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Partitioning of Multiple Fine-Grained Scalable
Video Sequences Concurrently Streamed
to Heterogeneous Clients
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Abstract—Fine-grained scalable (FGS) coding of video streams
has been proposed in the literature to accommodate client hetero-
geneity. FGS streams are composed of two layers: a base layer,
which provides basic quality, and a single enhancement layer that
adds incremental quality refinements proportional to number of
bits received. The base layer uses nonscalable coding which is more
efficient in terms of compression ratio than scalable coding used
in the enhancement layer. Thus for coding efficiency larger base
layers are desired. Larger base layers, however, disqualify more
clients from getting the stream. In this paper, we experimentally
analyze this coding efficiency gap using diverse video sequences.
For FGS sequences, we show that this gap is a non-increasing
function of the base layer rate. We then formulate an optimization
problem to determine the base layer rate of a single sequence
to maximize the average quality for a given client bandwidth
distribution. We design an optimal and efficient algorithm (called
FGSOPT) to solve this problem. We extend our formulation to
the multiple-sequence case, in which a bandwidth-limited server
concurrently streams multiple FGS sequences to diverse sets of
clients. We prove that this problem is NP-Complete. We design
a branch-and-bound algorithm (called MFGSOPT) to compute
the optimal solution. MFGSOPT runs fast for many typical cases
because it intelligently cuts the search space. In the worst case,
however, it has exponential time complexity. We also propose a
heuristic algorithm (called MFGS) to solve the multiple-sequence
problem. We experimentally show that MFGS produces near-op-
timal results and it scales to large problems: it terminates in less
than 0.5 s for problems with more than 30 sequences. Therefore,
MFGS can be used in dynamic systems, where the server period-
ically adjusts the structure of FGS streams to suit current client
distributions.

Index Terms—Fine-grained scalable coding, multimedia com-
munication, quality optimization, video streaming.

1. INTRODUCTION

IDEO streaming over the Internet is increasingly getting
very popular as higher bandwidth links and more powerful
machines are becoming more affordable for end users. Users
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Fig. 1. Simple representation of an FGS-coded stream. The stream can be de-
coded at any rate between 7, and 7,44 -

typically seek the highest possible video quality. Users, how-
ever, are quite heterogeneous in terms of network bandwidth and
processing capacity. A conventional nonscalable coded stream
only supports one decoding rate, which is insufficient in such a
heterogeneous environment. This is because supporting clients
with different bandwidth requires storing and serving multiple
versions of each video stream. To cope with this heterogeneity,
various scalable coding techniques have been proposed in the
literature. A scalable coded stream consists of various represen-
tations of the original video sequence, with different resolutions,
frame rates, or quality.

Scalable coders are roughly categorized into two classes:
coarse-grained scalable and fine-grained scalable. Coarse-
grained scalable (CGS) coders divide a video stream into
multiple layers. They provide limited rate scalability at the
layer level: clients receiving incomplete layers cannot use them
to enhance quality. In contrast, fine-grained scalable (FGS)
coders provide finer rate scalability and better error resiliency
[1]-[3]. An FGS encoder compresses video data into two
layers: a base layer which provides basic quality, and a single
enhancement layer that adds incremental quality refinements
proportional to the number of bits received. As shown in Fig. 1,
arbitrary truncation (at the bit level) of the enhancement layer
to achieve a target rate is possible for FGS coding. This in turn
enables streaming servers to fully utilize available bandwidth
of individual clients, which results in better video playback
quality and ultimately higher user satisfaction.

The fine rate scalability of FGS, however, comes at an ex-
pense of coding efficiency. That is, an FGS stream results in
lower quality compared to a nonscalable coded stream when
both streams are reconstructed at the same bit rate. Previous re-
search indicates that this coding efficiency gap can be as high
as 2 dB in MPEG-4 FGS coders [4]. The two main causes of
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this coding efficiency gap are: 1) less accurate motion compen-
sation as only base layer is used for motion estimation! and 2)
unexploited correlation between base layer and enhancement
layer. The coding efficiency gap is more significant in video
streams coded with lower base layer rates because less infor-
mation is contained in the base layer in this case, which leads to
higher motion estimation error. Furthermore, video sequences
with lower temporal redundancy result in a smaller gap because
motion compensation does not provide much quality gain for
these sequences [1], [4].

While the temporal correlation is fixed for a given sequence,
the base layer rate is a configurable parameter. Therefore, con-
tent providers may code a sequence at higher base layer rate
to reduce the coding efficiency gap and achieve higher quality.
This may increase perceived quality for some clients, which
could allow the provider to charge higher service rates.2 On
the other hand, a higher base layer rate may disqualify other
clients from receiving the complete base layer stream. Since the
base layer is nonscalable, these disqualified clients cannot even
render basic quality and effectively they are denied access to the
video stream, even though the server may have enough band-
width to serve them. This may lead to under-utilization of server
bandwidth. Hence, there is a trade-off between coding efficiency
(and the resulting client perceived quality) on one hand, and the
number of clients that can receive the stream (and the resulting
server bandwidth utilization) on the other.

To FGS encode a given video sequence, content providers
have many options for the base layer rate. Each base layer rate
determines the average perceived quality for all clients, which
can be used as a metric for user satisfaction. In streaming
systems where multiple video sequences are concurrently
streamed to diverse sets of clients, content providers have even
more choices for the base layer rates of individual sequences.
We refer to the problem of determining the base layer rates
of FGS streams as structuring FGS streams, because the base
layer defines the structure of stream (as shown in Fig. 1).
Unfortunately, there are no systematic ways in the literature
to aid content providers in choosing the optimal structure of
FGS streams that would maximize the average quality for all
clients over all sequences. In this paper, we propose efficient
and optimal algorithms to solve the stream structuring problem.

A. Paper Contributions

Our contributions in this paper can be summarized as follows:

* We experimentally analyze the coding efficiency gap using
diverse video sequences. For FGS sequences, we show
that this gap is a nonincreasing function of the base layer
rate. This analysis could be of interest in its own right for
streaming systems that employ FGS encoding.

e We formulate an optimization problem to determine the
base layer of a single sequence to maximize the average

'We note that motion-compensated fine-grained scalable coding tools, such
as the representative progressive fine granularity scalable (PFGS) coding [5],
have been proposed. Employing those coding tools would reduce the coding
inefficiency gap between FGS coded streams and nonscalable ones.

2In this work, we consider problems to maximize user-perceived quality that

depends on video encoding rates and available bandwidths. We interchangeably
refer to perceived quality as reconstructed quality or simply as quality.
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quality for a given client bandwidth distribution. We de-
sign an optimal and efficient algorithm (called FGSOPT)
to solve this problem. Preliminary results of this part ap-
pear in our previous work [6].

* We extend our formulation to the multiple-sequence case,
in which a bandwidth-limited server concurrently streams
multiple FGS sequences to diverse sets of clients. The
objective is to efficiently utilize the server bandwidth
while maximizing perceived quality for all clients. We
prove that this problem is NP-complete. We design a
branch-and-bound algorithm (called MFGSOPT) to com-
pute the optimal solution. MFGSOPT runs fast for many
typical cases because it intelligently cuts the search space.
In the worst case, however, it has exponential time com-
plexity. Therefore, MFGSOPT is more suitable for off-line
scenarios where the server has pre-estimates on the client
distribution.

