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Data Driven 2-D-to-3-D Video Conversion for Soccer
Kiana Calagari , Mohamed Elgharib, Piotr Didyk, Alexandre Kaspar, Wojciech Matusik, and Mohamed Hefeeda

Abstract—A wide adoption of 3-D videos is hindered by the
lack of high-quality 3-D content. One promising solution to this
problem is through data-driven 2-D-to-3-D video conversion. Such
approaches are based on learning depth maps from a large dataset
of 2-D+Depth images. However, current conversion methods, while
general, produce low-quality results with artifacts that are not
acceptable to many viewers. We propose a novel, data-driven
method for 2-D-to-3-D video conversion. Our method transfers
the depth gradients from a large database of 2-D+Depth images.
Capturing 2-D+Depth databases, however, are complex and costly,
especially for outdoor sports games. We address this problem by
creating a synthetic database from computer games and showing
that this synthetic database can effectively be used to convert
real videos. We propose a spatio-temporal method to ensure
the smoothness of the generated depth within individual frames
and across successive frames. In addition, we present an object
boundary detection method customized for 2-D-to-3-D conversion
systems, which produces clear depth boundaries for players. We
implement our method and validate it by conducting user studies
that evaluate depth perception and visual comfort of the converted
3-D videos. We show that our method produces high-quality 3-
D videos that are almost indistinguishable from videos shot by
stereo cameras. In addition, our method significantly outperforms
the current state-of-the-art methods. For example, up to 20%
improvement in the perceived depth is achieved by our method,
which translates to improving the mean opinion score from good to
excellent.

Index Terms—2-D-to-3-D conversion, depth estimation, three-
dimensional (3-D) video.

I. INTRODUCTION

S TEREOSCOPIC 3D (S3D) videos offer more engaging
experience to viewers than traditional 2D videos, especially
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for sports games. Shooting sports games in 3D, however, is
complex and costly, because it requires deploying and operating
expensive 3D camera rigs. A more cost-effective approach is
to convert regular 2D videos to 3D using automated methods.
The 2D-to-3D conversion methods can also be used to convert
previous events of historical importance, e.g., the previous FIFA
World Cup final game. Converting 2D sports videos to high-
quality 3D is, however, challenging, because of the high motion
and complexity of the scenes in sports games. Current 2D-to-
3D conversion methods, e.g., [32], [40], are designed for general
videos and when applied to sports videos may introduce various
visual artifacts that negatively impact the viewing experience
of users.

In this paper, we propose a data-driven method for convert-
ing soccer 2D videos to 3D. The proposed method handles the
temporal and spatial complexities of soccer videos. Unlike sev-
eral previous methods, e.g., [20], [23], the proposed method is
designed and optimized for sports videos and especially soccer
videos. The key idea of the proposed method is to learn the depth
information of a video frame from similar frames in a database
of 2D+Depth soccer images. However, such databases are very
costly to create, especially for outdoors sports games where
depth information is harder to capture compared to indoor envi-
ronments where simpler equipment (e.g., Microsoft Kinect) can
be used to capture depth. In addition, sports games may contain
numerous varieties of scenes and frame compositions, which
requires large and diverse databases to cover. We address this
problem by creating a synthetic database from computer games
and showing that this synthetic database can effectively be used
to convert real videos. Current computer games provide high-
quality depth maps, which allows us to cost-effectively obtain
a wide variety of shots from different teams, stadiums, seasons
and camera angles.

The proposed method converts individual frames by dividing
each into blocks and finding similar blocks in the database. It
then transfers the depth gradient from the matched blocks. This,
however, may not produce smooth depth within the frame and
across successive frames. We present a spatio-temporal depth
reconstruction method to address this problem.

We conduct extensive user studies to evaluate the perfor-
mance of the proposed 2D-to-3D conversion method. In these
studies, we use a diverse set of video segments and follow the
ITU BT.2021 recommendations [6]. Our results show that: (i)
3D videos produced by our method are almost indistinguish-
able from original videos shot in 3D, (ii) our converted videos
are rated Excellent by subjects, most of the time, and (iii) our
method significantly outperforms the state-of-the-art method in
the literature [20].

1520-9210 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2550-4910


606 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 20, NO. 3, MARCH 2018

A preliminary conference version of this work appeared in
[11]. The current paper extends [11] along two important as-
pects. First, it introduces a temporal smoothness method to con-
trol depth variations in successive frames . Second, it presents
a detailed design for an object segmentation method tailored
for 2D-to-3D video conversion. This method produces cleaner
depth boundaries for players.

The rest of this paper is organized as follows. Section II sum-
marizes the related works in the literature. Section III provides
an overview of the proposed method. Section IV presents the
proposed depth gradient based conversion method and Section V
presents the object segmentation method. Section VI describes
our subjective and objective evaluation, and Section VII con-
cludes the paper.

II. RELATED WORK

Over the last few years, applications for 3D media have ex-
tended far beyond cinema and have become a significant interest
to many researchers. Calagari et al. [12] propose a 3D stream-
ing system that performs depth customization for a wide variety
of 3D displays. Yang et al. [38] use the client viewing an-
gle in a tele-immersive environment to prioritize the streaming
of 3D content. Hefeeda et al. [16] provide content protection
for 3D media. While such systems provide useful applications,
the limited 3D content still remains a main bottleneck for the
adoption of 3D technology. To tackle this issue, 2D-to-3D con-
version techniques can be used. 2D-to-3D conversion has been
explored by many researchers. However, previous methods are
either semi-automatic [14], [26], [34], [41] or cannot handle
complex motions [7], [17], [20], [21], [23], [32], [36], [40].
To the best of our knowledge, there has not been a 2D-to-3D
conversion technique that is capable of handling the complex
motions and the variety of scene structures that exist in soccer
videos.

In 2D-to-3D conversion, the depth map of an image is es-
timated. Stereo image pairs can then be synthesised using this
depth information. Traditional computer vision approaches such
as depth from defocus or structure from motion can be used to
compute the depth maps. Park et al. [32] estimate the depth
using structure from motion. Zhang et al. [40], [41] propose a
2D-to-3D conversion system based on multiple depth cues in-
cluding motion and defocus. A survey on automatic 2D-to-3D
conversion techniques and depth cues can be found in [39]. In
several of the previous works, strong assumptions are made on
the depth distribution within a given scene. For example, the
work in [21] classifies shots into long shots and other shots
(e.g., medium shots, close-ups, etc.), where long shots are for
large field view. Long shots are assigned a depth ramp for the
field and a constant depth for the players. Similarly in [36],
players are detected and a constant depth is assigned to them.
This, however, causes the well-known ‘card-board effect’ where
supposedly 3D objects appear flat on the screen.

