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Abstract—We propose a new design for large-scale multi-
media content protection systems. Our design leverages cloud
infrastructures to provide cost efficiency, rapid deployment,
scalability, and elasticity to accommodate varying workloads. The
proposed system can be used to protect different multimedia con-
tent types, including 2-D videos, 3-D videos, images, audio clips,
songs, and music clips. The system can be deployed on private
and/or public clouds. Our system has two novel components:
(i) method to create signatures of 3-D videos, and (ii) distributed
matching engine for multimedia objects. The signature method
creates robust and representative signatures of 3-D videos that
capture the depth signals in these videos and it is computationally
efficient to compute and compare as well as it requires small
storage. The distributed matching engine achieves high scalability
and it is designed to support different multimedia objects. We
implemented the proposed system and deployed it on two clouds:
Amazon cloud and our private cloud. Our experiments with
more than 11,000 3-D videos and 1 million images show the high
accuracy and scalability of the proposed system. In addition, we
compared our system to the protection system used by YouTube
and our results show that the YouTube protection system fails to
detect most copies of 3-D videos, while our system detects more
than 98% of them. This comparison shows the need for the pro-
posed 3-D signature method, since the state-of-the-art commercial
system was not able to handle 3-D videos.

Index Terms—3-D video, cloud applications, depth signatures,
video copy detection, video fingerprinting.

I. INTRODUCTION

A DVANCES in processing and recording equipment of
multimedia content as well as the availability of free

online hosting sites have made it relatively easy to duplicate
copyrighted materials such as videos, images, and music clips.
Illegally redistributing multimedia content over the Internet
can result in significant loss of revenues for content creators.
Finding illegally-made copies over the Internet is a complex
and computationally expensive operation, because of the sheer
volume of the available multimedia content over the Internet
and the complexity of comparing content to identify copies.
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We present a novel system for multimedia content protection
on cloud infrastructures. The system can be used to protect var-
ious multimedia content types, including regular 2-D videos,
new 3-D videos, images, audio clips, songs, and music clips.
The system can run on private clouds, public clouds, or any
combination of public-private clouds. Our design achieves rapid
deployment of content protection systems, because it is based on
cloud infrastructures that can quickly provide computing hard-
ware and software resources. The design is cost effective be-
cause it uses the computing resources on demand. The design
can be scaled up and down to support varying amounts of mul-
timedia content being protected.
The proposed system is fairly complex with multiple com-

ponents, including: (i) crawler to download thousands of multi-
media objects from online hosting sites, (ii) signature method to
create representative fingerprints from multimedia objects, and
(iii) distributed matching engine to store signatures of original
objects andmatch them against query objects.We propose novel
methods for the second and third components, and we utilize
off-the-shelf tools for the crawler. We have developed a com-
plete running system of all components and tested it with more
than 11,000 3-D videos and 1million images.We deployed parts
of the system on the Amazon cloud with varying number of ma-
chines (from eight to 128), and the other parts of the system
were deployed on our private cloud. This deployment model
was used to show the flexibility of our system, which enables it
to efficiently utilize varying computing resources and minimize
the cost, since cloud providers offer different pricing models
for computing and network resources. Through extensive ex-
periments with real deployment, we show the high accuracy (in
terms of precision and recall) as well as the scalability and elas-
ticity of the proposed system.
The contributions of this paper are as follows.
• Complete multi-cloud system for multimedia content pro-
tection. The system supports different types of multimedia
content and can effectively utilize varying computing
resources.

• Novel method for creating signatures for 3-D videos. This
method creates signatures that capture the depth in stereo
content without computing the depth signal itself, which is
a computationally expensive process.

• New design for a distributed matching engine for high-di-
mensional multimedia objects. This design provides the
primitive function of finding -nearest neighbors for
large-scale datasets. The design also offers an auxiliary
function for further processing of the neighbors. This
two-level design enables the proposed system to easily
support different types of multimedia content. For ex-
ample, in finding video copies, the temporal aspects need
to be considered in addition to matching individual frames.

1520-9210 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



HEFEEDA et al.: CLOUD-BASED MULTIMEDIA CONTENT PROTECTION SYSTEM 421

This is unlike finding image copies. Our design of the
matching engine employs the MapReduce programming
model.

• Rigorous evaluation study using real implementation to
assess the performance of the proposed system and com-
pare it against the closest works in academia and industry.
Specifically, we evaluate the entire end-to-end system with
11,000 3-D videos downloaded from YouTube. Our re-
sults show that a high precision, close to 100%, with a re-
call of more than 80% can be achieved even if the videos
are subjected to various transformations such as blurring,
cropping, and text insertion. In addition, we compare our
system versus the Content ID system used by YouTube to
protect videos. Our results show that although the Content
ID system provides robust detection of 2-D video copies,
it fails to detect copies of 3-D videos when videos are sub-
jected to even simple transformations such as re-encoding
and resolution change. Our system, on the other hand, can
detect almost all copies of 3-D videos even if they are
subjected to complex transformations such as synthesizing
new virtual views and converting videos to anaglyph and
2-D-plus-depth formats.

Furthermore, we isolate and evaluate individual components
of our system. The evaluation of the new 3-D signature method
shows that it can achieve more than 95% precision and recall
for stereoscopic content subjected to 15 different video trans-
formations; several of them are specific to 3-D videos such as
view synthesis. The evaluation of the distributed matching en-
gine was done on the Amazon cloud with up to 128 machines.
The engine was used to manage up to 160 million data points,
each with 128 dimensions, extracted from over 1 million im-
ages. The results show that our design of the matching engine
is elastic and scalable. They also show that our system outper-
forms the closest object matching system in the literature, called
RankReduce [21], by a wide margin in accuracy and it is more
efficient in terms of space and computation.
The rest of this paper is organized as follows. We summarize

the related works in Section II. In Section III, we present the de-
sign goals and a high-level description of the proposed system.
In Section IV, we present the details of the proposed signature
creation method. In Section V, we describe the design of the
matching engine. Our implementation and rigorous evaluation
of the whole system as well as its individual components are
presented in Section VI. We conclude the paper in Section VII.

II. RELATED WORK

The problem of protecting various types of multimedia con-
tent has attracted significant attention from academia and in-
dustry. One approach to this problem is using watermarking
[10], in which some distinctive information is embedded in the
content itself and a method is used to search for this informa-
tion in order to verify the authenticity of the content. Water-
marking requires inserting watermarks in the multimedia ob-
jects before releasing them as well as mechanisms/systems to
find objects and verify the existence of correct watermarks in
them. Thus, this approach may not be suitable for already-re-
leased content without watermarks in them. The watermarking

approach is more suitable for the somewhat controlled environ-
ments, such as distribution of multimedia content on DVDs or
using special sites and custom players. Watermarking may not
be effective for the rapidly increasing online videos, especially
those uploaded to sites such as YouTube and played back by any
video player. Watermarking is not the focus of this paper.
The focus of this paper is on the other approach for pro-

tecting multimedia content, which is content-based copy detec-
tion (CBCD) [15]. In this approach, signatures (or fingerprints)
are extracted from original objects. Signatures are also created
from query (suspected) objects downloaded from online sites.
Then, the similarity is computed between original and suspected
objects to find potential copies. Many previous works proposed
different methods for creating and matching signatures. These
methods can be classified into four categories: spatial, temporal,
color, and transform-domain. Spatial signatures (particularly the
block-based) are the most widely used. However, their weak-
ness is the lack of resilience against large geometric transfor-
mations. Temporal and color signatures are less robust and can
be used to enhance spatial signatures. Transform-domain sig-
natures are computationally intensive and not widely used in
practice. For more details, see surveys for audio fingerprinting
[5] and 2-D video fingerprinting [15].
Youtube Content ID [9], Vobile VDNA,1 and MarkMonitor

