
762 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 4, AUGUST 2011

Efficient Algorithms for Multi-Sender Data
Transmission in Swarm-Based Peer-to-Peer

Streaming Systems
Yuanbin Shen, Cheng-Hsin Hsu, Member, IEEE, and Mohamed Hefeeda, Senior Member, IEEE

Abstract—In mesh-based peer-to-peer (P2P) streaming systems,
each video sequence is divided into segments, which are then
streamed from multiple senders to a receiver. The receiver needs
to coordinate the senders by specifying a transmission schedule
for each of them. We consider the problem of scheduling segment
transmission in P2P streaming systems, where different segments
have different weights in terms of quality improvements to the
received video. Our goal is to compute the transmission schedule
for each receiver in order to maximize the perceived video quality.
We first show that this scheduling problem is NP-Complete. We
then present an integer linear programming (ILP) formulation
for it, so that it can be solved with any ILP solver. This op-
timal solution, however, is computationally expensive and is not
suitable for real-time P2P streaming systems. Thus, we propose
two approximation algorithms to solve this segment scheduling
problem. These algorithms provide theoretical guarantees on
the worst-case performance. The first algorithm considers the
weight of each video segment. The second algorithm is simpler
and it assumes that segments carry equal weights. We analyze the
performance and complexity of the two algorithms. In addition,
we rigorously evaluate the proposed algorithms with simulations
and experiments using a prototype implementation. Our simula-
tion and experimental results show that the proposed algorithms
outperform other algorithms that are commonly used in deployed
P2P streaming systems and that have been recently proposed in
the literature.

Index Terms—Peer-to-peer networks, quality optimization,
transmission scheduling.

I. INTRODUCTION

P EER-TO-PEER (P2P) streaming systems [1]–[4] have
been proposed to distribute multimedia contents at low

infrastructure costs. P2P streaming systems can be built in
two different ways [5]: 1) tree-based systems in which one or
more trees are constructed to connect peers for transferring
contents [6]–[8] and 2) mesh-based systems in which each
peer connects to a few neighboring peers without an explicit

Manuscript received July 17, 2010; revised November 10, 2010; accepted
January 14, 2011. Date of publication January 28, 2011; date of current version
July 20, 2011. This work was supported in part by the Natural Sciences and
Engineering Research Council (NSERC) of Canada and in part by the British
Columbia Innovation Council. The associate editor coordinating the review of
this manuscript and approving it for publication was Prof. Thinh Nguyen.

Y. Shen and M. Hefeeda are with the School of Computing Science, Simon
Fraser University, Surrey, BC V3T 0A3, Canada (e-mail: ysa57@cs.sfu.ca;
mhefeeda@cs.sfu.ca).

C.-H. Hsu is with the Deutsche Telekom R&D Lab USA, Los Altos, CA
94022 USA (e-mail: cheng-hsin.hsu@telekom.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2011.2108644

network topology before exchanging data with each other [1],
[9], [10]. Recent studies show that mesh-based systems incur
lower maintenance overhead, adapt better to network dynamics,
are easier to implement [11], and lead to better perceived video
quality [12]. More importantly, mesh-based systems are widely
deployed, and thus, we study mesh-based systems in this work.

In mesh-based systems, a video sequence is partitioned into
small segments, and segments are transmitted from multiple
senders to a receiver. The receiver must coordinate the segment
transmission from its senders. More precisely, a receiver runs a
scheduling algorithm to compose a transmission schedule for its
senders, which specifies for each sender the assigned segments
and their transmission times. Previous works [13], [14] show
that when the resources (especially bandwidth) are enough to
stream the videos in a P2P streaming system, almost all existing
scheduling algorithms perform equally well. With the introduc-
tion of more and higher quality video streams over the Internet,
resources are never sufficient; thus, more intelligent scheduling
algorithms are needed to fully utilize the limited resources in
P2P streaming systems.