Data-driven methods are an alternative way of computing
depth maps. A relatively coarse depth estimation is provided
in Hoiem et al. [17], where a scene is segmented into planar
regions, and an orientation is assigned to each region. Konrad

Fig. 1. The proposed 2D-to-3D conversion method.

et al. [22], [23] use a database of image and depth map pairs
to infer the depth of an input image. Their work is designed
for still images and assumes that images with similar gradient-
based features tend to have a similar depth. For a query image,
the depth is estimated as the median over the depths of the most
similar images from the database. In [22], geometrical differ-
ences between the query and a candidate match is compensated
through SIFT-flow [28]. Karsch et al. [20] extended this ap-
proach to image sequences. They also use a large database of
image and depth map pairs. Similar to [22], for a query frame,
they find the most similar images in the database and warp the
retrieved images to the query image using SIFT-flow. Finally,
to estimate the final depth, the warped depth maps are com-
bined by optimizing a cost function with spatial regularization
in mind. The work in [20] is the closest to ours and we compare
against it.

There are a few commercial products that provide automated
2D-to-3D conversion, sold as stand-alone boxes (e.g., JVC’s
IF-2D3D1 Stereoscopic Image Processor, 3D Bee), or software
packages (e.g., DDD’s TriDef 3D). While the details of these
systems are not publicly known, their depth quality is still an
outstanding issue [39].

III. SYSTEM OVERVIEW

An overview of the proposed 2D-to-3D conversion method is
shown in Fig. 1. We infer depth from a database of synthetically
generated depths. We collect this database from video games.
With the high quality of current video games, which has come
close to that of real videos, using a synthetic database offers
two main advantages: 1) we can obtain a diverse database from
different camera angles, teams, and stadiums; and 2) we can
obtain accurate depth maps with perfect discontinuities. We
discuss our synthetic database in Section IV-A.

For each query image, we transfer the depth gradients from
the synthetic database to the query image by dividing the query
into blocks and copying the depth gradients from the matching
blocks in the database. This is quite different from previous
approaches that use absolute depth over the whole frame [20],
[23]. Our approach offers finer depth assignment to smaller
objects (e.g., players), while requiring a much smaller database.
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This is because we match small blocks instead of the whole
frame, and blocks have much less variety than frames.

After the depth gradients have been transfered, we recover
the depth from these gradients by using Poisson reconstruction.
Poisson reconstruction is a robust technique traditionally used
to recover an image from its gradient information by solving
a Poisson equation [8], [33]. We enhance the Poisson recon-
struction formulation such that it utilizes temporal gradients in
addition to spatial gradients. Our spatio-temporal Poisson re-
construction enables the generation of temporally smooth depth
maps. Our depth estimation method is discussed in Section IV.

In order to maintain clear object boundaries, we create object
masks and allow depth discontinuities on object boundaries by
modifying the Poisson equation. We present two different meth-
ods for creating object masks, one for close-up shots and the
other for non close-ups. In order to distinguish these two types
of shots, we implemented a simple shot classification method.
Section V discusses our object mask creation methods.

Finally, we use the stereo-warping technique in [20] to render
the left and right stereo pairs using the 2D frames and their esti-
mated depth. In this technique, a 2D frame is warped based on
its estimated depth such that salient regions remain unmodified,
while background areas are stretched to fill unoccluded regions.

IV. GRADIENT-BASED CONVERSION

The core of our system is depth estimation from depth gradi-
ents; for an input 2D video, depth is inferred from our synthetic
database. Fig. 2 outlines this process. For a 2D query frame, we
first search the database for the K nearest frames. Using these K
candidates we create a matching image block by block, where
for each block we choose the best matching block from the K
candidates. We then copy the depth gradients from the matched
blocks to the query frame. Finally the depth is reconstructed
from these copied gradients by solving a Poisson equation. We
now discuss each step in more detail.

A. Synthetic Database

Many databases of RGBD (Red, Green, Blue and Depth)
images [1], [2], [5] and videos [3], [20] have been created.
The depth channel is acquired using techniques such as time-
of-flight imaging [35] (e.g., using Microsoft Kinect). However,
none of the current RGBD databases can be used for sports
events. Acquiring depth maps for sports events is challenging
since it requires the depth to be captured in sunlight conditions
and in a highly dynamic environment. In order to address this
challenge, we propose to create a Synthetic RGBD (S-RGBD)
database from video games. Current video games have very
high image quality and a large quantity of content can be easily
generated from them.

To collect our S-RGBD data we use PIX [4], a Microsoft
Directx tool, to extract image and depth information from the
FIFA13 video game. PIX records all Directx commands called
by an application. Each recorded frame can be rendered and
saved by re-running these commands. In addition, PIX allows
access to the depth buffer of each rendered frame. We extracted
16 500 2D+Depth frames from 40 different sequences. Each

sequence has a frame rate of about 10 fps, and each extracted
frame has a resolution of 1916 × 1054. These 40 sequences
cover a wide range of shots that can occur in a soccer match, in-
cluding a variety of camera angles, color variations and motion
complexities. Two of the 40 sequences are designed to capture
the common scenes throughout a full game. Each one has a
duration of 6–7 minutes. The rest of the sequences are shorter
(15–60 seconds) and focus on capturing special and less com-
mon events such as behind the goal, close-ups, and zoomed on
ground views. Our database includes different stadiums, teams,
seasons and camera views.

B. Block-Based Matching

For each frame of the examined video we first identify the
K (=10 in our work) most similar frames in our S-RGBD
database by preforming visual search. The two main features
used for visual search are: GIST [31] and Color. The former
favors matches with overall similar structure, while the latter
favors matches with overall similar color. For color, we use the
hue channel in the HSV color space and create a normalized
histogram of hue values with six equal-width bins. We then
apply binary thresholding to represent only dominant colors
(those with hue below 0.1 are ignored), and concatenate GIST
and the thresholded color histogram to form the final image
search descriptor. Fig. 3(b) shows 4 samples of the K candidates
for the frame in Fig. 3(a).