* We propose a heuristic algorithm (called MFGS) to solve
the multiple-sequence problem. We experimentally show
that MFGS produces near-optimal results and it scales to
large problems: it terminates in less than 0.5 s for prob-
lems with more than 30 sequences. Therefore, MFGS can
be used in dynamic systems, where the server periodically
adjusts the structure of FGS streams to suit current client
distributions.

Our proposed algorithms systematically and optimally
choose the best base layer rate for individual video sequences.
This is in contrast to manual, error-prone, rule-of-thumb tech-
niques currently used by system administrators. A schematic
diagram showing where our algorithms fit in streaming systems
is given in Fig. 2. As the figure indicates, our algorithms can be
used during the encoding process as in live streaming systems,
or they could be used to transcode already-encoded streams to
maximize the quality of the current clients. In both cases, the
algorithms can be invoked periodically (e.g., every 5 min) to
cope with the dynamic changes in client distributions.

B. Paper Organization

The rest of this paper is organized as follows. In the next
section, we summarize the related work. In Section III, we
analyze the coding efficiency of FGS streams. We formulate
and solve the optimization problem for single-sequence sys-
tems in Section IV. In Section V, we prove that structuring
multiple sequences is an NP-complete problem, and we present
a branch-and-bound algorithm and an efficient heuristic algo-
rithm to solve it. We evaluate our algorithms in Section VI, and
we conclude the paper in Section VII.

II. RELATED WORK

The coding efficiency gap of MPEG-4 FGS coders are studied
in [1], [4]. The authors investigate the relationship between the
FGS coding efficiency gap and the video temporal correlation.
They found that the correlation coefficient between an enhance-
ment layer frame and its motion-compensated reference frame
is a good indication of the FGS coding efficiency. We study the
efficiency gap of the state-of-the-art H.264 coders.
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Fig. 2. System architecture of a video streaming server or proxy.

Streaming systems, e.g., [7]-[11], account for the coding effi-
ciency of scalable coders using a layering overhead, which rep-
resents the bit rate that does not contribute toward the video
quality. Similarly, we model this overhead by a coding effi-
ciency gap function, and we empirically estimate this function.

The authors of [12] experimentally show that properly
choosing base layer rates of FGS streams can improve per-
ceived video quality for clients. This work, however, does
not propose systematic methods to choose base layer rate. In
contrast, our work optimally computes base layer rates based
on client distributions and video sequence characteristics to
maximize average perceived quality. In our previous work
[13], we considered optimal coding of a single stream that
has multiple layers with different granularities. The algorithm
in [13] can also be used in streaming systems with multiple
nonscalable versions of the stream to compute the optimal
rate of each version. The work in the current paper is different
because it considers streams with only one FGS layer, and more
importantly, it presents a solution to the optimal structuring
of multiple sequences being streamed concurrently to diverse
client sets, which is more general. We are not aware of any
other works in the literature that propose structuring algorithms
for fine-grained scalable streams.

The performance of layered streams versus nonscalable
streams is studied in [7]. The authors formulate a dynamic
programming problem to compute the rate of each layer such
that the average perceived video quality is maximized. The
square root rate-distortion model [14] is used to estimate the
coding efficiency of the layered coding. In [11], the authors
consider broadcasting multi-layer video streams in a wireless
cellular system with a given number of channels and client
capacity distribution. They determine the optimal rate of each
layer to maximize the average perceived quality. Unlike our
work, these two works target coarse-grained streams which
provide limited flexibility compared to fine-grained streams.

The authors of [15] study multicast streaming systems with
many receivers. They partition receivers into several groups to
maximize a system-wide utility function. A video stream used
in such systems can be encoded into multiple cumulative layers.

Several versions with different rates of the same stream can also
be created. This work does not consider fine-grained streams,
nor does it account for the layering overhead. Several papers
[8]-[10] have approximated layering overhead for performance
comparison of layered streams and multiple version streams.
For example, the work in [10] proposes a linear layering over-
head function, which is inspired by the experimental results
in [1], whereas the works in [8], [9] employ a fixed layering
overhead.

III. CHARACTERISTICS OF FGS-CODED STREAMS

A fine-grained scalable (FGS) video stream is composed of
two layers: base layer and enhancement layer. As depicted in
Fig. 1, the base layer is nonscalable and must be received in its
entirety to provide basic quality, while the enhancement layer
can be truncated at arbitrary bit positions. Therefore, an FGS-
coded stream can support a wide range of streaming rates, and
thus many heterogeneous clients. For a given video sequence,
a maximum bit rate 7,4, is determined by the administrator.
T'maz corresponds to the maximum possible quality of the video
stream, and it is specified by the resources (storage and band-
width) allocated to that video sequence. We denote the bit rate
of the base layer as 73, where 0 < 75 < Ty4.- An FGS-coded
stream can be served at any bit rate 7, where 7, < 7 < rp05-

Our problem in this paper is to determine the best base layer
rate r;, so that the average quality is maximized for all clients. To
solve this problem, we need to study the implications of varying
7. We design the following experiments to analyze these impli-
cations. We use the Joint Scalable Video Model (JSVM) refer-
ence software version 8.0 [16] in our experiments. A brief de-
scription of this software and how we configured it is given in
Section VI. We chose five diverse video sequences: City, Mo-
bile, Soccer, Harbour, and Crew. The first four sequences are
in CIF format with 30 frames per second, while the last one is
in high-resolution 4CIF format. We set 7, at a specific value
and encode the whole stream with a maximum rate 7,4, =
3000 kbps for CIF sequences and 7,4, = 10000 kbps for 4CIF
sequences. Then we determine the quality that would be per-
ceived by various clients decoding the stream at different rates.



460 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 10, NO. 3, APRIL 2008
) —— 40 o
........... r 38
j% FS I = T50k % 36 5% 40
= = 34 = 38
5 = =
= o= 100k , 2
2 301 B 32 £ 16
= = ala =7 & A e Nounscalable
5 = 30 FGS, r,=100 kbps |F = FGS, r, = 500 kbps
S | P 7 [ Nonscalable c -FG =500 kbps C 344 FGS, r, = 2000 kbps
25 —e—FGS, r,=100 kbps 28 —a—FGS, 7,=1500 kbps ——FGS, 7, = 3500 kbps
: —4—FGS, r,=750 kbps : FGS, r,=2500 kbps FGS, r, = 7500 kbps
- T T T T T 26+ 32
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 2000 4000 6000 8000 10000
Decoding rate, r (kbps) Decoding rate, r (kbps) Decoding rate, r (kbps)
(a) (b) (©)

Fig. 3. Coding efficiency gap between FGS and nonscalable streams. The gap decreases as the base layer rate r;, increases. Increasing r,, however, limits the
number of clients that can receive the stream. Moreover, different video sequences pose different quality gaps. Sample results shown for CIF sequences (a), (b),
and for a 4CIF sequence (c), while similar results are observed for all other sequences. (a) Mobile. (b) Harbour. (c) Crew.