Composing segment transmission schedules is not an easy
task, as P2P streaming systems impose time constraints on
segment transmission. Segments arriving at the receiver after
their decoding deadlines are not useful, because they cannot be
rendered to users for improving video quality. Hence, segment
scheduling algorithms should strive to maximize the perceived
video quality delivered by the on-time segments. Optimally
constructing segment schedules is computationally expensive
[9], and thus, existing systems either resort to simple heuristic
algorithms [9], [10], [15], or assign each segment an ad-hoc
utility function and solve the simplified problem of maximizing
the system-wide utility [16], [17]. These algorithms provide no
performance guarantees on the number of on-time delivered
segments and may result in playout glitches and degraded
video quality. A recent work pointed out that these existing
algorithms might work in live streaming systems as peers in
these systems share a small scheduling window and are less
sensitive to the performance of scheduling algorithms; however,
they may not work well in on-demand streaming systems [11],
especially when the system bandwidth resources are limited.

In this paper, we study the problem of scheduling segment
transmission in on-demand P2P streaming systems. Our goal
is to maximize the perceived video quality by scheduling the
segment transmission so that segments that are more critical to
video quality improvements are given higher priority to meet
their deadlines. We first consider a general problem in which

1520-9210/$26.00 © 2011 IEEE

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 17:32:55 UTC from IEEE Xplore. Restrictions apply.

SHEN et al.: EFFICIENT ALGORITHMS FOR MULTI-SENDER DATA TRANSMISSION IN SWARM-BASED PEER-TO-PEER STREAMING SYSTEMS 763

different segments have different weights in terms of quality im-
provements to the received video. We show that this scheduling
problem is NP-Complete. We then present an integer linear
programming (ILP) formulation for this general problem, and
we optimally solve it using an ILP solver. However, optimally
solving this ILP formulation may take a long time, which is
not suitable for real-time P2P streaming systems that are fairly
dynamic. Thus, we propose an approximation algorithm called
weighted segment scheduling (WSS), which constructs trans-
mission schedules with performance guarantees. We derive
its performance bound and implement it in an event-driven
simulator as well as in a P2P prototype streaming system. The
results show that the WSS algorithm leads to almost optimal
perceived video quality and outperforms heuristic algorithms
used in current systems. Although the WSS algorithm runs in
polynomial time, it is less applicable for slower machines with
limited computing power. Therefore, we consider a simplified
scheduling problem in which all segments have unit weights,
which is still NP-Complete. We then propose another approx-
imation algorithm called serialized shortest transmission-time
first (SSTF), which computes transmission schedules with
performance guarantees. Our experimental results show that
the SSTF algorithm yields performance close to the WSS
algorithm and runs much faster. Thus, we recommend using the
SSTF algorithm if the computational resources are limited and
using the WSS algorithm when peers have enough CPU cycles.

The rest of this paper is organized as follows. Section II sum-
marizes the related work in the literature. In Section III, we de-
scribe the considered system model and state the segment sched-
uling problem. We also show the hardness of the problem in the
same section. We formulate and solve the general scheduling
problem in Section IV and the simplified scheduling problem in
Section V. Evaluation results are given in Section VI. We con-
clude the paper in Section VII.

II. RELATED WORK

A measurement study on PPLive streaming system [18]
reports that users suffer from long start-up delays and playout
lags and suggests that better segment scheduling algorithms
are required [19]. Optimally computing segment schedules to
maximize the perceived video quality, however, is computa-
tionally complex [9]. Therefore, many P2P streaming systems,
such as [9], [10], [15], and [20], resort to simple heuristics
for segment scheduling. Pai et al. [10] propose to randomly
schedule segment transmission, where each receiver randomly
decides what segments to request from their neighbors. Zhang
et al. [9] assume that segments with fewer potential senders
are more likely to miss their deadlines and propose to schedule
the segments with fewer potential senders earlier. Agarwal and
Rejaie [15] describe a weighted round-robin algorithm based
on senders’ bandwidths. In their algorithm, the number of seg-
ments assigned to each sender is proportional to its bandwidth.
In other words, senders with higher bandwidths will be assigned
more segments than those with lower bandwidths. Kowalski
and Hefeeda [20] propose to assign each segment to the sender
that will deliver it the earliest. All these heuristic algorithms
do not provide any performance guarantees on perceived video

quality and may not perform well in on-demand streaming
systems [11].