Using the K candidate images we construct a matched image,
which is an image similar to the examined frame. The matched
image provides a mapping between the examined frame and the
candidates, where each pixel in the examined frame is mapped
to a corresponding candidate pixel. While such mapping can be
performed using a global approach by warping the candidates to
the examined frame, such as [20], this requires strong similarity
between the examined frame and the database. For example, an
examined frame with 4 players requires the database to have
an similar image. Therefore, we use a local approach instead,
where similar images are constructed using block matching.
This provides a more robust matching. For example, a good
matching can be performed between two images even if they
are acquired from different angles and different locations, and
have a different number of players. This can be seen in the
example in Fig. 3 where the images in Fig. 3(b) were used to
create the high-quality matched image in Fig. 3(c), which may
not have been possible using the global approach in [20]. One
of the advantages of our local approach is that it can achieve
good results without requiring a massive database, which is
highly desirable since, as discussed in Section IV-A, creating an
accurate 3D database is difficult.

For constructing the matching image, the examined frame is
first divided into n × n blocks. In all of our experiments, we set
n to 9 pixels. Each block of the examined frame is then com-
pared against all blocks in the K candidate images. We compare
blocks based on their block descriptors. The block whose block
descriptor has the least Euclidean distance with that of the ex-
amined block is chosen as the corresponding block. For block
descriptor, we concatenate the SIFT descriptor calculated for
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Fig. 2. The main components of the data-driven depth estimation method: For a 2D query frame, we first search the synthetic database for the nearest frames.
Using these candidates we choose the best matching block for each query block. We then copy the depth gradients from the matched blocks and reconstruct depth
from these gradients using a spatio-temporal Poisson formulation.

Fig. 3. The effect of different steps in the proposed depth estimation method: (a) Query, (b) Subset of K matching candidates, (c) Created matched image,
(d) Object boundary cuts, (e) Depth estimation using Poisson reconstruction, (f) Effect of gradient refinement, (g) Final depth with object boundary cuts, and
(h) A zoomed and amplified version of the yellow block in g.

the center of the block with the average color of the block. The
average color is a three-dimension vector containing the average
of R, G and B color channels separately. Note that the candi-
date images are all re-sized to the examined frame size. RGB
values are normalized between 0-1. To capture more representa-
tive texture, the SIFT descriptor for each block is calculated on a
larger patch of size 5n × 5n. Fig. 3(c) shows the matched image
using our block matching approach. Notice that the horizontal
playing field is matched with the horizontal field, the vertical
advertisement boards are matched with vertical blocks, and the
tilted audience are also matched with the audience.

Note that for a faster matching, we compute the image search
descriptors, the block descriptors, and the depth map gradients
for all frames in the database beforehand and store them as the
database. Therefore, in practice, there is no need to actually
store the RGB frames and depth maps of the database frames,
which saves a considerable amount of storage, in addition to
reducing the processing time.

C. Spatio-Temporal Poisson Depth Estimation

To produce a smooth depth within and across all frames, we
first copy depth gradients from the matched image to the query

frame. We then use Poisson reconstruction to estimate the depth
map from these copied gradients. However, in order to have a
depth that is smooth through time and space we extend the Pois-
son reconstruction technique to a spatio-temporal formulation.
In addition, gradient refinement and object boundary cuts are
used to reduce artifacts and maintain clear depth discontinuities,
respectively.

Computing Depth Gradients: Given a query frame and its
matched image, we copy the corresponding depth gradients in
blocks of n × n pixels from the matched image to the query
frame. By depth gradients we refer to the first order spatial
derivatives of the depth for both horizontal and vertical direc-
tions (Gx,Gy ).

Poisson Reconstruction: We reconstruct the depth values from
the copied depth gradients using the Poisson equation:(

∂2

∂x2 +
∂2

∂y2

)
D = ∇ · G, (1)

where G = (Gx,Gy ) is the copied depth gradient and D is the
depth we seek to estimate. ∇ · G is the divergence of G:

∇ · G =
(

∂Gx

∂x
+

∂Gy

∂y

)
. (2)
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Fig. 4. Construction of matrix A of the Poisson equation. (a) An example
4 × 4 image, showing a sample pixel p and its neighbors. (b) The coefficients
of (3) for pixel p. (c) The non-zero values in A for the row corresponding to
pixel p.

In the discrete domain, (1) and (2) become (3) and (4), respec-
tively:

D(i, j + 1) + D(i, j − 1) − 4D(i, j)

+ D(i + 1, j) + D(i − 1, j) = ∇ · G(i, j). (3)

∇ · G(i, j) = Gx(i, j) − Gx(i, j − 1)

+ Gy (i, j) − Gy (i − 1, j). (4)

To estimate D, we formulate the problem in the form of
Ax = b, where b = ∇ · G, x = D, and A stores the coefficients
of the Poisson equation (3). For a query image of size H × W ,
A is a square matrix with size HW × HW . Each row in A
corresponds to a pixel in the query frame, and the values in
the row correspond to the coefficients of (3). Fig. 4 illustrates
setting up A for a small sample image. Note that since one
or more neighbors do not exist for the image boundary pixels,
the value of ∇ · G in these pixels is updated by removing the
terms in (4) that refer to non-existing neighbors. Finally, given
Ax = b, we solve for x. An example of the reconstructed depth
(x) is shown in Fig. 3(e). In can be seen that the overall depth
structure is captured, however, there are some artifacts present
(see the lower right corner of Fig. 3(e)). Such artifacts are often
caused by the inaccuracy in SIFT matching. For example, in
Fig. 3(c) some field blocks are matched to non-field areas. If
a query block from a region that is expected to have smooth
depth (such as the field) is incorrectly matched to a reference
block that has sharp changes in depth (such as player borders or
the goal), small artifacts in the depth map can occur due to the
sharp gradients that were transferred from the reference block.
To avoid this problem, we perform gradient refinement, which
reduces the large gradients before solving for x. Then using
our object masks we impose depth discontinuities in the proper
places. We describe these two steps in the following.

Gradient Refinement: To reduce the errors caused by incor-
rect block matchings, we multiply the depth gradients by a

Fig. 5. The refinement factor of Gx for α = 60.

refinement factor:

Gx = Gx × max
(

1 − e(1− 1
α |G x | ) , 0

)

Gy = Gy × max
(

1 − e
(1− 1

α |G y | ) , 0
)

(5)

This refinement exponentially reduces large gradients, which
may be incorrectly estimated, while maintaining low gradients.
Thus, it removes sharp artifacts while maintaining the rest of
the image intact. The refinement strength is configured by the
parameter α. A high α can corrupt correct gradients, while a
low α can allow artifacts. In our experiments, we set α to 60.
Fig. 5 shows the refinement factor for Gx when α is set to 60. It
can be seen that while the factor is 1 for small values of Gx , it
drops to zero as the gradient starts to grow. Fig. 3(f) shows the
effect of gradient refinement on depth estimation for Fig. 3(a).
In comparison to Fig. 3(e), artifacts are removed and depth is
smoother.