We consider clients in the range between 250 and 3000 kbps
with a step of 250 kbps for CIF sequences, and between 500
and 10000 kbps with a step of 500 kbps for 4CIF sequences. The
quality is determined by decoding the stream and computing the
peak signal to noise ratio (PSNR) in dB. We repeat the whole
experiment for several values of the base layer rate, and for
all five sequences. These are computationally intensive exper-
iments and each took many CPU processing hours to complete.

The sample results of two CIF sequences and one 4CIF se-
quence are presented in Fig. 3, while similar results are observed
for all other sequences. Several observations can be drawn from
this figure. First, FGS streams have lower coding efficiency. For
example, Fig. 3(a) indicates that decoding a nonscalable stream
atrate 500 kbps results in 30 dB video quality, while decoding an
FGS stream (with 7, = 100 kbps) results in 26 dB video quality.
We model this difference in coding efficiency by a quality gap
A(ry) function, which is defined as follows.

Definition 1 (Quality Gap A(ry)): The quality gap A(rp) is
defined as the quality difference between a nonscalable stream
and a fine-grained scalable stream coded with base layer rate 7y,
when both streams are decoded at the same bit rate.

The quality gap can be explained by the additional over-
head and unexploited video redundancy caused by the scalable
coding structure. A second observation we can make from Fig. 3
is that higher base layer rates lead to smaller quality gaps. For
example, Fig. 3(a) shows that at a decoding rate of 1500 kbps,
an FGS stream with 7, 750 kbps results in about 1-dB
quality gap compared to nonscalable stream, while an FGS
stream with 7, = 100 kbps results in a 6-dB quality gap. These
differences can be explained by the fact that more temporal
redundancy can be exploited if the base layer contains more
information, i.e., is coded at a higher rate. This observation
indicates that the quality gap A(r}) is a nonincreasing function
of the base layer r,. We further validate this property in the
evaluation section. We will use this nonincreasing property in
solving the quality optimization problem in the next sections.

A third observation is that sequences with different char-
acteristics lead to different quality gap A(r,). For instance,
Figs. 3(a) and (b) show that at decoding rate 1500 kbps, FGS
streams (with 7, = 100 kbps) for Mobile and Harbour se-
quences result in about a 7- and 3-dB quality gap, respectively.
This observation suggests that there is no single quality gap
function A(rp) that is suitable for all video sequences. There-

fore, we need to consider heterogeneous gap functions when
designing streaming systems that concurrently serve multiple
video sequences.

Finally, we note that similar scalable coding inefficiencies
were observed in MPEG-4 FGS coders [1]. This is consistent
with our observations on the recent H.264 coders.

IV. SINGLE-SEQUENCE FORMULATION

In this section, we formulate the quality optimization problem
for a single video sequence. We also present an optimal algo-
rithm to solve it. This problem is important for streaming sys-
tems in which: 1) the sever is broadcasting a single FGS stream
to many clients or 2) the server pre-allocates a fixed bandwidth
for each stream that it serves. We extend the formulation to mul-
tiple sequence systems in Section V.

A. Problem Formulation

We formulate and solve an optimization problem for a single
video sequence. This optimization problem searches for the best
base layer rate 1, for a given video sequence that achieves the
highest average perceived quality for all clients. We consider
heterogeneous client populations. We model this heterogeneity
by dividing clients into C classes. All clients belonging to the
same class ¢ (1 < ¢ < C) have the same bandwidth b.. We
assume that by < by < --- < bg. The fraction of clients in
each class c is given by a probability mass function f., where
ZCC=1 fe = 1. No assumptions are made on the number of client
classes or on the probability function. Without loss of generality,
we assume that bo < 7,4 If otherwise, we combine clients
with bandwidth larger than 7,,,,.. in a class with bandwidth equal
t0 T"maz- We can do that because no matter how large the client
bandwidth is, it cannot receive more than the maximum rate
Tmazx-

We write the single sequence optimization problem that max-
imizes the average perceived quality as follows:

c
b.) fe, where 0, "maz 1
rr;?x;q( ) fe, where ry € [0, Tmaz] (1)

where ¢(b.) is the quality (measured as PSNR in decibels)
achieved by clients in class c.

A naive approach to solve the above problem is to try all pos-
sible values for 7, in the range [0, 7y,q2]. This is very costly
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because FGS coders allow for too many possibilities for r,. We
propose an optimal algorithm that takes at most O(C') steps in
the following.

B. Optimal and Efficient Algorithm

We develop an efficient, yet optimal, algorithm to find the best
base layer rate that maximizes average perceived quality for a
given video sequence. Our approach is enabled by the following
theorem.

Theorem 1: An optimal solution 7} for the base layer rate
that maximizes the average perceived quality for all users can
be found at one of the rates b., where 1 < ¢ < C.

Proof: Referring to Fig. 3(a), we can re-write the quality
of the FGS stream ¢(b..) for clients in class ¢ as

0, be <1y

q(bC) N { Qns(bc) - A(Tb)a bc Z Ty (2)
where q,,5(3, ) is the quality achieved by the nonscalable encoder
at rate b., and A(rp) is the quality gap between the FGS and
nonscalable streams as defined in Section III. Notice that the
quality for clients in any class c is zero if these clients do not
have enough bandwidth to receive the complete base layer, i.e.,
if by < 1.

We divide the search range [0, 7,4, into non-overlapping
intervals (b.—1,b.], where ¢ = 1,2,...,C and by = 0. Now
assume that the optimal base layer rate r, occurs in an arbitrary
interval (b._1,b.]. Since all classes with b, < b,_; receive
quality of zero, the maximization problem becomes

C
n}ﬂ?xz [gns(be) — A(13)] fo, where ry, € (b._1,b.].  (3)

c=z

Notice that the only term that depends on 7, in the above equa-
tion is the quality gap A(ry). Thus, to maximize quality, we
need to minimize A(rp). Recall that in Section III we argued
that A(r) is non-increasing function of 7, we validate this ar-
gument in Section VL. Since A(ry) is non-increasing in the in-
terval (b._1, b.], no point in that interval could make the quality
gap smaller than A(r, = b.). Thus, an optimal solution for 7
occurs at b. [ ]
The above theorem tells us that to find an optimal base layer
rate ry, it suffices to check only the rates b., where ¢ = 1,2,
..., C. A straightforward approach to implement this lemma
is to compute (3) at ¢ = 1,2,...,C and choose the rate that
corresponds to the maximum quality. This would require com-
puting the summation at every iteration, which makes the time
complexity of the algorithm O(C?). A better approach is to it-
eratively compute each term from ¢ = C towards ¢ = 1, and
every iteration only adds the difference in quality to the quality
computed in the previous iteration. The difference d in quality
between class c and ¢ + 1 is given by the following equation:

C
d= [qns (bf)) - A(br)] fn - Z fv [A(bv) - A(bc+1)] .

i1=c+1

The first term represents the quality improvement because
clients with bandwidth b, is capable to receive coded streams.
The second term represents the quality degradation of all clients
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FGSOPT

. gi=¢@=-=q¢q=0

2. Gmax = 4qC = [Qns(bC) - A(bC)]fC>
3. Ty = bc;

4. frcv = fC;

5. forc=C—-1to1l

6. d = [gus(be) — A(be)] fe — Freo[A(be) — Albet1)];
7. Gc = qe+1 + d;

8. if gc > Gnax

10. rp = be;

11. frev = frev + fo5

12.  return r;;

Fig. 4. Efficient algorithm to compute the optimal FGS base layer rate for a
video sequence.

that have bandwidth larger than b. because of a larger coding
efficiency gap.