One way to cope with the hardness of the segment scheduling
problem is to simplify the objective function from the perceived
video quality to the sum of ad-hoc utility functions [16], [17].
Zhang et al. [16] define a utility for each segment as a function
of the rarity, which is the number of potential senders of this
segment and the urgency, which is the time difference between
the current time and the deadline of that segment. They then
transform the segment scheduling problem into a min-cost flow
problem. We note that although the min-cost flow problem can
be optimally solved, the resulting schedules do not maximize
the perceived video quality, which is the objective of the original
problem.

Chakareski and Frossard [17] formulate an optimization
problem to maximize the perceived video quality, and they
solve it using an iterative descent algorithm. This algorithm,
however, is computationally expensive and cannot be used
in real-time systems. Therefore, they simplify the original
formulation by proposing an ad-hoc utility function for each
segment, which defines the multiplication of each segment’s
rate-distortion (R-D) efficiency, rarity, and urgency as its utility.
They then greedily schedule the segments, i.e., they schedule
the segments with higher utility values earlier. This greedy
algorithm does not produce optimal schedules, nor does it
provide any guaranteed performance. The works in [16] and
[17] are different from our work in the sense that we solve the
original segment scheduling problem, and we propose efficient
approximation algorithms with guaranteed performance.

Several other works are related to the segment scheduling
problem, but they do not directly solve it. Cai et al. [21] pro-
pose a P2P system that measures the time required to down-
load the entire video from a number of senders and uses this
information to choose senders from a large group of poten-
tial senders. Annapureddy et al. [11] propose using network
coding to bypass the scheduling problem among small blocks
belonging to the same relatively large segment. However, em-
ploying network coding may impose higher processing over-
head on peers, which may require special hardware to speed
up the decoding process [22] and is not easy to deploy. Sev-
eral segment scheduling algorithms, such as [23], have been pro-
posed for tree-based systems. They are, however, not applicable
to mesh-based systems, in which peers have no knowledge of
the global network topology.

Finally, in our earlier work [24], we introduced the WSS algo-
rithm and evaluated its performance by simulation. In this paper,
we extend that work by evaluating the performance of the WSS
algorithm in both simulations and PlanetLab experiments with
different settings. In addition, we propose a new approximation
algorithm (SSTF), which simplifies the scheduling model and
solves it efficiently.

III. SEGMENT TRANSMISSION SCHEDULING PROBLEM

In this section, we first provide an overview of the P2P system
model employed in this paper. We then describe the segment
transmission problem and show its hardness. For a quick refer-
ence, we list all symbols used in the paper in Table I.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 17:32:55 UTC from IEEE Xplore. Restrictions apply.

764 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 4, AUGUST 2011

TABLE I
LIST OF SYMBOLS USED IN THE PAPER

A. System Model

We consider mesh-based (also known as swarm-based or
data-driven) P2P streaming systems, which are widely de-
ployed over the Internet. Examples of such systems include
CoolStreaming [9], PPLive [18], UUSee [25], SopCast [26],
and TVAnts [27]. In these systems, peers form swarms for
exchanging video data. Each swarm contains a subset of the
peers, and a peer may participate in multiple swarms. Data
availability on peers is propagated through exchanging control
messages, such as buffer maps which indicate which video
segments peers currently have in their buffers. Using these
buffer maps, peers pull video segments from each other. More
specifically, a receiver simultaneously requests segments from
different senders. This is done by forming a segment transmis-
sion schedule by which the receiver specifies for each sender
which segments to transmit and when to transmit. In video
streaming systems, the arrival times of segments are critical,
as segments arriving after their decoding deadlines cannot be
rendered to users and are essentially useless.