Object Boundary Cuts: When performing Poisson reconstruc-
tion each pixel is connected to all its neighbors. This causes
fading of most object boundaries, especially after gradient re-
finement where strong gradients are eliminated (see Fig. 3(f)).
We solve this issue by modifying the Poisson equation on object
boundaries and allowing depth discontinuities. To do so, we use
object masks, whose creation is discussed in Section V. Given
object masks, we first use the Canny edge detector to detect
edges (see Fig. 3(d)). We then disconnect pixels from the object
boundaries by preventing them from using an object boundary
pixel as a valid neighbor. For each pixel neighboring a boundary
pixel, the corresponding connection in A is set to 0 and its ∇ · G
value is updated accordingly. Hence, pixels adjacent to object
boundaries are treated similar to image boundary pixels.

The object boundaries generated for Fig. 3(a) are shown in
Fig. 3(d). The final estimated depth when cutting the object
boundaries is shown in Fig. 3(g). The players in Fig. 3(g) are
more visible compared to Fig. 3(f).

Spatio-temporal Poisson Reconstruction: While the dis-
cussed Poisson reconstruction technique produces plausible re-
sults, one of its main limitations is that it does not account for
temporal smoothness. If the depth estimation is performed in-
dependently for each frame, the generated depth maps are not
temporally smooth and can vary significantly between consecu-
tive frames causing a flickering effect. While this limitation can
be partially handled by temporally smoothing the depth maps
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during a post-processing phase, it is much more effective if we
eliminate the problem from the source, and enforce temporal
smoothness during the core depth estimation process. In order to
do so, we enhance the Poisson reconstruction formulation such
that it utilizes temporal gradients in addition to spatial gradients
when reconstructing the depth. That is, instead of computing
the depth of each frame independently, the information from
the next and previous frames is also considered.

One of the main challenges, however, is utilizing this tempo-
ral information in the depth estimation process without limiting
its parallelizable feature. Being parallelizable is an important as-
pect of our method, which enables processing different frames in
parallel due to their independence. Considering temporal infor-
mation, however, introduces dependence among frames. There-
fore, in order to maintain the parallelizable feature, we determine
a window around each frame and process each window inde-
pendently. Within each window the depth maps of all frames are
generated together and coherently. The final depth map for each
frame is the average of all depth maps generated for that frame in
different windows. While a bigger window size can achieve an
overall better temporal coherence, it will significantly increase
the computational complexity and decrease efficiency. Our ex-
periments in Section VI-C show that a window size of 3 (one
frame before and one after) yields good results, and not much
gain can be achieved by further increasing the window size.

For each window, we perform block-based matching, depth
gradient mapping and refinement for all frames. We then enforce
temporal smoothness by modifying (3) as in (9) for each of the
frames within the window. In (9), Dnext and Dpre refer to
the next and previous frames respectively, and (ic , jc) refers to
the corresponding pixel in the neighbouring frame. In order to
identify the corresponding pixels between each two consecutive
frames, we use optical flow [27], which computes the horizontal
and vertical displacements for all pixels. For the first and last
frames in the window for which one of the neighbours does not
exist, the non-existing connection will be removed.

D(i, j + 1) + D(i, j − 1) − 6D(i, j)

+ Dnext(ic , jc) + Dpre(ic , jc)

+ D(i + 1, j) + D(i − 1, j) = ∇ · G(i, j). (6)

Temporal smoothness implies that the depth value of each
pixel and its corresponding pixels in the next and previous
frames should be similar. In other words, temporal smooth-
ness implies that the temporal gradient should be set to zero.
As a result, while the left hand side of (9) is an extension of (3)
which includes temporal neighbours in addition to the spatial
ones,∇ · G(i, j) is still calculated using (4) which includes only
the spatial gradients.

When formulating a solution in the form of Ax = b, we gener-
ate the matrix A according to (9) such that it contains all frames
in the window. Thus the size of A will be HWN × HWN ,
where N is the window size. Finally, we concatenate b and x
for all frames in the window, and solve for the depth maps (x).

Note that since neither the optical flow nor the object masks
are perfect, there is a chance that a pixel marked as an object
(according to the mask) is recognized as a corresponding pixel

to a non-object pixel in the neighbouring frame or vice versa.
Establishing such temporal connections can cause fading of the
object boundaries, as the two sides of the boundary will be
connected through a temporal route. In order to solve this prob-
lem we first make sure that each two corresponding pixels have
the same mask value before establishing a connection between
them. Otherwise, we would remove the temporal connection by
setting the corresponding connection in A to 0.

Creating the Final Output: To form the final converted
2D+Depth output, we normalize the estimated depth maps in
each window between (0, 255) collectively and combine them
with the query images. Our method produces a smooth depth
that correctly resembles the depth of the players, field and spec-
tators. Furthermore, the ‘card-board effect’, where a constant
depth is assigned to each player, does not occur in our method.
We show this by zooming-in on a player depth block in Fig. 3(g)
and amplifying it by normalizing the depth values of the block
to the range of (0, 255). The zoomed and amplified version of
the yellow marked block in Fig. 3(g) is shown in Fig. 3(h). The
player in the marked block demonstrates the strength of our
gradient-based approach in estimating small depth details. It
can be seen that different body parts of the player have different
depth values.

V. OBJECT MASK CREATION

In order to have clear depth discontinuities on player bound-
aries, we delineate object boundaries. If object boundaries are
not specified, the depth of players will blend with the ground,
causing degradation in the depth quality. To detect object bound-
aries we first create object masks. These masks are created auto-
matically in a pre-processing step where motion and appearance
are used to detect objects. While object segmentation for videos
with simple motion or static scenes can be performed using
methods such as [19], it is rather challenging for videos with
complex motion. Therefore, we propose two different meth-
ods for object detection: one for close-ups, and another for non
close-ups. Close-ups are characterized by small playing areas
and large player sizes, while non close-ups usually have a larger
field of view. As a result, a shot classification step is required
prior to object detection. Shot classification takes an input im-
age sequence, finds the shot transitions and classifies each shot
as either close-up or non close-up. Based on the type of shot the
appropriate object detection method is then applied. The method
for non close-ups is mainly based on global features such as the
color of playing field, while for close-ups, local features such
as feature point trajectories [29] are used. In this section we
discuss each step in details.