Using the above idea and Theorem 1, we propose an efficient
algorithm for our single sequence formulation, called FGSOPT,
that computes an optimal value for the base layer rate. The
pseudo code of the algorithm is given in Fig. 4. The inputs to the
algorithm are: 1) a probability mass function f. that describes
the bandwidth distribution of different client classes; 2) a rate-
distortion function ¢, s(r) that yields the expected quality when
decoding the nonscalable video stream at rate 7; and 3) a quality
gap function A(r) that describes the reduction in quality if the
video stream were to be encoded in FGS manner with base layer
rate 7. In Sections VI-E and VI-F, we discuss how rate-distor-
tion and quality gap functions can be estimated. The output of
the algorithm is the optimal base layer rate. The time complexity
of the algorithm is clearly O(C).

V. MULTIPLE-SEQUENCE FORMULATION

In this section, we extend our formulation to structure
multiple FGS video sequences. This is a general optimization
problem applicable to servers that are concurrently streaming
multiple FGS sequences to diverse client communities. We first
present the formulation of the problem and show that it is, unfor-
tunately, NP-complete. Then, we present a branch-and-bound
algorithm that finds the optimal solution. This algorithm is
fast in many typical cases, but its worst-case time complexity
is exponential. Thus, it is not possible to use it in dynamic
real-time systems. Rather, it could be used for off-line cases in
which the server has estimates on future client distributions and
can therefore produce optimal FGS streams for them apriori.
For dynamic cases, we propose a heuristic algorithm that runs
significantly faster than the branch-and-bound algorithm and
produces near-optimal results.

A. Problem Formulation and Hardness

We consider a streaming server with a given network band-
width B, 4.. The server has S sequences to encode and serve
to diverse client communities. The sequences are assumed to
have different popularities. Our objective is to determine the
base layer rate of each video sequence such that the server
maximally utilizes its capacity and achieves the best perceived
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quality for all clients receiving the video sequences. To for-
mulate this problem, we generalize the notations used in the
single sequence problem by using a superscript to refer to the
sequence number.

Let N® be the number of clients that receive sequence s,
where s = 1,2,...,53 We model the heterogeneous client
population by dividing all N® clients into C* classes. All clients
in the same class ¢ allocate the same bandwidth b2 to receive
sequence s, where ¢ = 1,2,...,C?®. Without loss of gener-
ality, we assume bj < b5 < --- < bg. for all s. The clients
of each sequence s are distributed over C*® classes according
to the probability mass function f7, where Zle fé =1 Let
Ty D€ the maximum bit rate of sequence s. For any sequence
s, the base layer rate r; must be no larger than r,, ... As in the
single-sequence case, we assume that bcs < 7)) .. without loss
of generality.

We denote the stream structuring policy for all sequences by
the vector ry, where ry, = {rj,1 < s < S}. Clearly, we have
0 <71y < ryaa, Where rppa = {15,,,,1 < s < S}. The mul-
tiple sequence problem that maximizes the average perceived
quality for all clients over all sequences can be written as

S (o
max Z {NS Z q;fg} (4a)
e s=1 c=1
s.t. 0 S Ty S Tmazx; (4b)
S (o
EZ%WEI@ﬁ}gBWW (4c)
s=1 c=1

In the above formulation, ] represents the decoding rate of
sequence s for clients in class ¢, and ¢; denotes the quality for
sequence s achieved by clients in class c. Since clients in classes
with bandwidth less than 7; cannot even receive base layer, We
have

s O, bl
’"c—{bg, b > g )

and, consequently

0 bl <1y
S: .; S S S g S 6
2 {%gm—A<m by > v ©

where ¢ _(b3) is the quality achieved by coding sequence s with
nonscalable coders atrate b7, and A®(r; ) is the quality gap func-
tion between the FGS and nonscalable streams for sequence s
that is FGS-coded with base layer rate ;.

The following theorem shows that the multiple-sequence
problem in (4) is an NP-complete problem. The proof idea is
to reduce a well-known NP-complete problem, multiple-choice
knapsack problem (MCKP) [17, Ch. 11], to our problem.
Details are given in the technical report [18] due to space
limitations.

Theorem 2: Determining the base layer rates of multiple FGS
sequences concurrently streamed by a server with limited band-
width to maximize the average perceived quality for all clients
over all sequences is an NP-complete problem.

3We should note that, in a more general sense, N can be seen as the impor-
tance the sequence s. This allows administrators to gauge the relative bandwidth
allocation among all sequences.
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MFGSOPT

1. Compute y? and w? using (7) and (8), for all ¢ and s;
2. <rs,Y > = init_assign(); / initial solution

3. Construct subtree ag; Initialize A = {ao}; / A: a FIFO
4.  repeat until A =10

3. a = removeHead(A);

6. for c =1 to C**

7. <Ay7 Aw,fa,3+1,fa,3+2,...,f‘s> =

7. BOUND(a, w2*);

8. if Ay +y%°+a.y <Y // worse assignment

9. // cut this branch

10. elseif Aw < a.B — w?® // better and feasible
11. // update best known assignment so far
12. Y =Ay+yd®+ay;

13. LK1,y ..., Tg> =

13. <A.T1,0.T2, ..., Q g 5—1>|

13. < bg'8>|<7ﬁa.s+lvf’a.s+2,--~77A'S>;
14 // cut this branch

15. else // better but infeasible

16. Create a new node a’ based on a and c;
17. addTail(4, a');

18.  return <7y, Y >;
BOUND(a, W)
if a.s +1 > S return <0,0,0>; // leaf node
for s=a.s+1t0 S

m?® = C*; // initial value

forc=C*—1to1

if y2 > y;,s and w; < a.B—w
m?® = ¢; // b}, is the best rate

rs =05. Vs=a.s+1,as8+2,...,5;
Ay =300 4 o1 Ui Aw =30, Wi
return <Ay, Aw,rs>;

WA R WD

Fig. 5. Branch-and-bound algorithm to compute the optimal base layer rates
for multiple video sequences.

B. Optimal, Branch-and-Bound, Algorithm

We propose a branch-and-bound algorithm that performs a
breadth first search on an incrementally constructed tree to find
optimal base layer rates for the considered S sequences. The
tree has S levels, each corresponds to a sequence. In level s, we
create a node for each possible base layer rate assignment r; for
sequence s. An example tree is given in Fig. 6. The number of
possible r; is finite since Theorem 1 tells us that it is sufficient to
check rates b2, where c = 1, 2, ..., C? for an optimal base layer
rate that maximizes average quality for sequence s. Clearly,
searching the entire tree, even fully constructing it, takes ex-
ponential number of steps. Our algorithm tries to cut, or more
accurately not to create, as many branches of the tree as possible
without sacrificing the optimal solution. This is achieved using
the BOUND function described below.

