperceptible to the human eye.

Storage Overhead. Embedding fingerprints in images may slightly increase their size. This is
because the embedding process changes the image pixels, which may reduce the compression
efficiency. Across the 2,600 images in our experiments, the average increase in file size is about
4.14% (from 4.63 MB to 4.83 MB), which is small.

Computational Analysis. We measure the processing time of all components of RDIAS. All
experiments were conducted on a system with an Intel Core i7-12700 (20 cores), 32 GB of RAM,
and an NVIDIA 3080 GPU with 10 GB of VRAM.

Table E1. Computational Analysis of RDIAS

Step H FNG ‘ ENC ‘ ECC EMB H E2E
Immunization || 76ms | 1ms | 1ms | 765ms || 843ms
Verification 27ms | 1ms | 1ms 17 ms 46 ms

The results are summarized in Table E1. The immunization process takes less than a second
(on average 843 ms). Thus, the immunization process can easily be done without imposing any
noticeable delay on the users before distributing their images. Recall that the immunization is done
once. On the other hand, the verification step is done every time an image is downloaded from a
Web site. The total verification time in RDIAS is 46 ms, on average. Thus, the verification step can
easily be performed on images in real time, ensuring seamless authentication of images.
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