The problem addressed in this paper is to compute transmis-
sion schedules for receivers in order to optimize their perceived
video quality. Transmission schedules are computed for recur-
ring sliding time windows, whose lengths are in the order of
seconds. Our problem formulation and solution employ a real-
istic model for P2P streaming systems. Thus, our proposed al-
gorithm can readily be implemented in current mesh-based P2P
streaming systems to improve their performance. Particularly,
we assume that P2P streaming systems are highly dynamic and
peers will join and leave frequently. Thus, we design our al-
gorithms to be lightweight and can be invoked whenever such
events occur in order to quickly recompute a new transmission
schedule. In addition, the dynamic propagation and replication
of video segments in the P2P streaming system can easily be
handled by our algorithms. This is because segment propagation
will trigger peers to update their buffer maps to reflect the avail-
ability of the newly acquired segments. When these buffer maps
are exchanged among peers in control messages, our scheduling
algorithms will account for the new segments in computing new
transmission schedules.

It is important to emphasize that our work in this paper fo-
cuses on a single, but critical, component of the P2P streaming
system, which is the transmission scheduler. We present rig-
orous design of this component with mathematical formula-
tion, complexity analysis, analytical guarantee on the perfor-

mance of the computed schedules, and extensive simulations
and experiments. We are not proposing a new, complete, P2P
streaming system. We, however, do not impose any assumptions
on the other components of the system, e.g., the overlay man-
agement, sender-receiver matching, control messages exchange,
churn handling, and incentive schemes. We assume that these
components will function according to whatever protocols dic-
tated by the specific P2P streaming system and eventually a set
of potential senders will be presented to a receiver for requesting
the video data. Given the data availability on each sender, our
work is to make the best out of this set of senders for the receiver.

B. Problem Statement and Hardness

We study the problem of transmitting a video stream from
senders to a receiver in a P2P streaming system. This stream
consists of a series of coded video frames at frame rate fps
(frames per second), where each frame has a decoding dead-
line. Coded video frames that arrive at the receiver after their
decoding deadlines are useless. To efficiently transmit video
frames over the network, multiple consecutive coded frames are
aggregated into a segment, which is the smallest transmission
unit. Segment sizes are flexible and can be chosen based on the
structure of the video stream. For example, one P2P streaming
system may choose to construct a segment for each video frame
for fine-grained scheduling, while another system may prefer to
create a segment for every group-of-pictures (GoP) for lower
overhead. We consider a general P2P streaming system that ag-
gregates coded frames in each segment, where video frames
can have different sizes. We let be the number of segments in
the whole video stream. Since each segment consists of coded
frames, it has a playout time of . Furthermore, segments are
in different sizes because coded frames in video streams vary in
sizes. We let Kb be the size of segment , where .
Segment has a decoding deadline seconds,
which is the decoding deadline of the first video frame in that
segment.

To generate feasible schedules, the receiver monitors its
senders in terms of segment availability and uploading band-
width. We let be the availability of segment
on sender . The receiver sets if
sender has a copy of segment and otherwise.
We let Kbps be the uploading bandwidth of sender .
With the segment availability and senders’ bandwidths, the
receiver composes a segment schedule for a sliding window

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 17:32:55 UTC from IEEE Xplore. Restrictions apply.

SHEN et al.: EFFICIENT ALGORITHMS FOR MULTI-SENDER DATA TRANSMISSION IN SWARM-BASED PEER-TO-PEER STREAMING SYSTEMS 765

of seconds, where is a system parameter. The resulting
schedule is sent to senders, and senders transmit segments
following the schedule. Furthermore, different segments have
different impacts on video quality improvements. Let be the
weight or the value of segment , which represents the quality
improvement brought by this segment. We consider a general
problem in which the definition of is determined by P2P
systems.

Our goal is to maximize the sum of weights of all on-time seg-
ments. We exclude late segments as they cannot be used toward
video quality improvement. With these notations, we formally
describe the scheduling problem in the following.

Problem 1 (Segment Transmission Scheduling): We consider
the segment transmission scheduling problem of video se-
quences in P2P streaming systems. The problem is to construct
an optimal transmission schedule

for a sliding window of seconds, where indicates the
sender, represents the segment, is the transmission time,
and is the number of segments in the sliding window. A seg-
ment is said to be on-time if and only if .
We let if segment arrives on-time at the receiver
from any of its senders and otherwise. The objective is
to maximize the perceived video quality, which is the sum of
weights of all segments that arrive on-time.