A. Shot Classification

Our shot classification stage has two main components: shot
transition detection and shot classification. In shot transition de-
tection, an input sequence is segmented into different shots by
detecting the shot transitions. While there are several sophisti-
cated techniques for handling shot transition detection [24], we
designed a simple shot transition detection step suitable for our
2D-to-3D conversion method. Our implementation is designed
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Fig. 6. Shot classification: An example of the detected field area, and the area
covered by the fitted convex hull, for a close-up (top row) and non close-up
(bottom row) frame. Red lines show the boundaries of the fitted convex hulls.

to detect temporal impulsive changes in the frame structure. We
predict each frame from its next frame using optical flow [27]
and then estimate the global structure similarity between the
original and predicted frame using SSIM (Structural Similarity)
[37]. A frame is flagged as a shot transition if: the global SSIM
value is smaller than a certain threshold (0.7 in our experiments),
and it increases in the next frame by at least 0.1. In other words,
if the similarity between the predicted and original frames is
low but it increases considerably as we move to the next frame,
then there is a high chance that there is a shot transition.

The second step is to differentiate between two types of shots:
1) close-ups and 2) non close-ups. A close-up is defined as a
shot with a small field area and large players. We use a color-
based approach to detect the field area. We train a Gaussian
Mixture Model (GMM) [9] on samples collected from the play-
ing fields and the white lines. In the test phase we estimate
the log-likelihood of each pixel being generated by the learned
GMM model. If the log likelihood is more than a threshold
(−15 in our experiments), it is flagged as field area. The sec-
ond discriminative cue for close-ups is player size. We exploit
the observation that in close-ups, players often have a large
size and the audience/ad banners are usually behind the player
upper-body. Hence to measure the players size, first we invert
the detected field so that white pixels indicate the non-field area.
Then for each connected component, we fit a minimum convex
hull and choose the largest one as the fitted convex hull for that
frame. For closeups, the fitted convex hull takes a large portion
of the field area due to its large player size. This does not hap-
pen in non close-ups. Fig. 6 shows an example for a close-up
and a non close-up frame. The red lines show the boundaries of
the fitted convex hulls. Finally, for the entire shot, we find the
percentage of pixels detected as field (A1) and the percentage
of pixels covered by the fitted convex hulls (A2). A close-up
is then detected if 0.5(1 − A1) + 0.5A2 is larger than a certain
threshold (0.3 in our experiments).

Note that player segmentation is an important step in our shot
classification. Player segmentation techniques require moderate
color contrast between the foreground and background, which
is the field in here. This was the case in the examined sequences
and hence we did not experience much problems during shot
classification. In addition, our selection of a shot classification
threshold of 0.3 helped us in mitigating possible problems. One
way to address the limitations of low players’ color contrast is
to incorporate structural information as silhouettes. This can be
achieved by benefiting from the latest segmentation techniques
through deep learning [18]. Another option is to train a CNN
solution to directly classify the shots by implicitly learning deep
features [15].

B. Object Detection for Non Close-Up Shots

Object masks for non close-up shots are a fusion of back-
ground subtraction and non-field areas. The latter is estimated
during the shot classification step. However, relying only on
field detection to detect players can have a high miss rate. This
is often the case for players of similar color to the field. Hence
to generate a more complete detection, we fuse the field detec-
tion results with that of background subtraction. Background
subtraction is a well-known technique in video processing [20].
In this technique, first a homography is generated by warping
all frames with respect to a reference frame (in our case it is the
first frame). We use the method by Odobez et al. [30] with affine
motion modelling to build our homography. This technique can
accommodate a moderate amount of translational camera mo-
tion. The stationary background is then detected using temporal
median filtering. Frame differencing between each frame and
the stationary background is used to find the moving objects,
which in our case are the players.

In order to further reduce player segmentation errors, we
correct for possible misalignments between the frames and the
stationary background through optical flow [27]. We perform
frame differencing using the local SSIM values for each pixel
and the motion computed by optical flow. A pixel is flagged as
a moving object if: 1) the similarity between that pixel in the
frame and the stationary background is low (SSIM less than
0.4 in our experiments), and 2) the motion divergence in that
pixel is high (higher than 0.01 in our experiments). Motion di-
vergence measures the rate of spatial changes in motion [13].
Hence it is low in regions with high similarity (such as the
field) and high otherwise (for players). The final object mask
is generated by a logical OR between the field detection based
and background subtraction based approaches. Note that ac-
curate background subtraction requires regular update of the
underlying background model. However, we found through ex-
perimentation that this is more problematic when the examined
scene undergoes strong global illumination variation such as an
abrupt change in weather or lighting. This, however, was hardly
the case in the processed sequences.

Fig. 7 shows an example of a non close-up object mask cre-
ation. Note that some detected players are small when using
the field-only method, but are fully detected using the back-
ground subtraction approach (green boxes). The opposite is true
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Fig. 7. An example of object mask creation for non close-ups. For a more complete detection of players, the final object mask is generated as a fusion
of the non-field detection and the background subtraction approach. For instance, players in the yellow box are missing from the background subtraction approach,
while the players in the green boxes are small when using the field-only method. However the final mask recovers the missing players and generates a more-complete
object mask.

as well (yellow box). The fusion of both approaches neverthe-
less brings the best of both worlds with all players being fully
detected. Note that the use of multiple cues with conservative
thresholds during background subtraction reduces the possibil-
ity of ghosting artifacts. Such conservative thresholds, however,
could lead to players’ under-segmentation. Nevertheless, when
fused with the results of player segmentation with color thresh-
olding (i.e. field detection), more complete player masks are
generated.

C. Object Detection for Close-Up Shots

In order to detect players in close-up shots we use a combi-
nation of frame-to-frame motion and feature point trajectories
to obtain foreground and background matting strokes. Matting
is then performed using these strokes and the generated mattes
can be used as object masks after thresholding. However, in or-
der to achieve cleaner results, we use field detection to remove
possible mis-classified field areas.

Frame-to-frame motion is estimated through the optical flow
method in [27], which provides us with a color coded flow
field. We fit a GMM [9] to the color coded flow field, and take
the cluster with the most dominating Gaussian distribution as
the camera motion segment. All other clusters are considered
as the non-camera motion segment. This segmentation often
has poor object boundaries and is not temporally coherent (see
Fig. 8, approx. non-camera motion segmentation). Hence it can
not be used directly as object masks. Instead we combine it
with sparse trajectories segmentation to obtain foreground and
background matting strokes.