To search for the optimal base layer rates, we define two vari-
ables: 1) ¢ is the average quality improvement contributed by
sequence s, when the base layer is coded at rate b7 and 2) w; is
the server bandwidth consumption of all clients of sequence s,
when the base layer is coded at rate bZ. Using (4), (5), and (6),
these two variables can be computed as

os

ve =D _AN"[as ()

Jj=c

- AT ()] £} )
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<b%:77777‘3/2> <b%7_v_v_‘2/1>
<7’b%,bg,b‘1‘|18/9> <—,b§,bg,bﬂ18/9>

< bé7777:7|4/3 >
< —,b2,03,b1|18/9 >

< b;,b%,—,—|8/9 >
< —,—, b3, b411/3 >

< b}, b2, —, —[10/7 >
< -, _7bgvb‘1x|12/5 >

< b, b%,b3,—|13/8 >
< ] _v_vb‘1‘|8/2 >

< bl,b2,b3,—|14/10 > (8 b3, b3,b3, —|12/9 >
<_7_7_>b2|1/1> <_7_7_7b411‘8/2>

Fig. 6. Finding the optimal structuring of four sequences using our branch-and-bound algorithm. Using our BOUND function, the search space is significantly

reduced without sacrificing the optimal solution.

and

oG

wg = {NB 15}

i=c

®)

Now, the goal of the algorithm is to maximize the average
quality of all sequences: ¥ = 25521 ys without consuming
more than the server bandwidth: W = Ele w. < Bg. This
is achieved by: 1) traversing through the tree and memorizing
the best known average quality so far and 2) using a bounding
function to determine whether a subsequent branching may
lead to a better assignment without fully expanding the branch.

The idea of the BOUND function is to relax the constraint
on the server bandwidth to compute an upper bound on the
achievable quality from a branch. If this upper bound is smaller
than the current best-known solution, this branch is cut. Com-
puting the upper bound is not costly, because the interaction
among different sequences (hence the combinatorial explosion)
is avoided. The pseudocode of the BOUND function is given
in Fig. 5. The BOUND function is called before expanding any
branch. The function is passed the maximum allowable band-
width consumption w for all sequences in that branch. We allow
each sequence to consume bandwidth as much as w. By doing
so, we search for the maximum quality contribution from each
sequence without worrying about other sequences (the for-loop
in lines 4-6). This is clearly an upper bound on the quality which
may or may not be feasible to achieve, but it can be used to judge
whether the branch is worth full expansion. The BOUND func-
tion returns the upper bound on the quality from the branch,
as well as the associated bandwidth consumption and the base
layer rates of all sequences in the branch.

As described in Fig. 5, the MFGSOPT algorithm uses the
return values from the BOUND function as follows. First, if the
upper bound is worse than the best known solution so far, we cut
this branch (lines 8-9). Second, if the upper bound is better then
the best known solution and the total bandwidth consumption
of all sequences happens to be less than the server bandwidth,
we take the upper bound from this branch as the best known
solution (lines 10-14). We also cut this branch because we have
already found the best solution in it that branch which happens
to conform to the original bandwidth constraint even though we
relaxed this constraint during the computation of this solution.
Third, if the upper bound is better than the best known solution

TABLE I
AVERAGE QUALITY IMPROVEMENT ¥ AND CONSUMED BANDWIDTH
w? OF THE ILLUSTRATIVE EXAMPLE

client class client class
ys |1 2 3 4fjwi|l 2 3 4
1|13 2 4 112 1 3
214 6 2 16 4
313 4 2 3 (1 3 2
4 |8 3 4 1 4 12 4 6 1

so far but it requires more bandwidth than the server bandwidth,
we need to expand this branch (lines 15-17).

Finally, the branch-and-bound algorithm needs an initial
assignment of the base layer rates. This solution can be
set arbitrarily. We use our heuristic algorithm (described in
Section V-C) to start the branch-and-bound algorithm to begin
with an informed guess. This significantly reduces the running
times in typical cases.

The BOUND subroutine runs in polynomial time complexity
O(CS), where C' = lléljé(s{cs} corresponds to the maximum

number of user classes among all client sequences and S is the
number of sequences. This is because the for-loops start from
line 2 and line 4 iterate through at most S and C values, respec-
tively. The worst-case time complexity of the MFGSOPT algo-
rithm is O(CS1289). This is because we have at most O(C)
nodes to be considered, and each node calls the BOUND sub-
routine O(C') times (the for-loop between lines 6-17). Given
that BOUND subroutine runs in time O(C'S), the running time
of MFGSOPT algorithm is at most O(C°CCS) = O(C5129).

Hllustrative Example: We describe the idea of the MFGSOPT
algorithm using a simple example, which is illustrated in Fig. 6.
We assume there are four sequences, each of them has 3, 2, 3,
and 4 client classes, respectively. The total server bandwidth is
given as 11 units. For clarity of the example, we assume that
the quality function ¢ (b?), quality gap function A®(r}), and
the client bandwidth distribution function f? are given, such
that the computed variables ¥y and w; (using (7) and (8)) are
as shown in Table I. The initial best known quality is set to
zero at the root node as we have no knowledge on the optimal
base layer rate assignment. We denote this unknown assign-
ment as (—, —,—, —|0/0), where the first four elements rep-
resent base layer rates of the four sequences in order, and the
last element, 0/0, denotes total quality over total bandwidth of
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this assignment. We create three child nodes (nodes are labeled
with the order of creation), where each node represents possible
a base layer rate for sequence 1. For example, node 1 repre-
sents coding sequence 1 at base layer rate b} where rates for
sequences 2, 3, and 4 are not determined yet. Using Table I, we
know that sequence 1 consumes bandwidth w{ = 2 and pro-
duces average quality improvement y; = 3. Before expanding
the branch under node 1, we use the BOUND function to find the
upper bound on the quality from that branch, which is 18. The
BOUND function also returns the associated bandwidth con-
sumption as 9, and the base layer rates of sequences 2, 3, 4 as
b2, b3, and b7. Notice that, the BOUND function provides a fea-
sible and better assignment as the total bandwidth consumption
is 942 < 11 and average quality is 1843 > 0. Hence, we mem-
orize this rate assignment and update the best known average
quality to 21. Most importantly, the BOUND function finds an
optimal assignment for sequences 2, 3, and 4 without even cre-
ating any of the 32 nodes below node 1.

We then check the branch under node 2. The BOUND func-
tion tells us that the upper bound on the quality is 18 + 2 = 20.
‘We cut this branch as well, because 20 is smaller than the best
known quality. We next check node 3. This time, the BOUND
function returns an upper bound on the quality as 18 + 4 > 21
that consumes bandwidth 9 + 3 > 11. Notice that this assign-
ment, while produces higher quality than the best known so-
lution, is not a feasible one as it requires more bandwidth than
the server bandwidth. Therefore, we need to expand this branch.
We create child nodes 4 and 5 for node 3. We repeatedly use the
BOUND function to reduce the search space until all branches
are either investigated or cut. Memorizing best known rate as-
signment and using the BOUND function allow us to traverse
through only eight nodes yet cover the complete search space,
which has 72 leaf nodes. We find the optimal assignment as
(b1, b3, b3,b3]21/11).