[17] are some of the industrial examples which use finger-
printing for media protection, while methods such as [12]
can be referred to as the academic state-of-the-art. Unlike
previous works, the contribution of this paper is to design a
large-scale system to find copies that can be used for different
types of multimedia content and can leverage multi-cloud
infrastructures to minimize the cost, expedite deployment, and
dynamically scale up and down. That is, we design our system
such that previous content-based copy detection methods for
creating and matching signatures can be implemented within
our system.
In addition to our cloud-based system, we propose a new

method for 3-D video fingerprinting, and a new design for the
distributed matching engine. The works related to each of these
components are summarized in the following subsections.

A. 3-D Video Signatures

Content-based copy detection of 3-D videos is a fairly new
problem; we are aware of only two previous works [20] and
[11]. The work in [20] computes SIFT points in each view and
uses the number of matching SIFT points to verify matches.
Comparing all SIFT points in each frame is not practical for
large databases due to the storage overhead and search com-
plexity. On the other hand, the work in [11] assumes that the
depth maps are given or estimated. Estimating the depth map
from stereoscopic videos is quite expensive. The method in
[11] is suitable for 3-D videos encoded in the video plus depth
format, but not for stereoscopic videos. Our proposed method
in this paper captures the depth properties without calculating
the depth map itself and it is computationally efficient because
it does not compare all features in the frame.

1[Online] Available: http://www.vobileinc.com/press.php?id=23
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Although 3-D copy detection methods are scarce in the lit-
erature, there are many methods available for 2-D video copy
detection. Hampapur et al. [8] use the temporal features of the
video as the signature. Similarly, Tasdemir et al. [22] use motion
vectors as the signature for each frame. Some methods use color
histograms as signatures, e.g., [8]. The color histogram signa-
ture is prone to global variations in color which are common
when recoding video. Another group of methods use interest
points of video frames as signature. For example, Liu et al. [14]
use local SIFT features as the frame signature. Using gradient
information has also shown to be robust to many 2-D transfor-
mations [12].
All of the above 2-D video fingerprinting methods can be

implemented in the proposed system. In addition, while some
of these methods can be used for 3-D video copy detection,
they are designed for 2-D videos, and they ignore the informa-
tion in different views and the depth of 3-D videos. This in-
formation is important especially in the presence of 3-D video
transformations such as view synthesis, where views from dif-
ferent viewpoints can be generated using the depth map of the
3-D video. When two new views are synthesized, the posi-
tioning of each pixel in the frame is changed, and some areas
are occluded while other areas become visible. The luminance,
gradient, color and even the interest points in each block can
change as well when a new view is synthesized. Thus, the ex-
tracted signature using any of the 2-D methods will change
accordingly. Therefore, when searching for similar signatures,
manipulated versions may not be identified. The importance
of using signatures that have some information from the depth
signal has been shown in [11]. In addition, our experiments and
comparisons in this paper show that the state-of-the-art copy
detection system used by YouTube (called Content ID) fails to
detect many simple transformations made on 3-D videos such
as re-encoding, conversion to row or column interleaved for-
mats, and creating new virtual views. Based on the available
information from the patent describing the Content ID system
[9] and our own experiments, we believe that the poor perfor-
mance of Content ID on 3-D videos is because it does not con-
sider any depth information.

B. Distributed Matching Engine
Unlike many of the previous works, e.g., [3] which designed

a system for image matching, our proposed matching engine is
general and it can support different types of multimedia objects,
including images, 2-D videos, and 3-D videos. To achieve this
generality, we divide the engine into two main stages. The first
stage computes nearest neighbors for a given data point, and
the second stage post-processes the computed neighbors based
on the object type. In addition, our design supports high-dimen-
sionality which is needed for multimedia objects that are rich in
features.
Computing nearest neighbors is a common problem in many

applications. Our focus in this paper is on distributed techniques
that can scale to large datasets such as [13], [16], [3], [21].
Liao et al. [13] build a multi-dimensional index using R-tree on
top of the Hadoop distributed file system (HDFS). Their index,
however, can only handle low dimensional datasets—they per-
formed their experiments with two dimensional data. They solve

the nearest neighbors over large datasets using MapReduce
[6]. Lu et al. [16] construct a Voronoi-like diagram using some
selected pivot objects. They then group the data points around
the closest pivots and assign them to partitions, where searching
can be done in parallel. The system in [16] is also designed for
low dimensional datasets; it did not consider data with more
than 30 dimensions. In contrast, in our experiments we used
images and videos with up to 128 dimensions. Aly et al. [3]
propose a distributed system for image retrieval. A major draw-
back of this system is using a single machine that directs all
query points, which makes it a single point of failure as well as
a bottleneck that could slow down thewhole system. Our system
does not use a central machine, and thus it is more robust and
scalable.
The closest work to ours is the RankReduce system [21],

which implements a distributed LSH (Locality Sensitive
Hashing) index on a computing cluster using MapReduce.
RankReduce maintains multiple hash tables over a dis-
tributed cluster, which requires storing multiple replicas of
the datasets in hash tables. This incurs significant storage cost
and it increases the number of I/O operations. In contrast,
our system stores the dataset only once. We compare the
proposed matching engine against RankReduce and we show
that our system returns more accurate neighbors and it is
more efficient.

III. OVERVIEW OF THE PROPOSED SYSTEM
The goal of the proposed system for multimedia content pro-

tection is to find illegally made copies of multimedia objects
over the Internet. In general, systems for multimedia content
protection are large-scale and complex with multiple involved
parties. In this section, we start by identifying the design goals
for such systems and our approaches to achieve them. Then,
we present the high-level architecture and operation of our pro-
posed system.

A. Design Goals and Approaches
A content protection system has three main parties: (i) con-

tent owners (e.g., Disney), (ii) hosting sites (e.g., YouTube), and
(iii) service providers (e.g., Audible Magic). The first party is
interested in protecting the copyright of some of its multimedia
objects, by finding whether these objects or parts of them are
posted on hosting sites (the second party). The third party is the
entity that offers the copy finding service to content owners by
checking hosting sites. In some cases the hosting sites offer the
copy finding service to content owners. An example of this case
is YouTube, which offers content protection services. And in
other, less common, cases the content owners develop and op-
erate their own protection systems.
We define and justify the following four goals as the most

important ones in multimedia content protection systems.
• Accuracy: The system should have high accuracy in terms
of finding all copies (high recall) while not reporting false
copies (high precision). Achieving high accuracy is chal-
lenging, because copied multimedia objects typically un-
dergo various modifications (or transformations). For ex-
ample, copied videos can be subjected to cropping, embed-
ding in other videos, changing bit rates, scaling, blurring,
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and/or changing frame rates. Our approach to achieve this
goal is to extract signatures from multimedia objects that
are robust to as many transformations as possible.