Sparse trajectories segmentation is obtained through extract-
ing feature point trajectories and segmenting them into different
groups [29]. This generates a sparse labelling for different ob-
jects (see Fig. 8, sparse trajectory segmentation).

In order to combine sparse trajectories segmentation with
non-camera motion segmentation we estimate the overlap of
each trajectory segment with the non-camera motion segment.
If there is at least a 30% overlap, we label the trajectory segment
as foreground (see Fig. 8, foreground), else background (see
Fig. 8, background).

Fig. 8. For a close-up shot, a combination of feature point trajectories [29]
and frame-to-frame motion [27] is used to generate background and foreground
matting strokes. The method in [25] is then used to extract a dense players matte.
Finally, field segmentation removes matting inaccuracies.

The feature point trajectories become the matting strokes and
the method by Levin et al. [25] is used to extract a soft-mask of
the players (see Fig. 8, matting). We then correct possible field
mis-classifications by using the field detection of Section V-A.
This generates cleaner player boundaries. Finally, we threshold
the generated mattes by 0.3 and get the final object masks (see
Fig. 8, object segmentation).

VI. EVALUATION

All components of our proposed method have been imple-
mented and compared against the closest system in the literature
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[20], and the ground-truth where available. For our experiments,
both real and synthetic sequences have been considered.

Note that the few parameters in our method are experimentally
tuned once for all sequences. Specifically, we set the number of
candidate images K to 10, the block size n to 9, and the gradient
refinement parameter α to 60.

A. Examined Methods

Our 2D-to-3D conversion technique, which we refer to as
DGC (short for Depth Gradient-based Conversion), is compared
against several techniques as described below.

Original 3D: The original 3D-shot video that has been cap-
tured by stereo cameras. Results are compared subjectively.

Ground-truth Depth: Ground-truth depth maps are only avail-
able for synthetic sequences. As described in Section IV-A, they
can be extracted from FIFA13 using PIX [4].

DT: The state-of-the-art method for data-driven 2D-to-3D
conversion, Depth Transfer [20], trained on its own MSR-V3D
database. MSR-V3D is available online and contains videos that
have been captured using Microsoft Kinect.

DT+: Depth Transfer trained on our synthetic S-RGBD
database. As stated in [20], capturing depth using Kinect is
limited to indoor environments. This in addition to its erroneous
measurements and poor resolution, limits Kinect’s ability in
generating a large soccer database. In order to have a rigorous
comparison, we trained Depth Transfer on our soccer database
and compared it against our technique.

Depth from Stereo: For an objective comparison of our
method against the original side-by-side 3D, we need to ap-
proximate the ground-truth depth. We do so using the stereo
correspondence technique in [10]. While stereo correspondence
techniques do not always produce accurate results, they can
sometimes capture the overall depth structure and thus be used
for objective analysis.

B. Subjective Experiments

To assess the visual 3D perception we perform several subjec-
tive experiments, and compare our method against the original
3D and DT+. We then demonstrate the benefits of our spatio-
temporal Poisson reconstruction, especially for more temporally
challenging scenes.

1) Setup: Our subjective experiments are conducted accord-
ing to the ITU BT.2021 recommendation [6]. This recommenda-
tion suggests three primary perceptual dimensions for 3D video
assessment: 1) Picture quality, in terms of pixel resolution and
the impact of compression. This dimension is mainly affected
by transmission and/or encoding. 2) Depth quality, which mea-
sures the amount of perceived depth. 3) Visual (dis)comfort,
which measures any form of physiological unpleasantness due
to 3D perception, e.g., headache, eye strain, and fatigue. In our
experiments, we measure depth quality and visual comfort. We
do not examine picture quality as we do not degrade it using
compression or transmission. Note that we realize that artifacts
may appear during stereo synthesis due to depth imperfections,
but such artifacts will be captured by the depth quality and visual
comfort dimensions.

The test sequences were displayed on a 55” Philips TV-set
with passive polarized glasses. The lighting conditions were
low. According to the ITU recommendations, we set the dura-
tion of each sequence to be between 10–15 seconds, and the
viewing distance to be around 3 m for videos with a resolution
of 1280 × 720 and around 2 m for 1920 × 1080. We used static
and dynamic random dot stereograms to test subjects’ stereo-
scopic vision prior to the experiment. A stabilization phase was
also performed before the actual experiments, where the sub-
jects were asked to rate 4 representative sequences with 3D
qualities ranging from best to worst. While these representative
sequences were not part of the actual test, this phase was useful
in stabilizing the subjects’ expectations and making them famil-
iar with the rating protocol. The subjects were asked to ensure
their full understanding of the experimental procedure prior to
the actual test.

2) Evaluation of Our Technique: For evaluating our 2D-to-
3D conversion method, we show the subjects our converted se-
quences, and measure their average satisfaction. We assess depth
quality and visual comfort for four real soccer sequences using
the single-stimulus (SS) method of the ITU recommendations.
We carefully created the four soccer sequences using clips from
original 3D videos such that each includes a different category of
shots: long shots, medium shots, close-ups, and bird’s eye view.
A long shot shows almost the entire field from a high camera
position (Fig. 9, top right-most). In medium shots the camera is
placed at a lower height and a smaller part of the field is visible
(Fig. 9, bottom left-most). Close-ups have the camera zoomed
on one or few players (Fig. 9, top left-most). In a bird’s eye
view the camera is placed above the field (Fig. 9, bottom right-
most). Fifteen subjects participated in this study. The sequences
are shown to subjects in random order. Before displaying each
sequence, a 5 sec mid-grey field is displayed which indicates
the coded name of the sequence. The 10–15 sec sequence is
then displayed, followed by a 10 sec mid-grey field which asks
the subjects to vote. The standard ITU continuous scale is used
for rating. For depth quality, the labels marked on the contin-
uous scale are Excellent, Good, Fair, Poor, and Bad, while for
visual comfort the labels are Very Comfortable, Comfortable,
Mildly Uncomfortable, Uncomfortable, and Extremely Uncom-
fortable. We asked the subjects to mark their scores on these
continuous scales. Their marks were then mapped to integer
values between 0–100 and the mean opinion score (MOS) was
calculated.

The MOS for all four sequences is shown in Fig. 10. For
all sequences, DGC was rated in the range of Excellent by
most subjects. Examples of estimated depth maps are shown in
Fig. 9. Note how DGC can handle a wide spectrum of video
shots, including different camera views and clutter.