The next theorem states that solving this segment scheduling
problem is computationally expensive.

Theorem 1 (Hardness): The segment transmission sched-
uling problem defined in Problem 1 is NP-Complete. This is
true even when all segments are equally important, i.e.,
for all .

The proof of this theorem is omitted due to space limitations;
it can be found in [28]. The hardness of the segment scheduling
problem is also mentioned in [9].

We refer to Problem 1 as weighted, or general segment sched-
uling problem and to the version with unit values as un-
weighted, or simplified segment scheduling problem. We solve
the former problem in Section IV and the latter one in Section V.

IV. SOLUTION FOR THE GENERAL PROBLEM

In this section, we consider the general scheduling problem
and we use peak signal-to-noise ratio (PSNR) to define as
it is widely used in multimedia systems [29, Sec. 1.5.5]. More
precisely, we let be the average video quality in PSNR of
segment . The weights (or values) are typically pre-com-
puted by video coders and inserted into coded streams as meta
data. That is, they are not computed at streaming time. The com-
putation of PSNR values can be done empirically for higher ac-
curacy or by some R-D models for lower overhead.

A. Formulation

We formulate the segment scheduling problem as a time-in-
dexed integer linear programming (ILP) problem. Time-indexed
formulations discretize the time axis into time slots, where
is large so that the time slots are fine enough to represent any fea-
sible schedule without reducing the value of the objective func-
tion. We let be a 0–1 variable for each ,

, and , where if
segment is scheduled to be transmitted by sender at time

and otherwise. We note that, according to the def-
inition, while the transmission of a segment often spans over
several time slots, only the first time slot has an value of 1.

We formulate the considered segment scheduling problem as

(1a)

(1b)

(1c)

(1d)

(1e)

In this formulation, the objective function in (1a) is to maximize
the sum of weights of all on-time segments, where the three
summations iterate through all segments, senders, and time
slots, respectively. Note that the last summation stops at time

if , or otherwise, because
scheduling segment after that time results in a late segment,
which cannot improve video quality and in each scheduling
period, we are only interested in scheduling segments within
the scheduling window. The constraint in (1b) makes sure that
we always schedule a segment to a sender who holds a copy of
it, as it prevents the combination of and
for all . In (1c), observe that any segment
scheduled on sender between time and
would occupy the time slot as transmitting segment takes
time . Therefore, by considering all these segments, the
constraint in (1c) ensures that at most one segment is scheduled
on each sender at any time . Last, the constraint in (1d) prevents
segments from being scheduled on more than one sender.

Optimal Algorithm: To get optimal segment schedules, we
can solve the formulation in (1) using any ILP solver. In this
paper, we use CPLEX [30] for this purpose. We refer to this
approach as the OPT algorithm and use it as a benchmark to
assess the performance of all other algorithms. Notice that since
the optimal solution may take a long time to compute, we solve
all ILP problems offline in the OPT algorithm.

B. Overview of the Proposed Algorithm

Solving ILP problems is computationally expensive and may
not be possible in real time. Therefore, we develop an efficient
approximation algorithm in the following. Our algorithm is
based on the linear programming (LP) relaxation of the ILP
formulation in (1). The LP relaxed formulation allows any

in (1e) to take fractional values, where .
This LP relaxed formulation can be optimally solved using
efficient LP solvers that implement Simplex or interior point
methods (IPMs). We use to denote the fractional
schedule produced by an LP solver. We notice that fractional
schedules of the LP relaxed formulation are not feasible to the
original scheduling problem. This is because, in the LP relaxed

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 17:32:55 UTC from IEEE Xplore. Restrictions apply.

766 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 4, AUGUST 2011

formulation, the constraints in (1c) and (1d) are interpreted
in a different way: the constraint in (1c) makes sure that the
fractions of all segments scheduled on each sender sum to at
most one at any time and the constraint in (1d) ensures that
fractions of each segment scheduled on all senders sum to at
most one at any time.