• Computational Efficiency: The system should have short
response time to report copies, especially for timely mul-
timedia objects such as sports videos. In addition, since
many multimedia objects are continually added to online
hosting sites, which need to be checked against reference
objects, the content protection system should be able to
process many objects over a short period of time. Our ap-
proach to achieve this goal is to make the signatures com-
pact and fast to compute and compare without sacrificing
their robustness against transformations.

• Scalability and Reliability: The system should scale (up
and down) to different number of multimedia objects.
Scaling up means adding more objects because of mon-
itoring more online hosting sites, having more content
owners using the system, and/or the occurrence of special
events such as sports tournaments and release of new
movies. Conversely, it is also possible that the set of ob-
jects handled by the system shrinks, because, for example,
some content owners may terminate their contracts for
the protection service. Our approach to handle scalability
is to design a distributed system that can utilize varying
amounts of computing resources.
With large-scale distributed systems, failures frequently
occur, which require the content protection system to be
reliable in face of different failures. To address this reli-
ability, we design the core parts of our system on top of
the MapReduce programming framework, which offers re-
siliency against different types of failures.

• Cost Efficiency: The system should minimize the cost
of the needed computing infrastructure. Our approach to
achieve this goal is to design our system to effectively
utilize cloud computing infrastructures (public and/or
private). Building on a cloud computing infrastructure
also achieves the scalability objective discussed above and
reduces the upfront cost of the computing infrastructure.

B. Architecture and Operation

The proposed cloud-based multimedia content protection
system is shown in Fig. 1. The system has multiple components;
most of them are hosted on cloud infrastructures. The figure
shows the general case where one or more cloud providers can
be used by the system. This is because some cloud providers
are more efficient and/or provide more cost saving for different
computing and communication tasks. For example, a cloud
provider offering lower cost for inbound bandwidth and storage
can be used for downloading and temporarily storing videos
from online sites (top cloud in the figure), while another cloud
provider (or private cloud) offering better compute nodes at
lower costs can be used to maintain the distributed index and to
perform the copy detection process (lower cloud in the figure).
The proposed system can be deployed and managed by any

of the three parties mentioned in the previous section: content
owners, hosting sites, or service providers. The proposed system
has the following main components, as shown in Fig. 1:

Fig. 1. Proposed cloud-based multimedia content protection system.

• Distributed Index: Maintains signatures of objects that
need to be protected;

• Reference Registration: Creates signatures from objects
that content owners are interested in protecting, and inserts
them in the distributed index;

• Query Preparation: Creates signatures from objects down-
loaded from online sites, which are called query signatures.
It then uploads these signatures to a common storage;

• Object Matching: Compares query signatures versus ref-
erence signatures in the distributed index to find poten-
tial copies. It also sends notifications to content owners if
copies are found;

• Parallel Crawling: Downloads multimedia objects from
various online hosting sites.

The Distributed Index and Object Matching components
form what we call the Matching Engine, which is described
in Section V. The second and third components deal with
signature creation, which is described in Section IV. For the
Crawling component, we designed and implemented a parallel
crawler and used it to download videos from YouTube. The
details of the crawler are omitted due to space limitations.
The proposed system functions as follows. Content owners

specify multimedia objects that they are interested in protecting.
Then, the system creates signatures of these multimedia objects
(called reference objects) and inserts (registers) them in the dis-
tributed index. This can be one time process, or a continuous
process where new objects are periodically added. The Crawl
component periodically (e.g., once a day) downloads recent ob-
jects (called query objects) from online hosting sites. It can use
some filtering (e.g., YouTube filtering) to reduce the number
of downloaded objects. For example, for video objects, it can
download videos that have a minimum number of views or be-
long to specific genre (e.g., sports). The signatures for a query
object are created once the Crawl component finishes down-
loading that object and the object itself is removed. After the
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Crawl component downloads all objects and the signatures are
created, the signatures are uploaded to the matching engine to
perform the comparison. Compression of signatures can be per-
formed before the upload to save bandwidth. Once all signatures
are uploaded to the matching engine, a distributed operation is
performed to compare all query signatures versus the reference
signatures in the distributed index.

IV. SIGNATURE CREATION

The proposed system is designed to handle different types
of multimedia objects. The system abstracts the details of dif-
ferent media objects into multi-dimensional signatures. The sig-
nature creation and comparison component is media specific,
while other parts of the system do not depend on the media
type. Our proposed design supports creating composite signa-
tures that consist of one or more of the following elements:
• Visual signature: Created based on the visual parts in mul-
timedia objects and how they change with time;

• Audio signature: Created based on the audio signals in
multimedia objects;

• Depth signature: If multimedia objects are 3-D videos, sig-
natures from their depth signals are created;

• Meta data: Created from information associated with mul-
timedia objects such as their names, tags, descriptions,
format types, and IP addresses of their uploaders or down-
loaders;

Previous works have addressed creating visual signatures for
2-D videos [15] and audio signals [5]. These works and others
can be supported by our system in a straightforward manner.
In the current paper, we present a novel method for creating
depth signatures from stereoscopic 3-D videos, which are the
most common format of 3-D videos nowadays. In such videos,
the depth signal is not explicitly given. Rather, the video is pre-
sented in two views. Our method computes a signature of the
depth signal without computing the depth signal itself.
The proposed method takes as input a 3-D video encoded in

stereo format, which is composed of two views (left view for
left eye and right view for right eye). Each view is a stream of
frames which correspond to frames in the other view. The output
of the method is a signature for each pair of frames. To reduce
the computation and storage costs, subsampling can be applied
in which signatures are computed only for a subset of frames,
e.g., every tenth frame.
The proposed method is composed of the following main

steps.
Step 1) Compute Visual Descriptors for Left and Right

Images. Visual descriptors are local features that
describe salient parts of an image. Different types
of descriptors can be used, including Speeded-Up
Robust Feature (SURF), Scale-Invariant Feature
Transform (SIFT), and HOG (Histogram of Ori-
ented Gradients). The default descriptor used in
our method is SURF. Each descriptor has a fixed
number of dimensions or features. For example,
each SURF descriptor has 64 dimensions. Each
descriptor is computed at a specific pixel in the

image, which has a location of . The result
of this step is two sets of descriptors; one for the
left image and one for the right image

(1)
(2)

where and are the number of descriptors in
the left and right images, respectively and is the
number of dimensions in each descriptor.

Step 2) Divide Each Image Into Blocks. Both the left and
right images are divided into the same number of
blocks. In general, blocks can be of different sizes
and each can be a square or other geometrical shape.
In our implementation, we use equal-size square
blocks. Thus, each image is divided into
blocks.

Step 3) Match Visual Descriptors. For each visual de-
scriptor in the left image, we find the closest
descriptor in the right image. We consider the block
that the descriptor is located in and we find its
corresponding block in the right image. We draw
a larger window around this corresponding block.
This is done to account for any slight changes in
the visual objects between the left and right views.
Different types of similarity measures can be used
to compute the distance between feature vectors. In
our implementation, we use the Euclidean distance
to compute the distance between descriptors

(3)

We compute the distance between each visual de-
scriptor in the left image and all descriptors in the
corresponding block of the right image. The corre-
sponding match is the descriptor with the smallest
distance.