C. Efficient Heuristic Algorithm

We propose a heuristic algorithm to solve the multiple-se-
quence stream structuring problem. Our experimental results (in
Section VI) show that it produces near-optimal solutions, and
runs much faster than the branch-and-bound algorithm. The core
idea of this algorithm is to incrementally allocate more band-
width to sequences that are expected to increase the total quality
by higher margins for each bandwidth unit consumed from the
server bandwidth.

The pseudocode of the algorithm is given in Fig. 7. The algo-
rithm maintains a two-dimensional array t, where the s row cor-
responds to sequence s. There are C'® columns for each s row.
Each element ¢2 of the array is a triplet of the form (y£, w?, b3),
where ¥ is the average quality improvement given by (7), w;
is the bandwidth consumption given by (8), when the base layer
of sequence s is encoded at rate bZ. The algorithm sorts each
row based on y; in increasing order (line 2). After sorting, the
algorithm removes all array entries that would clearly produce
inferior solutions (line 3). This is the case when w;,; < w;
because y;, | is greater then y7, i.e., the element ¢ uses more
bandwidth than 7 ; yet contributes smaller value to the overall
quality. After removing these inferior entries, each row of the
array t is sorted in increasing y and w.
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1. Compute array tusing Egs. (7) and (8).

2. Sort each row of t in ascending order based on y:.
3.  Remove all ¢}, where w},; < w;.

4. B, = Bpu; k* =0, for all s;

5. while (True)

6. §=0;

7. for s=1to S

8. Compute [$(B,) using Eq. (9).

9. if k°* <C?® and wj. | —wi. < B, and
9 (3=0orlg,, >0,

10. S=s;

11. if 3 =0 return b;., where s =1,2,...,5;
12. B, =B, — (wfcg+1 — wi),

13. k® ++;

Fig. 7. Effective heuristic algorithm to compute base layer rates for multiple
video sequences.

TABLE II
UPDATED ARRAY t AFTER SORTING AND REMOVING ENTRIES
THAT WOULD CLEARLY YIELD INFERIOR SOLUTIONS

=10 1 2 3 4
110 <2,1,bé> <3,2,b] > <4,3,b; >

210 64—6—6? < 6,4,b2 >

3]0 <2722 > <3,1,b°> <4,3,63>

410 <1,1,b§> <—3-4—1932‘—> <—4—6-b§—> <8,2,b% >

The while loop (lines 5-13) repeatedly allocates more band-
width to the sequence with the highest quality improvement per
bandwidth usage /2, which is computed as
ifw? —wi_; > B,

©))

otherwise

0,
[e(Br) = | wizvi,

we —ws

h c—1

where B, is the remaining (i.e., unallocated yet) server band-
width, and h is the largest integer such that wj — w;_; < B,.
Let k° be the index of the current base layer rate for sequence
s, i.e., the base layer rate of s is bj,. We start from k* = 0 for
all sequences (line 4), and search for the sequence § with the
highest I£, (B,.) value among all sequences. We allocate more
bandwidth to that sequence §, i.e., we encode sequence § at
base layer rate b3, 4 rather than bz (line 13). We update the
remaining bandwidth (line 12), recompute /5. (B,) for all se-
quences (line 8), and find the sequence that leads to the highest
overall quality margin again. We allocate more bandwidth to
that sequence. We stop once B,. is not sufficient to further in-
crease the average quality (line 11).

The time complexity of MFGS algorithm is O(C?S), where

C = lrga<xs{05} is the number of client classes and S is the
S

number of sequences. This is because it takes: 1) O(C29)
steps to compute y; and w. as indicated by (7) and (8); 2)
O(C'log CS) to sort rows of t and remove inferior entries of t;
and 3) O(CL) iterations to find the best 5.

Hllustrative Example: We use the illustrative example devel-
oped in Section V-B to explain the operation of MFGS algo-
rithm. The variables ¥} and w; are shown in Table I. The al-
gorithm first sorts each row of the array t and removes infe-
rior array entries as described above, which leads to the updated

array shown in Table II, where removed entries are crossed out.
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For example, ¢} can be removed because coding sequence 2 with
b3 leads to quality improvement 6 with bandwidth consumption
4, which is clearly better than encoding that sequence with b?
that results in quality improvement 4 with bandwidth consump-
tion 6.

Initially, all sequences are allocated zero bandwidth, and the
remaining bandwidth is B, = 11. The potential quality im-
provement per bandwidth unit usage can be computed using (9)
as: 2/1, 6/4, 3/1, and 1/1 for sequences 1, 2, 3, and 4, respec-
tively. We set k3 = 1 as sequence 3 leads to the highest [$ value,
thus it is expected to increase the total quality by the highest
margin. Accordingly, we update the remaining bandwidth to be
10. We then recompute [3(B,.) and get 2/1, 6/4, 2/2, and 1/1.
Since sequence 1 leads to the highest [ value, we assign more
bandwidth to it by letting k' = 1. We repeat this iteration seven
times until the remaining bandwidth reaches 0, when El = 3,
k? =1,k% =1, and k* = 2. The correspondent base layer rate
assignment is (b3, b3, b3, b1), and the average quality is 21. In
this example, MFGS algorithm finds an optimal solution, which
is shown to be 21 by MFGSOPT algorithm in Section V-B.

D. Discussion

Our MFGSOPT algorithm targets video on-demand systems,
where a video sequence is expected to be streamed to many
clients over an extended period of time. Therefore, the cost of
computing or estimating the inputs of the algorithm is justified
by the quality improvement observed by the clients. Moreover,
this cost is controllable: For videos with expected low demand,
the administrator can quickly compute rough estimates of the
inputs, while for popular videos more elaborate estimations can
be done. One of the following three methods can be used to
control the computational time. First, the quality gap A®(r})
can be roughly estimated by a line with negative slope that re-
quires only two sample points. As we show in Section VI, a
fourth order polynomial function is a better representation of
A*(ry), but would require more sample points and higher com-
puting power. Second, the rate-distortion function can be esti-
mated by sophisticated analytic methods [19] or by simple curve
fitting to a few empirical samples. In Section VI, we show that
a quadratic function fairly accurately models the relationship
between the rate and expected distortion. Third, the adminis-
trator may adopt various granularities of bandwidth estimations
to gauge the maximum number of client classes among all video
sequences (C'). Choosing a coarse-grained bandwidth estima-
tion method imposes lower network and computational over-
head. This also leads to a smaller C' value and thus reduces the
running-time of our MFGSOPT algorithm.

Our MFGS algorithm targets on-line applications as it runs
much faster than optimal algorithms that have exponential run-
ning time. We will verify the running time of MFGS algorithm
in the evaluation section. Like MFGSOPT algorithm, the com-
putational cost of MFGS algorithm is controllable through the
choices of its inputs. As a final note, we employ MFGS to deter-
mine an initial assignment for MFGSOPT algorithm presented
in the previous subsection.

VI. EVALUATION

In this section, we rigorously evaluate our proposed algo-
rithms. We start by describing our experimental setup. Then we
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demonstrate the potential quality improvement resulted by our
algorithms. Then, we show that our heuristic algorithm for the
multiple-sequence problem produces near-optimal results and
runs substantially faster than our branch-and-bound algorithm.
We also show that our heuristic algorithm scales with number
of sequences and it terminates in a fraction of a second for sys-
tems with more than 30 sequences. Finally, we experimentally
validate the non-increasing property of the quality gap function
A(ry,) assumed by our algorithms, and we show that a simple
quadratic function is a good approximation for rate-distortion
models used in our algorithms.