To compute a schedule for the original scheduling problem,
we propose a rounding algorithm to convert fractional schedules
into integral feasible schedules, albeit with a small approxima-
tion factor. We first explain how the rounding algorithm handles
fractional schedules on single sender for .
We then expand it to the general case of senders. For a spe-
cific sender , the rounding algorithm consists of two steps:
1) it transforms the fractional schedule into several feasible in-
tegral schedules and 2) it selects the best schedule out of all
integral schedules. More precisely, the rounding algorithm first
rounds the fractional schedule for all
and to multiples of , where .
This is achieved by creating copies of time inter-
vals for each positive . These time intervals
are then put in the set . Next, we color the intervals in
with minimum number of colors, so that: 1) two intervals over-
lapping in time have different colors and 2) two intervals of the
same segment have different colors. This can be done by first
sorting all intervals on their starting times and then sequentially
coloring them in that order. Once the coloring is done, intervals
with the same color have two nice properties, i.e., they: 1) never
overlap in time and 2) are not associated with the same segment.
Therefore, we can construct an integral schedule using all inter-
vals that have the same color. The coloring scheme results in
several feasible schedules. We then compute the objective func-
tion value of each feasible schedule and choose the schedule
with the largest objective function value. We let this schedule
be , which indicates that sender should
start transmitting segment at time .

For the general case of senders, the rounding algorithm se-
quentially schedules segments for all senders. More specifically,
for each sender , the rounding algorithm sets all
for all , if segment has been scheduled on any
sender , where . This is to avoid scheduling a segment
to multiple senders, which violates the constraint in (1d). Once
the feasible schedule for sender is de-
rived, the rounding algorithm goes on to construct schedules on
sender . It stops after iterating through all senders and re-
turns the segment schedule , for all . Since
our proposed algorithm takes user-specified weights, we call it
weighted segment scheduling (WSS) algorithm.

Fig. 1 shows a high-level pseudocode of the WSS algorithm.
It solves the LP relaxed formulation in line 3. The rounding is
sequentially done using the for-loop between lines 4 and 15.
The foreach-loop between lines 6 and 8 builds the set of
time intervals for sender based on its fractional schedule.
Line 9 colors using as few colors as possible. Line 10
builds a set of feasible integral schedules and line 11 picks the
schedule that leads to the highest objective function value

. The for-loop between lines 12 and 14 prevents segments from
being scheduled to multiple senders. The algorithm returns

in line 16.

Fig. 1. Proposed approximation algorithm for the weighted segment transmis-
sion scheduling problem.

C. Approximation Factor and Complexity

We analyze the performance of the WSS algorithm in two
steps. We first analyze the problem with a single sender and then
extend the analysis to multiple senders. In the next lemma, we
derive the approximation factor of the WSS algorithm with one
sender. In the proof, we first show that the floor function in line 7
incurs negligible drops on the objective function value. We then
show that the number of colors required in line 9 is bounded.
Therefore, we only have a small number of feasible schedules
and at least one of them leads to an objective value higher than
half of the optimum.

Lemma 1: The WSS algorithm in Fig. 1 has an approximation
factor of 2, when there is only one sender.

Proof: Let be the optimal objective function value for the
relaxed LP problem. It is easy to see that is an upbound on the
objective value of the original integral solution. In line 7, each

is rounded to a multiple of . This means that each
in the objective function (1a) is reduced by at most by the
rounding. Let be the maximal weight among all scheduled
segments. Since we have variables, the value of drops
at most . Observe that, since sched-
uling only segment results in a feasible schedule with a sum
of weights , we have . Thus, the rounding in line 7
reduces the value by at most a factor of , which is
negligible as the number of time slots is large.

From the formulation in (1), the fractional schedule produced
by the LP solver has the following property: the number of over-
lapping intervals is at most and the number of intervals be-
longing to the same segment is at most . Following the col-
oring strategy in line 9, the intervals can be colored with at most

different colors.
Furthermore, line 7 indicates that , where

is the objective function value of the fea-
sible schedule derived from color . Defining for
each , we have

(2)

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 17:32:55 UTC from IEEE Xplore. Restrictions apply.