Step 4) Compute Block Disparity. We compute the block
disparity between each block in the left image and
its corresponding block in the right image. The dis-
parity of a single descriptor is given by

(4)

where is the position of descriptor in the
left image, and is the position of the cor-
responding descriptor in the right image. We nor-
malize the disparity by the width and the height

of each block in the image. The disparity of
block is denoted by and computed as the av-
erage disparity of all visual descriptors in that block.
If a block or its corresponding block in the right
image does not have any descriptor, the disparity is
set to 0.

Step 5) Compute Signature. The signature of the two cor-
responding images is: . We
note that the signature is compact and fixed in size
as the total number of blocks is fixed and
small (in our experiments, we have blocks).
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In summary, our method constructs coarse-grained disparity
maps using stereo correspondence for a sparse set of points in
the image. Stereo correspondence tries to identify a part in an
image that corresponds to a part in the other image. A fine-
grained disparity map of a pair of images describes the dis-
placement needed for each pixel to move from one image to
the correct position in the other image. The disparity map is in-
versely proportional to the depthmap,meaning that the disparity
is larger for objects near the camera than objects far away from
the camera. Since fine-grained disparity maps are expensive to
compute, we create our signature from coarse-grained disparity
maps, which are computed from blocks of pixels.

V. DISTRIBUTED MATCHING ENGINE
We design a matching engine suitable for different types of

multimedia objects that is scalable and elastic. Scalability is
needed to handle large datasets with millions of multimedia ob-
jects. Elasticity is a desirable feature that allows our system to
utilize varying amount of computing resources offered on cloud
infrastructures.
In general, multimedia objects are characterized bymany fea-

tures and each feature is of high dimensions. For example, an
image can be characterized by 100–200 SIFT descriptors, and
each has up to 128 dimensions, and a video object will have
even more features extracted from its frames. In addition, dif-
ferent types of multimedia objects require different number of
features as well as different processing operations in order to de-
cide on object matching. For example, matching two video clips
requires not only matching individual frames, but also the tem-
poral sequence of these frames. This is unlike image matching.
To address this generality, we design the matching engine as
two stages. In the first stage, the engine provides an efficient,
distributed, implementation for computing nearest neighbors
for high-dimensional data. In the second stage, the engine pro-
vides a generic interface for post processing these neighbors
based on the different needs of various media types and appli-
cations. For instance, for video copy protection, the individual
frame matching is done in the first stage and the temporal as-
pects are considered in the second stage. For image protection,
the second stage can be empty.
The matching engine is implemented using the MapReduce

distributed programming model [6]. The design is not restricted
to MapReduce and can be implemented in other distributed
programming platforms. MapReduce provides an infrastruc-
ture that runs on a cluster of machines, which automatically
manages the execution of multiple computations in parallel as
well as the communications among these computations. This
distributed design allows the index to scale to large volumes of
data and to use variable amounts of computational resources.
It also provides transparent redundancy and fault tolerance
to computations. The following subsections briefly describe
the index construction and object matching operations. More
details can be found in [1] and our preliminary work in [2].

A. Constructing the Matching Engine
The basic design of the matching engine is illustrated in

Fig. 2. It has a data structure that we call the distributed index as
well as distributed processing operations. The index is divided

Fig. 2. High-level architecture of the distributed index component used in the
multimedia content protection system. Round boxes are MapReduce jobs.

into two parts: (i) directing tree, and (ii) bins. Directing tree is a
space partitioning tree [19] that is used to group similar points
in the same or close-by bins. It is also used to forward query
points to bins with potential matches. Bins are leaf nodes of
the directing tree, but they are stored as files on the distributed
file system. All processing of the matching engine is performed
in two distributed operations: (i) Build Index, and (ii) Match
Objects. The first creates the index from reference data points,
and the second matches query objects versus reference objects
in the index.
The design of our index has two main features that make it

simple to implement in a distributed manner, yet efficient and
scalable. First, data points are stored only at leaf nodes. Inter-
mediate nodes do not store any data, they only store meta data
to guide the search through the tree. This significantly reduces
the size of the directing tree and makes it fit easily in the main
memory of a single machine even for large datasets. This feature
allows us to distribute copies of the directing tree to distributed
machines to process queries in parallel. Replicating the directing
tree on different machines not only facilitates distributed pro-
cessing, but it also greatly improves the robustness and effi-
ciency of the system. The robustness is improved because there
is no single point of failure. The efficiency is improved because
there is no central machine or set of machines that other ma-
chines need to contact during the computation. The second fea-
ture of our index design is the separation of leaf nodes (bins)
and storing them as files on the distributed file system. This in-
creases reliability as well as simplifies the implementation of the
distributed computations in our system, because concurrent ac-
cesses of data points are facilitated by the distributed file system.
The distributed index is constructed from reference objects,

which is done before processing any queries. Constructing the
index involves two steps: (i) creating the directing tree, and
(ii) distributing the reference dataset to bins. Once created,
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the directing tree is serialized as one object and stored on the
distributed file system. This serialized object can be loaded in
memory by various computational tasks running on multiple
machines in parallel. Distribution of data is done in parallel on
multiple machines using a simple MapReduce job.
The directing tree is the top part of the index, which contains

all non-leaf nodes. Different types of trees [19] can be used as
directing tree, after we perform our ideas of keeping data points
only at leaves, aggregating data points into bins, and storing
bins on the distributed file system. We chose the KD tree [4]
as the base for our directing tree, because of its efficiency and
simplicity. A KD tree is a binary tree in which every node is
a -dimensional point. Every non-leaf node can be considered
as a splitting hyperplane that divides the space into two parts.
Points to the left of this hyperplane represent the left sub-tree of
that node and points to the right of the hyperplane represent the
right sub-tree. The hyperplane direction is chosen in a way such
that every node in the tree is associated with one of the dimen-
sions, with the hyperplane perpendicular to that dimension’s
axis, and it splits the data points around it into two equal-size
subsets. The equal-size subsets make the tree balanced.
We are interested in matching objects with high dimensions.

Thus, if we use the traditional KD tree, it will be too deep with
too many leaf nodes and each has only one data point, which
is not efficient especially in distributed processing environment
where accessing any node may involve communications over
the network. We control the depth of the tree based on the size
of the dataset such that the size of bins at the bottom of the tree
roughly matches the storage block size of the distributed file
system. In real deployment, the size of a leaf node is in the order
of 64 to 128 MBs, which means that each leaf node will contain
thousands of data points. Thus, the size of our directing tree will
be small. Since we compress the depth of the tree, we use only a
subset of the dimensions of the data points. We use the principal
component analysis (PCA) to choose the most representative di-
mensions to project the dataset on. PCA is a well studied tech-
nique for dimension reduction. It finds a hyperplane of the re-
quired target dimensionality to project the actual points on, such
that the variance among them after projection is maximized. It
finds this hyperplane by calculating the singular value decom-
position (SVD) of the covariance matrix of the input points.