A. Setup

Software: In our experiments, we augment and use the
reference software of the Joint Scalable Video Model (JSVM)
[16]. The reference software includes an implementation of the
scalable video coding (SVC) extension to the H.264 standard
[20]. The details of SVC can be found in [21], [22]. The JSVM
reference software is implemented in C++ and contains several
executables. We use the following executables: H264AVCEn-
coderLibTest, BitStreamExtractor, H264AVCDecoderLibTest,
and FixedQPEncoder. The H264AVCEncoderLibTest is a con-
figurable SVC encoder that can compress a raw video file into a
global stream. This global stream consists of several embedded
substreams, which deliver lower quality video representations
at lower rates. The global stream is stored as a file. The Bit-
StreamExtractor tool extracts a user-specified substream from
an existing global stream and stores it in a new file. Further
stream extractions from this substream file are possible as the
syntax and semantics of the global stream and substream files
are identical. The H264AVCDecoderLibTest is an SVC decoder
that decompresses coded stream into a raw video file.

Since the H264AVCEncoderLibTest does not implement rate
control algorithm for a user-specified rate constraint, we have
to use quantization parameter (QP) to gauge the resulted stream
rate. The FixedQPEncoder is a tool that searches the proper QPs
to satisfy rate constraints. It iteratively calls H264AVCEncoder-
LibTest with estimated QP values, and stops when the resulted
stream rate is within an acceptable range of the desired rate.

In addition, we have implemented the three algorithms pro-
posed in this paper: FGSOPT, MFGS, and MFGSOPT. All al-
gorithms are implemented in Java and the code is available from
the authors.

Video sequences: We consider diverse video sequences. We
choose five standard video sequences for our experiments: City,
Mobile, Soccer, Harbour and Crew. The first four are in CIF
format and the fifth is in 4CIF. We encode these sequences with
the widely adopted IBBBPBBBP group of picture (GoP) struc-
ture at 30 frames per second. We first encode a sequence with
single layer configuration using the FixedQPEncoder tool to get
appropriate QP values for the target base layer rate. We then use
the same QP values to code an FGS stream. We instrument the
reference software to extract the rate-distortion characteristics
of the nonscalable and FGS streams.

Clients: We consider large number of clients with network
bandwidth distributed according to five representative distribu-
tions. The first is a normal distribution with mean at 1000 kbps
and standard deviation of 100 kbps. The second is a bimodal
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TABLE III
STREAMING SCENARIOS USED IN THE EXPERIMENTS

[ # ] Sequence(s) | Clients [# of Clients |
T | (Mobile, City) (Normal, Bi-modal (right)) (100, 200)
II | (Mobile, Soccer) (Normal, Bi-modal (left)) (100, 200)
I |(Mobile, Harbour) (Normal, Multi-modal) (100, 300)
IV | (City, Soccer) |(Bi-modal (right), Bi-modal (left))| (200, 200)
V | (City, Harbour) | (Bi-modal (right), Multi-modal) | (200, 300)
VI [(Soccer, Harbour) | (Bi-modal (left), Multi-modal) | (200, 300)

VII| (Mobile, City, (Normal, Bi-modal (right), (100, 200,
Soccer, Harbour) | Bi-modal (left), Multi-modal) | 200, 300)
VI (Mobile) (Uniform) (100)

distribution that consists of two normally-distributed peaks with
means at 250 and 1000 kbps, and standard deviations of 25 and
100. This bimodal distribution is skewed to the right: 80% of
client classes are from the normal distribution with mean 1000
kbps. The third is a bi-modal distribution with the same setting,
except that it is skewed to the left: 80% of client classes are
from the normal distribution with mean 250 kbps. The fourth is a
multi-modal distribution with three normal distributions, which
represents a typical client distribution in today’s Internet: 50%
of clients are equipped with dial-up connections, which have
a normal distribution with mean 40 kbps and standard devia-
tion of 25 kbps; 35% of clients use DSL services, where the
average bandwidth is 1000 kbps with standard deviation of 100
kbps; and 15% of clients have high-speed connections with av-
erage bandwidth 2000 kbps and standard deviation of 200 kbps.
The last distribution is uniform between 35 and 3005 kbps. In
all these client bandwidth distributions, we consider the client
bandwidth estimation accuracy is 5 kbps.

Streaming Scenario: We define eight representative
streaming scenarios as illustrated by Table III. These streaming
scenarios have different R-D characteristics, which are captured
by classifying them into several categories of video sequences.
For example, a sports event sequence would have similar R-D
characteristics to the Soccer sequence. Streaming scenarios also
have diverse groups of viewers and viewing popularity, which
are captured by client bandwidth distributions and number of
clients. We use these scenarios in our experiments to evaluate
our algorithms.

B. Average Quality Improvement

As mentioned in the introduction section, we are not aware
of similar algorithms in the literature that optimize the av-
erage quality by controlling the base layer rate. Therefore, we
compare the results of our algorithm to the results of heuristic
methods. That is, we choose two reasonable rates for the base
layer and compare the resulting quality against the quality
produced by our algorithms. Indeed, there are too many other
choices and we cannot cover all of them in our experiments.
This is not really an issue because our algorithms are prov-
ably optimal, and the best that heuristic methods can do is to
approach our algorithms by trial and error.

We first evaluate the quality improvement achieved by our
single sequence algorithm, which is denoted by FGSOPT in the
plots. We present a sample result with streaming scenario VIII
defined in Table III, other scenarios yield similar results. We run
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Fig. 8. Potential quality improvement using our streaming structuring algo-
rithms in (a) single-sequence systems and (b) multiple-sequence systems.

the FGSOPT algorithm to compute the optimal base layer rate.
We choose two base layer rates for comparison: 100 and 1000
kbps. We compute the perceived quality for each client class
and the average quality over all classes. The result is shown in
Fig. 8(a). The figure clearly shows that the average quality over
all classes has been improved using our FGSOPT algorithm.
Across all client classes, the average quality improvement is
more than 2 dB.

Next, we evaluate the quality improvement achieved by our
multiple sequence algorithm, which is denoted by MFGSOPT
in the plots. We consider seven streaming scenarios, where sce-
narios I through VI consists of two simultaneous streaming se-
quences and scenario VII consists of four. In this experiment,
we assume the server bandwidth is not the bottleneck. We run
the MFGSOPT algorithm to compute the optimal base layer rate
for each sequence. We also choose two base layer rates 100 and
1000 kbps for comparison. We compute the average quality over
all clients across sequences. As shown by Fig. 8(b), a significant
quality improvement can be achieved using our MFGSOPT al-
gorithm. For example, in scenarios III, our algorithm produces
up to 10 dB improvement in quality. This reveals that intelli-
gent-chosen base layer rates can greatly improve average quality
for all clients across all sequences.