SHEN et al.: EFFICIENT ALGORITHMS FOR MULTI-SENDER DATA TRANSMISSION IN SWARM-BASED PEER-TO-PEER STREAMING SYSTEMS 767

Moreover, we observe that

(3)

With (2) and (3), we claim that there exists a color such that
. This claim can be easily proved by contradiction.

Combining the fact that is an upbound of the original integral
solution, we conclude that the feasible schedule identified by
line 11 achieves approximation factor 2, when .

Next, we extend the above lemma to the general case of mul-
tiple senders.

Theorem 2 (Approximation Factor): The WSS algorithm in
Fig. 1 achieves approximation factor of 3, when there are mul-
tiple senders.

Proof: For , we let be the fractional
schedule of sender produced in line 3 and be the integral
schedule of sender returned in line 16. We also define as
the fractional schedule of sender after discarding all segment
scheduled in . We use to denote the
objective function value of , , and .

Following Lemma 1, we have , for
all . Since are mutually disjoint and
are mutually disjoint, we have

(4)

Since every scheduled segment is marked by the for-loop be-
tween lines 12 and 14, we write

(5)

Combining (4) and (5) gives

Rearranging this inequality, we get

which yields an approximation factor of 3.
We show that the proposed WSS algorithm is a polynomial

time algorithm in the next theorem.
Theorem 3 (Complexity): The WSS algorithm proposed in

Fig. 1 runs in polynomial time, i.e., it terminates in
arithmetic operations, where

is the rounding factor, is the number of
variables of the formulation in (1), is the
number of constraints in this formulation, and

is the number of total bits required to encode this formulation.
Proof: Notice that there are variables in the

objective function shown in (1a). Furthermore, there are
constraints in (1b), constraints in (1c), and constraints in
(1d), and thus, we have total constraints.

The time complexity before line 4 can be bounded by
following the complexity results of IPMs in the

literature [31, Sec. 4.6], where is the number of total bits
required to write the formulation. can be derived as follows.
In (1a), we consider the weights for all
are represented as 8-bit floating point values, which take
bits. In (1b)–(1d), we have coefficients on the left of the
inequalities and on the right. Observe that all these coeffi-
cients can be encoded in a single bit, which means encoding
the constraints requires bits. Combining the objective
function with constraints, we get .

Next, we compute the number of operations required by
each iteration of the for-loop between lines 4 and 15. The
foreach-loop in lines 6–8 creates at most intervals.
The coloring in line 9 can be done in a single-pass scan on
the intervals in , which takes operations. Con-
structing feasible solutions in line 10 requires and
finding the solution with the highest objective function value
consumes . The for-loop between
lines 12 and 14 takes operations. This leads to

operations in each iteration
between lines 4–15 and for the
whole rounding algorithm. Combining this with
yields the theorem.

Finally, we mention that a similar LP relaxation method was
used in designing other scheduling algorithms with different ob-
jectives, such as minimizing the task completion time [32], [33]
and maximizing total weight of tasks completed by their due
dates [34].

V. SOLUTION FOR UNWEIGHTED PROBLEM

The WSS algorithm proposed in Section IV may be compu-
tationally demanding for P2P streaming systems with limited
computational resources. Therefore, it is desirable to have
a simpler algorithm for those P2P streaming systems. We
consider a simplification of the general scheduling in this
section, where all segments have the same weight value.
The objective of maximizing the perceived video quality then
becomes maximizing the number of on-time segments. This
simplification can reduce both computational and communica-
tion overheads.

A. Formulation

The unweighted problem can be formulated in various ways.
For example, we can still use a time-indexed formulation as
in (1). However, doing so may prevent us from utilizing some
unique properties of the unweighted scheduling problem for
designing better algorithms. More specifically, the unweighted
problem has a nice property: Assuming segments can be op-
timally scheduled on sender (i.e., all of them arrive on-time),
scheduling these segments in ascending order of their dead-
lines is one of the optimal schedules. We formally describe this
property in the next theorem.