B. Matching Objects
The object matching process is done in three steps: (i) parti-

tioning query dataset, (ii) finding nearest neighbors for each
data point in the query dataset, and (iii) performing applica-
tion-specific object matching using the found nearest neigh-
bors. Each of these three steps is executed in parallel on the
MapReduce infrastructure. The first step partitions the query
dataset such that each partition contains a bin and a list of data
points that are likely to have neighbors in that bin. This is done
using the directing tree, which is used to create the list of data
points that corresponds to each bin.
The second and third steps of the object matching process

first find the nearest neighbors and then apply application-
specific function(s) on them to produce the final object matching
results. These steps are achieved through one MapReduce job
that has one mapper and two consecutive reducers. The mapper

and first reducer compute the nearest neighbors for all points
in the query dataset. The second reducer performs various post
processing functions on the nearest neighbors based on the
multimedia object type.

VI. EVALUATION
We have implemented and integrated all parts of the pro-

posed content protection system: from a web user interface to
control various parts of the system and its configurations, to
tools to allocate, release, and manage cloud resources, to all
algorithms for creating and matching signatures, as well as all
distributed MapReduce algorithms for processing thousands of
multimedia objects. This is a fairly complex system with tens
of thousands of lines of code in different programming and
scripting languages.
We validated our proposed multi-cloud architecture by

deploying part of our system on the Amazon cloud and the
other part on our local private cloud. The Amazon cloud had
up to 20 machines and our private cloud had 10 machines each
with 16 cores. We deployed the Parallel Crawling and Query
Preparation components on the Amazon cloud. This is because
the Amazon cloud has large Internet links and it can support
downloading thousands of multimedia objects from various
sites, such as YouTube. The relatively close proximity and good
connectivity of Amazon data centers in North America to major
multimedia content hosting sites accelerates the download
process. More importantly, at the time of our experiments, the
Amazon pricing model did not charge customers for inbound
bandwidth while it charged for outbound bandwidth. Since the
majority of our workload is downloading multimedia objects
(inbound traffic), this deployment minimized our costs, and
it indeed shows the benefits of our architecture, which can
opportunistically utilize resources from different clouds. After
downloading each multimedia object, we create signatures
from it and immediately delete the object itself as it is no longer
needed–we keep the object URL link on the hosting site from
which we downloaded it. This minimizes our storage cost on
Amazon. Signatures from multiple multimedia objects are then
grouped, compressed, and transferred to our private cloud for
more intensive processing. Once uploaded to the private cloud,
the signatures are deleted from Amazon to save storage. On
our private cloud, we deploy the matching engine and all of
its related operations. These include building the distributed
index from reference objects and matching query objects versus
reference objects in the index. The crawling and matching
operations are done periodically; in our system we do it once
daily, when our local cloud is lightly loaded.
We rigorously evaluate the proposed system using real de-

ployment with thousands of multimedia objects. Specifically,
in the following subsections, we evaluate our system from four
angles: (i) complete system performance, (ii) comparison with
YouTube, (iii) analysis of the signature method, and (iv) accu-
racy, scalability and elasticity of the distributedmatching engine
component.

A. Performance of the Complete System
Videos.We assess the performance of the whole systemwith a

large dataset of 11,000 3-D videos downloaded from YouTube.
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These videos are from different categories, and have diverse
sizes, durations, resolutions, and frame rates. Thus, they rep-
resent a good sample of most 3-D videos on YouTube. 10,000
of these videos make the bulk of our query set, while the other
1,000 videosmake the bulk of our reference set.We downloaded
both the 10,000 query videos and the 1,000 reference videos in a
similar manner as follows, while keeping a list of all previously
downloaded video IDs to ensure that the reference set does not
include any of the downloaded query videos. First, we used the
APIs provided by YouTube to download the top 100 videos in
terms of view count in each video category. YouTube has 22 cat-
egories: Music, Entertainment, Sports, Film, Animation, News,
Politics, Comedy, People, Blogs, Science, Technology, Gaming,
Howto, Style, Education, Pets, Animals, Autos, Vehicle, Travel,
and Events. Since some categories did not have any 3-D videos
and some of them had a small number, we added a set of seed
queries to expand our dataset. The queries we used were: 3d side
by side, 3d trailer, 3d landscape, 3d animation, 3d football, 3d
gaming and 3d ads.
For the reference video set, in addition to the 1,000 down-

loaded videos, we used 14 other videos that were manually
downloaded to be as diverse as possible and the likelihood of
them being in the query set is low. We chose 10 out of these 14
videos and manipulated each of them using the video
processing tool in five different ways: cutting clips or segments,
scaling, blurring, logo insertion, and cropping. Thus, we created
50 videos in total. We added these 50 manipulated videos to the
query set to ensure that the query set has matches to some of
the videos in the reference set, which made the query set have
10,050 videos. We created signatures from all reference videos
and inserted them in the matching engine.
Methodology. For each frame of the query videos, the signa-

ture is computed and the closest signatures to it are retrieved
from the distributed index. Candidate matches undergo an ad-
ditional step to ensure that the number of matching frames in
the two videos is enough. For example, if frame in the query
video matches frame in the reference video, we expect frame

in the query video to match frame in the reference
video. In order to consider this, a matching matrix is computed
for each pair of candidate reference video and query video. The
size of a matching matrix is the number of frames in the con-
sidered reference video times the number of frames in the query
video against which the reference video is being compared. A
value of 1 in the position of the matching matrix means
that the th frame of the reference video has matched the th
frame of the query video. The longest diagonal sequence of 1s
in this matrix indicates the largest number of matching frames
and is considered as a potential copy. The final matching score
between videos is the number of matches on the diagonal di-
vided by the diagonal length. We introduce a threshold param-
eter to decide whether two videos match. If two videos have
a matching score less than , they are not considered a match;
otherwise they are a match. We vary the threshold between 0
and 1.0.
We measure the performance in terms of two basic metrics:

precision (percentage of returned videos that are true copies)
and recall (percentage of true video copies that are returned). In
this large experiment, we compute the exact precision, which

Fig. 3. Performance of the complete system for 3-D video copy protection on
more than 11,000 3-D videos. (a) Precision-recall curve. (b) Precision and recall
versus threshold .

is possible as we can check whether a match declared by the
system is a true match or not by watching the videos. Computing
the exact recall is tricky though, since we cannot be 100% sure
that the large query set does not contain any copies other than
the added 50 videos, although we tried to minimize this possi-
bility. The only way to be sure is to manually check each of the
10,000 videos, which is a formidable task. To partially mitigate
this issue, we compute an approximation of the recall assuming
that there are no other copies in the 10,000 videos. Thus, the
computed recall should be viewed as an upper bound on the
achievable recall of our system. We compute the exact recall on
small datasets in later sections.
Results. We plot the results of this experiment in Fig. 3.

Fig. 3(a) shows the precision-recall (PR) curve, where we
plot the approximate recall as discussed above. To get this
PR curve, we change the threshold from 0 to 1, and compute
the precision and recall for each threshold. PR curves are a
standard evaluation method in image retrieval, as they contain
rich information and can easily be read by researchers [18].
The results clearly show that our system can achieve both high
precision and recall. For example, a precision of 100% with a
recall of more than 80% can be achieved. To further analyze
the results, we show in Fig. 3(b), how the precision and recall
vary with the threshold parameter . The results show that our
method can achieve precision and recall values of more than
80% for a wide range of thresholds from 0.6 to 1. This means
that our system does not only provide high accuracy, but it is
not very sensitive to the threshold , which is an internal system
parameter. In other words, the system administrator does not
need to accurately fine tune .
In summary, this large-scale experiment with 11,000+ 3-D

videos and the whole system deployed on multiple distributed
machines confirms the accuracy of the proposed system.