In addition, in order to show the potential of our method
on field sports other than soccer, we examined four real non-
soccer sequences containing clips from Baseball, Tennis, Field
Hockey and American Football. However, it is important to note
that these sequences are only meant to show the potential of our
method, as the soccer database was actually used for converting
them. For a high quality conversion of such sequences a proper
database should be designed. The results show that Field Hockey
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Fig. 9. Depth estimation for different types of shots using our method. Our method handles a wide variety of shots including Close-ups (e.g., top, left-most),
Medium Shots (e.g., bottom, left-most), Bird’s Eye View (e.g., bottom, right-most) and Long Shots (e.g., top, right-most).

Fig. 10. Mean opinion scores of depth perception and visual comfort for
different types of soccer scenes.

achieved the highest score (Excellent) as it resembles soccer the
most, while the lowest score was for American Football (Good).

3) Comparison Against Original 3D: We compare our con-
verted videos against videos that are originally shot using stereo
cameras. For this experiment, the Double Stimulus Continuous
Quality Scale (DSCQS) method of the ITU recommendations
is used. According to DSCQS, in order to assess the differences
between each pair of sequences (original 3D and our converted
3D) properly, each pair should be observed by subjects at least
twice prior to voting. Fifteen subjects participated in this study
as well. The sequences were shown to them in random order
without them knowing which is the original one. We then asked
the subjects to rate depth quality and visual comfort for both se-
quences using the standard ITU continuous scale. Their marks
are then mapped to integer values between 0-100 and used for
calculating the Difference Opinion Score (=score for DGC -
score for original 3D). Finally we calculate the mean of the
difference opinion scores (DMOS).

A DMOS of zero implies that our converted 3D is judged
the same as the original 3D, while a negative DMOS implies
our 3D has a lower depth perception/visual comfort than the
original 3D. The DMOS of the soccer sequences for both depth
quality and comfort is shown in Fig. 11. It can be seen that our
conversion achieves comparable quality to the original 3D. This
is especially true for long shots which account for around 70%

Fig. 11. Difference mean opinion score (DMOS) between our converted se-
quences and the original 3D. Zero implies that our converted sequence is the
same as the original 3D.

Fig. 12. Difference mean opinion score (DMOS) between our converted se-
quences and Depth Transfer DT+. Positive DMOS means that our technique is
preferred over DT+.

of a full soccer game [12]. It is interesting to note that for some
subjects our conversion was more comfortable than the original
3D. They reported that the popping out effect in original 3D was
sometimes causing discomfort.

4) Comparison Against State-of-the-Art: We compare our
conversion technique against Depth Transfer (DT+) [20]. Sim-
ilar to the previous experiments, the study is done with fif-
teen subjects, the DSCQS method is used, and the DMOS is
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Fig. 13. Depth estimation for different sequences using: DT, DT+ and our method DGC. DT generates erroneous estimates, DT+ generates noisy measurements
and does not detect players. Our technique outperforms both approaches.

Fig. 14. Mean opinion scores of depth perception and visual comfort for two sequences of different temporal complexity, where three methods are compared: our
spatio-temporal Poisson reconstruction, temporal smoothness as a post-process, and without temporal smoothness. (a) Temporally Simple sequence. (b) Temporally
Complex sequence.

Fig. 15. Top row: Frame 3 of a synthetic sequence. Bottom row: Frame 24 of a real sequence. We show the depth extracted using: Ground-truth/Stereo
Correspondence [10], DT, DT+ and DGC. Our technique DGC best resembles the Ground-truth/Stereo Correspondence in both sequences.

calculated for both depth quality and comfort. For this exper-
iment, we examined the close-up and medium shot sequences
since they are the most challenging sequences for 2D-to-3D
conversion due to their wide spectrum of camera angles, occlu-
sion, clutter, and complex motion. Fig. 12 shows DMOS for the

medium shot and close-up against DT+. DT+ is outperformed
by our method with an average of 12 points in close-ups and
15 points in medium shots. In addition, our technique was rated
higher or equal to DT+ by all 15 subjects and the differences
reported are statistically significant (p-value < 0.05). Fig. 13
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shows some examples of extracted depth maps for DT, DT+ and
our DGC. Note that as it can be seen in Fig. 13, the original im-
plementation of Depth Transfer (DT) is much worse than DT+.
Furthermore, it can be seen from Fig. 13 and Fig. 15 that the
depth from DT+ can be very noisy sometimes, which in long
term can cause eye strain.

5) Effect of Spatio-Temporal Poisson Reconstruction: As
discussed in Section IV-C, estimating depth independently for
each frame may result in significant difference between the
depth of consecutive frames. While simple shots may not suffer
much from this problem and have a temporally smooth depth
without the need of any further temporal enhancements, shots
with complex and detailed texture, such as close-ups, may suf-
fer from significant variations in the depth maps of successive
frames. This may degrade the quality of depth perception and
cause visual discomfort.

While temporally smoothing the depth maps during a post-
processing phase works well for simple shots, it cannot com-
pletely overcome the problem for temporally complex shots.
Our spatio-temporal Poisson reconstruction method, however,
generates temporally and spatially smooth depth maps by uti-
lizing temporal gradients in addition to spatial gradients during
the depth calculation process. Thus, it can handle all types of
shots and generate a comfortable and temporally smooth depth
for all cases.

To assess the performance of our spatio-temporal method,
we created two 10 sec sequences. The first one is composed of
various shots from the four soccer sequences used in the previous
experiments, which are all rather simple to handle. We refer to
this sequence as Temporally Simple. The second sequence is
composed of various temporally complex soccer shots that are
difficult to handle. In the figures, we refer to this sequence as
Temporally Complex. The shots included in this sequence were
not included in the four sequences previously used.

We showed the subjects three versions of each sequence:
1) Without any temporal smoothness. 2) Temporal smoothness
applied as a post-process on the depth maps generated by a
regular (spatio) Poisson reconstruction. For this we use the tem-
poral smoothness provided by Karsch et al. [20] as part of their
stereo-warping technique. 3) Temporal smoothness integrated in
the depth generation process using our proposed spatio-temporal
Poisson reconstruction, without any further post-processing re-
finements. We then assess depth quality and visual comfort for
all sequences using the single-stimulus (SS) method of the ITU
recommendations.