C. Performance of the Heuristic MFGS Algorithm

We compare the achieved average quality of our heuristic al-
gorithm, denoted as MFGS in the plots, against the achieved
average quality of our branch-and-bound algorithm. We first as-
sume that server bandwidth is not the bottleneck. We compute
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Fig. 9. Our heuristic MFGS algorithm produces near-optimal average quality
when compared against our branch-and-bound MFGSOPT algorithm under:
(a) various streaming scenarios and (b) different server bandwidth.

the base layer rates for all sequences using MFGS, and com-
pute the average quality for all clients across all sequences. We
repeat the experiment using the MFGSOPT algorithm. Fig. 9(a)
compares the results of both algorithms. The figure shows that
our heuristic algorithm produces base layer rates that lead to al-
most-optimal average quality.

Second, we consider scenarios where server bandwidth is the
bottleneck. We employ streaming scenario VII defined above.
We vary server bandwidth B,,, ., from 150 Mbps to 600 Mbps
at a 50 Mbps step. We run both MFGS and MFGSOPT algo-
rithms, and compare their average quality over all clients across
all sequences. We plot the results in Fig. 9(b). The figure again
verifies that our heuristic algorithm yields near-optimal results.

D. Time Complexity and Scalability

We study the running times of the MFGS and MFGSOPT al-
gorithms in different setting. We first choose streaming scenario
VII, which consists of four streaming sequences. We vary the
server bandwidth B, from 150 to 600 Mbps at a 50 Mbps
step. We run both algorithms and measure the running times on
a machine with 2.66-GHz processor and 2-GB memory running
Linux. Fig. 10 presents the results, which show that MFGS al-
gorithm always terminates in less than 0.2 s, while MFGSOPT
takes up to 45 s to complete. We notice that MEGSOPT runs sig-
nificantly faster with higher server bandwidth. This is because
with higher server bandwidth, the rate assignments returned by
BOUND subroutine are likely to be feasible. This enables MFG-
SOPT to locate an optimal solution without inspecting a subtree,
and thus reduces its running time.
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Fig. 10. Running times of the heuristic MFGS algorithm versus the branch-
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Fig. 11. Scalability of the heuristic MFGS algorithm as the number of se-
quences increases.

We next investigate the scalability of the heuristic MFGS
algorithm as the number of sequences increases. We generate
32 normally-distributed client distributions with random mean
values between 50 and 2500 kbps and standard deviation of 50
kbps. We assume each client distribution has ten clients. We
then assign each of these client distributions to a streaming se-
quence with R-D characteristic randomly chosen from the fol-
lowing four sequences: Mobile, City, Soccer, and Harbour. We
run MFGS with different numbers of sequences: from 1 to 32.
Fig. 11 shows the results. We can see that our MFGS algorithm
solves a multiple sequence problem with 32 sequences in about
0.6 s. We also observe that the running time of MFGS is roughly
linear in the number of sequences. For example, it terminates in
about 0.2, 0.35, and 0.5 s with 20, 25, and 30 sequences, respec-
tively. This indicates that our algorithm is scalable with respect
to number of sequences.

E. Quality Gap Function

The FGSOPT and MFGSOPT algorithms assume that the
quality gap A(rp) is a non-increasing function of base layer
rate 3. To validate the accuracy of this assumption, we compute
the quality gap at various base layer rates. We use the reference
software to encode the test sequences with base layer rates be-
tween 100 and 3000 kbps with an increment of 250 kbps. Each
base layer rate results in a unique FGS coded stream that sup-
ports decoding rates between r, and 3000 kbps. To quantify the
coding efficiency gap at a specific base layer rate 75, we decode
the stream at many decoding rates between r, and 3000 kbps
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and we take the average over all of them. We compute the re-
constructed quality at each decoding rate by first extracting the
substream that matches this rate. Then we decode the extracted
substream and compare it against the original video stream. The
results shown in Fig. 12 confirm the nonincreasing property of
the quality gap function. On the same figure we plot a fourth
order polynomial function that best fits the quality gap curve.
We do this because our algorithms need to computes the quality
gap A(ryp) at different base layer rates. Thus instead of empir-
ically measuring the quality gap at too many base layer rates,
which is computationally expensive, we estimate the polyno-
mial function and employ it in the algorithms. Estimating the
polynomial function requires measuring the quality gap only at
a few base layer rates.

F. Rate-Distortion Function

Our streaming structuring algorithms require a rate-distor-
tion (R-D) function that estimates the expected distortion at a
given decoding rate when the stream is encoded in a nonscalable
manner. Through extensive experiments, we have found that this
R-D function can be approximated by a simple quadratic func-
tion. Fig. 13 shows some of the results, where we compute the
R-D function at 12 sampling bit rates for four sequences. The
figure also shows the best-fit quadratic function produced by the
Matlab curve-fitting tool for the sample points. We note that the
results in Fig. 13 provide guidelines for the administrator on
the shape of the R-D functions and should be considered as a
first approximation. Indeed, more elaborate R-D models can be
found in the literature, but they are quite complex and expensive
to implement. For detailed discussion and comparisons of var-
ious R-D models, see for example [19] and references therein.

VII. CONCLUSIONS

In this paper, we first investigated the characteristics of FGS
coded video streams. We designed several experiments using the

emerging H.264/MPEG-4 SVC coder to study the trade-off be-
tween the coding efficiency and the range of clients that can be
supported. The base layer rate is the main controlling parameter:
Larger base layer rates yield higher coding efficiency but sup-
port fewer client classes, and vice versa. Our experiments show
that the coding efficiency gap is a non-increasing function of
the base layer rate. Then, we formulated a single-sequence opti-
mization problem to determine the base layer rate that achieves
the best average video quality for a given client distribution.
Solving this optimization problem is expensive, because there
are too many possible choices for the base layer rate of FGS
coded streams. We proposed a simple algorithm that runs in
linear time. We proved that our algorithm yields the optimal
base layer rate. Our proposed FGSOPT algorithm can be used in
streaming systems in which: 1) the sever is broadcasting a single
FGS-coded stream to many clients or 2) the server pre-allocates
a fixed bandwidth for each stream.

We extended our formulation to multiple FGS video se-
quences, which is more general and applicable to servers that
are concurrently streaming multiple sequences to diverse client
communities. We formulated the problem and proved that
it is NP-complete. Then, we proposed a branch-and-bound
algorithm (MFGSOPT) that finds the optimal solution. This
algorithm could be used for off-line cases in which the server
has estimates on future client distributions and can therefore
produces optimal FGS streams for them apriori. For dynamic
cases, we proposed a heuristic algorithm (MFGS) that runs
significantly faster than the branch-and-bound algorithm and
produces near-optimal results.

We rigorously evaluated our proposed algorithms. We imple-
mented our algorithms and compared their achieved average
quality against rule-of-thumb coding structures, which is the
current practice. Our results indicated that our optimal algo-
rithms, FGSOPT and MFGSOPT, achieve better average per-
ceived quality for all clients. We also showed the efficiency of
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our heuristic MFGS algorithm, and verified that it scales to large
number of sequences. Finally, we experimentally validated the
non-increasing property of the quality gap function A(ry) as-
sumed by our algorithms, and we showed that a simple quadratic
function is a good approximation for rate-distortion models used
in our algorithms.
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