B. Comparison With YouTube
YouTube is one of the largest online video sharing and

streaming sites in the world. It offers a video protection service
to its customers, which employs a sophisticated system to detect
illegal copies of protected videos. The system used in YouTube
is called Content ID,2 which is a proprietary system and we
cannot know much details about it beyond what YouTube
disclosed in its patent [9]. The goal of this subsection is not to

2[Online] Available: http://www.youtube.com/yt/copyright/
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conduct full comparison between our system and Content ID,
which is not possible. Our goal is to show that while the Content
ID system provides robust copy detection for traditional 2-D
videos, it fails to detect most copies of 3-D videos and that
the proposed system, which employs our new 3-D signature
method, outperforms Content ID by a large margin.
Methodology. To test the Content ID system, we download

several copyrighted 2-D and 3-D videos fromYouTube.We per-
form various transformations on these videos and then upload
them back to YouTube to see whether the Content ID system
can detect them as copies. In case of detection, YouTube shows
the message “Matched third party content” when a copyrighted
video is uploaded. Similarly, we test our system by using the
same 3-D videos downloaded from YouTube and subjected to
the same transformations.
In particular, we downloaded six 3-D and six 2-D protected

videos from Warner Bros. and 3net YouTube channels. The
video lengths are in the range of 30 seconds to 2 minutes. When
we uploaded each of these 12 videos back to YouTube without
any modifications, the Content ID system correctly identified
them all as copies.
Results for 2-D Videos. We tested YouTube for detecting

modified 2-D videos. We applied six transformations on each
of the six 2-D videos: blur, format change, frame dropping,
re-encoding with different resolution (scale), cutting 30 second
clip, and cutting 40 second clip. Then, we uploaded all 36
modified versions of the 2-D videos to YouTube. We found
that the Content ID system can detect all blur, format change,
frame dropping, and re-encoding with different resolution
transformations as copies, resulting in a recall of 100% for
these transformations. For the clip transformation, only one of
the 30 seconds clips was detected, but all 40 seconds clips were
detected as copies. Therefore, this experiment shows that the
YouTube Content ID is quite robust for 2-D videos.
Results for 3-D Videos. Now, we test the Content ID system

on 3-D videos and compare it against our system. Recall that
our system is general and can support different types of media,
but we focus in this paper on designing signatures for 3-D
videos as there have been little work on these videos, whereas
there are many works for 2-D copy detection. The original
3-D videos downloaded from YouTube are in side-by-side
format. We applied 15 different transformations; the first
ten of these transformations are common between 2-D and
3-D videos, while the other five are specific to 3-D videos.
The transformations on each 3-D video are: blur, file format
change, re-encoding with same bit-rate, re-encoding with
different bit-rate, re-encoding with different resolution (scale),
frame dropping, 30 seconds clip, 35 seconds clip, 40 seconds
clip, 45 seconds clip, anaglyph, row-interleaved, column-inter-
leaved, 2-D-plus-depth, and view synthesis. Anaglyph means
changing the video format such that the right and left images
are encoded in different colors to render 3-D perception on
regular 2-D displays using anaglyph glasses (color filters).
Row and column-interleaved indicate changing the format of
the left and right images to suit row- and column-interleaved
types of displays. The 2-D-plus-depth transformation computes
a depth for the video and presents the video as 2-D stream and
depth stream, which can be rendered by certain types of 3-D

TABLE I
COMPARISON AGAINST YOUTUBE IN TERMS OF RECALL

displays. View synthesis is used to create additional virtual
views from the basic stereo video. This is done to enhance
user’s experience or to evade the copy detection process.
As in 2-D videos, we uploaded all modified

3-D videos to YouTube in order to check whether the Content
ID system can identify them as copies. We explicitly specified
that these videos are 3-D when we uploaded them to YouTube.
The results are shown in the second column of Table I. The
results clearly show the poor performance of the Content ID
system on 3-D videos. For example, the Content ID system
could not detect even a single copy of the six 3-D videos when
they are subjected to seven different transformations. Some of
these transformations are as simple as bluring and re-encoding
while others are more sophisticated such as view synthesis and
2-D-plus-depth conversion. Furthermore, except for few trans-
formations, the Content ID system misses most of the modified
copies. The three transformations anaglyph, row-interleaved,
and column-interleave result in videos that are similar to their
corresponding 2-D versions. Since the 2-D versions of the used
6 3-D videos are also under copyright protection, the videos re-
sulting from such transformations are most probably matched
against the 2-D versions of the original videos.
To assess the accuracy of our system, we use the same six

3-D videos as our reference dataset. We also add the 14 videos
mentioned in Section VI-A to the reference dataset. We apply
the same 15 transformations on the six 3-D videos, resulting in
90 query videos. We add 1,000 other 3-D videos downloaded
from YouTube to the query dataset. We add these noise videos
in order to check whether our system returns false copies. We
report the results from our system in column three of Table I.
To be fairly comparable with Content ID, we only report the
recall from our system that is achieved at 100% precision, since
through all of our experiments with YouTube the precision was
100%. As Table I shows, our system was able to detect 89 out
of the 90 modified copies of the 3-D videos, including complex
ones such as view synthesis.
In summary, the results in this section show that: (i) there is

a need for designing robust signatures for 3-D videos since the
current system used by the leading company in the industry fails
to detect most modified 3-D copies, and (ii) our proposed 3-D
signature method can fill this gap, because it is robust to various
transformations including new ones specific to 3-D videos such
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as anaglyph and 2-D-plus-depth format conversions as well as
synthesizing new virtual views.

C. Performance of 3-D Signature Creation Component

We conduct small-scale, controlled experiments to rigorously
analyze the proposed 3-D signature method. We need the ex-
periment to be small because we manually modify videos in
different ways and check them one by one. This is needed to
compute the exact precision and recall of the proposed method.
The reference video set contains the 14 videos mentioned in

Section VI-A. The query set is created by modifying some of the
reference videos in many different ways. Specifically, we apply
the following transformations:
• Video Blurring: Reduces the sharpness and contrast of the
image. Radius of blur is in the range of [3, 5];

• Video Cropping: Crops and discards part of an image. The
discarded pixels are chosen at the boundaries. The number
of discarded pixels is in the range [19, 40];

• Video Scaling: Reduces the resolution of the video and the
scale factor is in the range [0.5,1.5];

• Logo Insertion: Puts a logo on one of the corners of the
video, the logo size is in the range of [19, 40] pixels;

• Frame Dropping: Periodically drops frames from the orig-
inal video. The period is in the range [2, 9], where 2 means
every other frame is dropped and period 10 means every
tenth frame is dropped. This transformation changes the
video frame rate;

• Video Transcoding: Changes the video from one file format
to another;

• Text Insertion: Writes random text on the video at different
places;

• Anaglyph: Multiplexes the left and right views of the 3-D
video over each other with different colors, typically red
and blue;

• Row Interleaved: Interleaves the left and right views of the
3-D video horizontally row by row such that the odd rows
belong to the left view and the even rows belong to the
right view;

• Column Interleaved: Interleaves the left and right views of
the 3-D video vertically column by column such that the
odd columns belong to the left view and the even columns
belong to the right view;

• 2-D-Plus-Depth: Converts the video from left and right
views stacked together horizontally side-by-side into an-
other format which is a 2-D video and its associated depth;

• View Synthesis: Uses the original left and right views to
create another two virtual views to be used instead of the
original views.