Ten subjects participated in this study. We showed them the
sequences in random order and they were asked to rate depth
quality and visual comfort using the standard ITU continuous
scale. Fig. 14(a) shows MOS for the three versions of the Tem-
porally Simple sequence. It can be seen that while no tempo-
ral smoothness causes degradation in the comfort and thus the
depth quality, it can be fully resolved by post-processing. As
a result, there is very little difference between the results of
our spatio-temporal reconstruction and that of post reconstruc-
tion smoothing. However, the benefits of our spatio-temporal
reconstruction become more clear in the Temporally Complex
sequence, where post-processing is unable to fully overcome

Fig. 16. An objective comparison between our DGC method and the clos-
est method in the literature DT, and its extension DT+ on a synthetic soccer
sequence.

the problem. Fig. 14(b) shows MOS for this sequence. It can be
seen that our spatio-temporal reconstruction improves the com-
fort by an average of 14 points compared to post reconstruction
smoothing, and enhances the quality from Good to Excellent.
The differences reported in this figure are statistically significant
(p-value < 0.05).

C. Objective Experiments

We perform objective experiments on both real and synthetic
sequences to measure the quality of our depth maps and com-
pare it against the state-of-the-art. We then analyse the effect of
our spatio-temporal Poisson reconstruction on temporal smooth-
ness, and the effect of database size on depth quality.

1) Comparison Against State-of-the-Art: For an objective
comparison against state-of-the-art, we choose two sequences:
a synthetic sequence and a real sequence. For the synthetic se-
quence we extract 2D+Depth for around 120 frames in the same
way that the database was created (Section IV-A). In Fig. 15
(top) a frame of the synthetic sequence is shown followed by
its ground-truth depth and estimated depth when using different
methods (DT, DT+ and our DGC). All demonstrated depth maps
are normalized and in the range of (0 − 255). Results from DT
are largely erroneous since the data in MSR-V3D hardly re-
sembles soccer. While being trained on our database makes the
results from DT+ significantly better, most players are yet not
detected. Our technique DGC, however, manages to detect the
players and generate a smooth depth that best resembles ground-
truth. The Mean Absolute Error (MAE) against ground-truth for
the whole synthetic sequence is shown in Fig. 16. As shown it
the figure, the MAE of our method is much less than both DT
and DT+.

Due to the absence of ground-truth depth for real sequences,
performing objective analysis on them is challenging. In [20],
Kinect depth was used as ground-truth. However, Kinect is inca-
pable of capturing depth information in outdoor environments.
As a result, Kinect cannot be used for generating ground-truth
estimates for soccer matches. Instead, given a 3D-shot soccer
sequence, we use stereo correspondence [10] to approximate the
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Fig. 17. The average depth values for each frame of a synthetic sequence, when
using different temporal window sizes. While without temporal smoothness
the scene experiences sudden changes of depth, the depth changes are much
smoother when temporal smoothness is applied.

ground-truth depth map. Fig. 15 (bottom) shows a frame from
one of the most challenging test sequences. Its extracted depth,
though not perfect, captures the overall depth structure and can
be used for inferring the quality of the converted depth maps.
The estimated depth maps using DT, DT+ and our DGC are
also shown in Fig. 15 (bottom). It can be seen that our technique
(DGC) best resembles the ground-truth. In addition, our objec-
tive experiments over a range of 100 frames show that DGC
reduces MAE 17% and 48% on average compared to DT+ and
DT respectively. Figure is omitted due to space limitations.

2) Effect of Spatio-Temporal Poisson Reconstruction: In or-
der to demonstrate the advantage of our spatio-temporal Poisson
reconstruction, we use the same two real and synthetic sequences
(shown in Fig. 15). For each sequence, we generate the depth
maps using a temporal window size of: one (without temporal
smoothness), three (one frame before and one after), and five
(two frames before and two after). Fig. 17 shows the average
depth values for each frame of the synthetic sequence. It can be
seen that without temporal smoothness the scene experiences
sudden changes from frame to frame, but the changes become
smoother as the window size increases. Also, without temporal
smoothness the difference between the maximum and minimum
average depth value is around 70, while with temporal smooth-
ness it is reduced to around 15. Results for the real sequence
(figure is omitted due to space limitations) also show that while
without temporal smoothness the difference between the max-
imum and minimum average depth value is around 110, this
value is reduced to around 50 when temporal smoothness is
applied.

Fig. 18 shows the MAE between the depth of each frame in
the real sequence and its previous frame. Each pixel is com-
pared to its corresponding pixel in the previous frame, where
the corresponding pixels are identified using optical flow. It can
be seen that applying temporal smoothness significantly reduces
the MAE. However, there is not much gain in increasing the win-
dow size from 3 to 5. MAE results for the synthetic sequence
(figure is omitted due to space limitations) also show that the

Fig. 18. Mean Absolute Error (MAE) between each two consecutive frames
of a real sequence, when using different temporal window sizes.

MAE is reduced from a maximum of 57 (without smoothness)
to a maximum of 3 (window size of 5).

3) Effect of Database Size: To investigate the importance of
our S-RGBD database size we examined six different database
sizes: 1000, 2000, 4000, 8000, 13 000 and 16 000 images.
For this experiment, a synthetic sequence with 120 frames was
generated. This sequence includes a wide variety of shots that
can occur in a soccer match. Results show that up to a size
of 8000 images, due to the absence of big enough data the
performance fluctuates around an MAE of 30. Starting from
13 000 images there is a boost in performance which reduces
MAE to around 20. However, the performance stabilizes around
16 000 images (Figure is omitted due to space limitations). Thus,
a database of 16 500 images was used in our evaluation.

VII. CONCLUSIONS AND FUTURE WORK

We presented a 2D-to-3D video conversion method for soc-
cer videos that, unlike previous methods, can handle the motion
complexities and the wide variety of scenes present in soccer
matches. Our method transfers depth gradients from a synthetic
database of soccer videos and estimates depth through a spatio-
temporal Poisson reconstruction. We implemented our method
and used both real and synthetic sequences for evaluating it.
Our subjective and objective results show the capablity of our
method in handling a wide spectrum of shots with different cam-
era views, colors, motion complexities, occlusion, and clutter.
Our created 3D videos were rated Excellent by most subjects.
In addition, our method outperforms the state-of-the-art both
subjectively and objectively, in all real and synthetic sequences.

This paper contributes three key findings that can impact the
area of 2D-to-3D video conversion, and potentially 3D video
processing in general. First, domain-specific conversion can pro-
vide much better results than general methods. Second, transfer-
ring depth gradient on a block basis not only produces smooth
natural depth when reconstructed using Poisson, but it also re-
duces the size of the required reference database. Third, syn-
thetic databases created from computer-generated content can
easily provide large, diverse, and accurate texture and depth
references for various 3D video processing applications.
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