We conduct two types of experiments: (i) individual trans-
formations, in which we study the effect of each video
transformation separately, and (ii) multiple transformations, in
which we assess the impact of multiple transformations applied
to the same video. In the first individual transformations exper-
iments, we apply the above listed individual transformations
(except view synthesis) on each of the 14 videos mentioned in
Section VI-A using . View synthesis is applied using
the VSRS view synthesis tool [24]. View synthesis is applied

Fig. 4. Average accuracy of the proposed 3-D signature method. (a) Single
transformation. (b) Three transformations.

on two videos other than the 14, which are Ballet and Break-
Dancers. We create 18 different versions from each of these two
videos with synthesized views. In the multiple transformations
experiments, we choose 10 videos and apply on each of them
three transformations at the same time. These transformations
are blurring, scaling and logo insertion. Although the combined
transformations are not likely to occur in many videos, they
show the robustness of our method. Applying all these types
of transformations on different videos results in a diverse and
large query video set, which stresses our signature method.
Results for Individual Transformations. We first present the

average results across all videos and all transformations. We
plot the aggregate results in Fig. 4(a) in the form of the pre-
cision versus recall curve. The precision-recall curve shows the
achievable high accuracy of the proposed method. For example,
a precision of 100% can be achieved with a recall up to 95%,
by controlling the threshold value. To better understand the im-
pact of the threshold parameter, we analyze the achieved av-
erage precision and recall by our method for all possible values
of the threshold . The figure is not shown due to space limi-
tations. Our results show that the proposed method can concur-
rently achieve high precision and recall. For example, both the
precision and recall are more than 90% for a large range of the
threshold . We note that this high accuracy is achieved when
comparing significantly modified copies of videos versus refer-
ence videos. Our method achieves 100% accuracy (both preci-
sion and recall) when we compare unmodified versions of the
videos against reference videos.
Next, we analyze the accuracy of the proposed signature

method for each video transformation separately. This is to
understand the robustness of the method against each trans-
formation. We computed the precision-recall curve for each
case. In addition, we computed the precision and recall for
each value of the threshold. Due to space limitations, we omit
these figures. The results show that our method is highly robust
against the quite common logo insertion transformation as
it can achieve 100% precision and recall at wide range of
thresholds. This is because a logo can affect one or a few blocks
in the video frames, which is a relatively small part of the
signature. Similar high accuracy results are achieved for two
other common transformations: video blurring and transcoding
or format/bitrate change. In addition, for scaling, cropping, and
frame dropping, our method still achieves fairly high accuracy.
For example, our method is robust against video scaling. This
is because during the creation of the signature, it is normalized
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by the frame resolution as described in Section IV. Moreover,
for frame dropping our method achieves high precision and
recall at low thresholds, which means that true matches are
found but with low matching score, due to the gaps in the
matching diagonal between both videos. Finally, for cropping,
the results show that our signature method can identify 80%
of the matches with 100% precision, or identify all matches
with about 90% precision, which indicates that our method
is also robust against cropping. This is because our 3-D sig-
nature contains the depth values of each block. Since depth
is usually smooth, neighboring blocks usually have similar
values, causing our 3-D signature to be less sensitive to block
misalignments.
Results for Multiple Transformations. The aggregate results

in the form of precision-recall curve are shown in Fig. 4(b). The
results clearly show the high accuracy of the proposed method,
as high precision of more than 90% can be achieved with at
least a recall of 90%.We note that the recall in this experiment is
slightly less than the achieved recall in the previous experiment,
because of the combined transformations applied in this case.
Running Time for 3-D Signature Creation. In this experiment,

we measure the running time of our 3-D signature creation and
compare it to the method in [11], which requires computing the
depth maps. Thus, we chose a practical depth estimation method
[23]. We compute the running time for only the depth estimation
step of the signature creation method in [11] and compare it to
the whole running time of our method. We run the experiment
for 362 frames on the same machine. The results show that the
average running time for our 3-D signature creation is 0.87 sec,
with minimum and maximum values of 0.39 sec and 1.62 sec,
respectively. Whereas the average running time of depth esti-
mation step alone is 68.91 sec, ranging from 61.26 sec and up
to 85.59 sec.
It can be seen that depth estimation method is far more ex-

pensive than our proposed signature extraction; the cost for just
estimating the depth can be 100 times more than our signa-
ture extraction. As a result, [11] is only a suitable solution for
2-D-plus-depth formats where the expensive operation of depth
estimation is not needed. Moreover, [11] uses the depth signa-
ture as a filtering step before the visual fingerprint to reduce
the cost of computing visual signatures. While this argument
is valid for 2-D-plus-depth videos, this is not the case for stereo
videos because computing the dense depth map will be more
expensive than the visual signature.
Our results show that a coarse-grained disparity map is ro-

bust against multiple kinds of transformations without compro-
mising the precision, which suggests that computing the dense
depth map is not needed for such a problem.
Effect of Frame Sampling on Performance. In order to speed

up the matching process, simple techniques such as frame
sampling can be used. With a sampling rate of , only one
frame every frames will get processed, therefore the matching
process will get times faster. In order to ensure the robustness
of our system when using frame sampling, we repeated the
individual transformations experiments with different sampling
rates. The figures are omitted due to space limitations. Our
results show that our system can achieve high accuracy even
with low sampling rates, although the recall drops slightly with

the decrease of sampling rate, because of the reduced amount of
data. For example, we can achieve 92% recall at 96% precision
with a sampling rate of 1/10, while without frame sampling we
achieve a recall of 96% at 96% precision. That is, there is a loss
of 4% in recall with a rate of 1/10. Also, with a sampling rate
of 1/25 (about one frame per sec), we can achieve 86% recall
at 92% precision, while without frame sampling the achieved
recall at precision 92% is 96%. Thus, there is only a loss of
10% in recall with sampling rate of 1/25. As a result, we can
speed up the matching process significantly, while still having
high accuracy.

D. Accuracy and Scalability of the Matching Engine
We evaluate the accuracy and scalability of the matching en-

gine component of the proposed system. We also compare our
matching engine versus the best results reported by the RankRe-
duce system [21], which is the closest to our work.
Accuracy and Comparison Against RankReduce. We focus

on evaluating the accuracy of the computed nearest neighbors,
which is the primitive function provided by the engine. The ac-
curacy of the retrieved nearest neighbors for a point is com-
puted using the metric, which is given by

(5)

where is the rank of a true neighbor. equals 1 if
a true neighbor is within the retrieved , and 0 otherwise. The
average precision of the retrieved nearest neighbors across
all points in the query set is

(6)

We use the metric in our experiments.
We compare against RankReduce [21], which implements a

distributed LSH index. It maintains a number of hash tables over
a set of machines on a distributed file system, and it usesMapRe-
duce for searching the tables for similar points. We compare
the results achieved by our matching engine against the best re-
sults mentioned in [21] using the same dataset and the same set-
tings. We did not implement RankReduce; rather we used the
best stated results in its paper. We use the same dataset size of
32,000 points extracted from visual features of images.Wemea-
sure the average precision at 20 nearest neighbors at the same
percentage of scanned bins, which are called probed buckets in
RankReduce terms.
We plot the comparison results in Fig. 5. The results first

show that the proposed matching engine produces high accu-
racy, which is more than 95% by scanning less than 10% of
the data. In addition, the results show that our matching engine
consistently outperforms RankReduce, and the gain is signifi-
cant (15–20%) especially in the practical settings when we scan
5–10% of the data points. For example, when the fraction of
scanned data points is 5%, the average precision achieved by our
engine is about 84%, while the average precision achieved by
RankReduce is less than 65% for the same fraction of scanned
data points. For RankReduce to achieve 84% average precision,
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Fig. 5. Comparing our matching engine versus the closest system in the liter-
ature, RankReduce.

it needs to scan at least 15% of the dataset (3X more than our
engine), which incurs significantly more computation and I/O
overheads.
In addition to the superior performance in terms of average

precision, our engine is more efficient in terms of storage
and computation. For storage, RankReduce needs to store the
whole reference dataset multiple times in hash tables; up to
32 times. On the other hand, our engine stores the reference
dataset only once in bins. Storage requirements for a dataset of
size 32,000 points indicate that RankReduce needs up to 8 GB
of storage, while our engine needs up to 5 MB, which is more
than 3 orders of magnitude less. These storage requirements
may render RankReduce not applicable for large datasets with
millions of points, while our engine can scale well to support
massive datasets. For computation resources, our engine and
RankReduce use similar scan method to reference points found
in bins or buckets. However, as discussed above, RankReduce
needs to scan more buckets to produce similar precision as our
engine. This makes our engine more computationally efficient
for a given target precision, as it scans fewer bins.
Scalability and Elasticity of Our Engine. We conduct mul-

tiple experiments to show that our engine is scalable and elastic.
Scalability means the ability to process large volumes of data,
while elasticity indicates the ability to efficiently utilize various
amounts of computing resources. Both are important character-
istics: scalability is needed to keep up with the continuously in-
creasing volumes of data and elasticity is quite useful in cloud
computing settings where computing resources can be acquired
on demand.
We run our engine on datasets of different sizes from 10 to

160 million data points, and on clusters of sizes ranging from
8 to 128 machines from Amazon. These data points are visual
features extracted from 1 million images download from Ima-
geNet [7]. From each image, we extract up to 200 SIFT features,
which results in a dataset of up to 200 million data points. In all
experiments, we compute the nearest neighbors for a
query dataset of size 100,000 data points. We measure the total
running time to complete processing all queries, and we plot
the results in Fig. 6. The figure shows that our engine is able
to handle large datasets, up to 160 million reference data points
are used in creating the distributed index. More importantly, the
running time grows almost linearly with increasing the dataset
size on the same number of machines. Consider for example the

Fig. 6. Running times of different dataset sizes on different number of
machines.

Fig. 7. Effect of on running time and accuracy.

curve showing the running times on 32 machines. The running
times for the reference dataset of sizes 40, 80, and 160 million
data points are about 40, 85, and 190 minutes, respectively.
In addition, the results in Fig. 6 clearly indicate that our en-

gine can efficiently utilize any available computing resources.
This is shown by the almost linear reduction in the running time
of processing the same dataset with more machines. For ex-
ample, the running times of processing a reference dataset of
size 80 million data points are 160, 85, 52, and 27 minutes for
clusters of sizes 16, 32, 64, and 128 machines, respectively. The
scalability and elasticity of our engine are obtained mainly by
our design of the distributed index, which partitions the datasets
into independent and non-overlapping bins. These bins are al-
located independently to computing machines for further pro-
cessing. This data partitioning and allocation to bins enable flex-
ible and dynamic distribution of the computational workload to
the available computing resources, which is supported by the
MapReduce framework.
Effect of Number of Nearest Neighbors. In this experi-

ment, we study the effect of changing the number of nearest
neighbors retrieved. We measure the running time and the av-
erage precision for different values of , while maintaining a
fixed scanned percentage of the reference dataset. The results
are plotted in Fig. 7, which show that while we achieve high
precision for returning the closest neighbor (i.e., ), with
value of 94%, the average precision achieved is not significantly
impacted by increasing . For example at the average
precision is 88%, and at the average precision is 82%,
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losing only 6% of the precision when returning 4 times more
neighbors. The results also show that the effect of on run-
ning time is negligible, since running time is mainly related to
the size of the scanned data points.

VII. CONCLUSION AND FUTURE WORK

Distributing copyrighted multimedia objects by uploading
them to online hosting sites such as YouTube can result in sig-
nificant loss of revenues for content creators. Systems needed to
find illegal copies of multimedia objects are complex and large
scale. In this paper, we presented a new design for multimedia
content protection systems using multi-cloud infrastructures.
The proposed system supports different multimedia content
types and it can be deployed on private and/or public clouds.
Two key components of the proposed system are presented.
The first one is a new method for creating signatures of 3-D
videos. Our method constructs coarse-grained disparity maps
using stereo correspondence for a sparse set of points in the
image. Thus, it captures the depth signal of the 3-D video,
without explicitly computing the exact depth map, which is
computationally expensive. Our experiments showed that the
proposed 3-D signature produces high accuracy in terms of
both precision and recall and it is robust to many video trans-
formations including new ones that are specific to 3-D videos
such as synthesizing new views. The second key component
in our system is the distributed index, which is used to match
multimedia objects characterized by high dimensions. The
distributed index is implemented using the MapReduce frame-
work and our experiments showed that it can elastically utilize
varying amount of computing resources and it produces high
accuracy. The experiments also showed that it outperforms
the closest system in the literature in terms of accuracy and
computational efficiency. In addition, we evaluated the whole
content protection system with more than 11,000 3-D videos
and the results showed the scalability and accuracy of the
proposed system. Finally, we compared our system against the
Content ID system used by YouTube. Our results showed that:
(i) there is a need for designing robust signatures for 3-D videos
since the current system used by the leading company in the
industry fails to detect most modified 3-D copies, and (ii) our
proposed 3-D signature method can fill this gap, because it is
robust to many 2-D and 3-D video transformations.
The work in this paper can be extended in multiple direc-

tions. For example, our current system is optimized for batch
processing. Thus, it may not be suitable for online detection
of illegally distributed multimedia streams of live events such
as soccer games. In live events, only small segments of the
video are available and immediate detection of copyright in-
fringement is crucial to minimize financial losses. To support
online detection, the matching engine of our system needs to
be implemented using a distributed programming framework
that supports online processing, such as Spark. In addition, com-
posite signature schemes that combine multiple modalities may
be needed to quickly identify short video segments. Further-
more, the crawler component needs to be customized to find on-
line sites that offer pirated video streams and obtain segments of
these streams for checking against reference streams, for which

the signatures would also need to be generated online. Another
future direction for the work in this paper is to design signatures
for recent and complex formats of 3-D videos such as multiview
plus depth. A multiview plus depth video has multiple texture
and depth components, which allow users to view a scene from
different angles. Signatures for such videos would need to cap-
ture this complexity, while being efficient to compute, compare,
and store.
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