Theorem 4: For segments that can be scheduled on
sender , the schedule and

is an optimal schedule, where segments
are sorted in ascending order on their deadlines.

Proof: Let be any optimal solution that maximizes the
number of on-time arrival segments from sender . We first

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 17:32:55 UTC from IEEE Xplore. Restrictions apply.

768 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 4, AUGUST 2011

eliminate any idle time in by shifting all segments to their
left whenever possible. This preprocessing step does not affect
the optimality of because all on-time segments complete
not later than before. Next, if segments in are sorted in as-
cending order on deadlines, letting yields the the-
orem. Otherwise, we recursively apply the transformation de-
scribed below.

Let be two arbitrary segments in ,
where is scheduled before , but . We update

using the following steps. First, we remove the segment
from , which creates an idle time period. Second, we shift
segments between (exclusive) and (inclusive) to their left
for seconds. Third, we schedule immediately after
the new location of . Note that the new is still optimal,
because the shifted segments, except , complete earlier and
the new still completes on-time as . We repeat
these three steps until the segments in are sorted and we let

.
This theorem shows that the segment assignment determines

the optimality of segment schedules. This enables us to trans-
form the unweighted segment transmission scheduling problem
into an assignment problem, which is less complicated. Before
presenting the new formulation, we mention that similar the-
orems have been used to formulate machine scheduling prob-
lems, e.g., in [35, Sec. 3.3] and [36].

Theorem 4 states that sorting segments in ascending order
on deadlines does not affect the existence of optimal schedules.
Therefore, without loss of generality, we assume

. Otherwise, we sort and relabel segments. We let
be the assignment

variable, where if segment is assigned to sender
and otherwise. We then formulate the unweighted

problem as follows:

(6a)

(6b)

(6c)

(6d)

(6e)

In this formulation, the objective function in (6a) is to max-
imize the number of on-time arrival segments. The first con-
straint in (6b) ensures that we always schedule a segment to a
sender that holds a copy of it, as it prevents the combination
of and . The second constraint in (6c)
computes the accumulated transmission time of sender up
to and including segment and checks whether segment is
complete before its deadline. The third constraint in (6d) avoids
assigning a segment to more than one sender. Notice that, com-
pared to time-indexed formulation in (1), this formulation uti-
lizes the unique property (Theorem 4) of the unweighted sched-
uling problem and has fewer variables and constraints.

Fig. 2. Proposed approximation algorithm for the unweighted segment trans-
mission scheduling problem.

B. Overview of the Proposed Algorithm

The idea of our algorithm can be described as follows. First,
for any given unweighted problem, it considers each sender
sequentially. That is, the algorithm assigns sender as many
segments as possible, before it assigns the remaining segments
to sender . Second, for sender , the algorithm repeatedly
schedules the segment with the shortest transmission time first
among all the segments that: 1) have not been scheduled to any
senders and 2) can be transmitted entirely by sender before
their deadlines. Since the proposed algorithm sequentially
schedules senders , we call it serialized shortest
transmission-time first (SSTF) algorithm.

Fig. 2 presents a high-level pseudocode of the SSTF algo-
rithm. This algorithm puts all segments in in line 2 and sorts
these segments in ascending order with respect to segment size
in line 3. Sorting segments allows us to efficiently locate the
segment with the shortest transmission time from any sender

. This is because the bandwidth is independent from which
segment to send, and thus, the transmission time of different seg-
ments on the same sender is proportional to the segment size.
The algorithm then considers each sender sequentially in the
for-loop from lines 4 to 11. The foreach-loop between lines 5
and 11 iterates through in ascending order with respect to
segment size and the if-statement in line 7 identifies possible
assignment by checking: 1) is segment available on sender

? and 2) can segment been transmitted by sender arrive
on-time? If both conditions hold, the algorithm schedules seg-
ment on sender by moving that segment from to . It
also updates , which represents the amount of time on sender

that has been consumed. Finally, the algorithm returns the
segment transmission schedule in line 12.

C. Approximation Factor and Complexity

We analyze the approximation factor of the SSTF algorithm
in the next theorem.

Theorem 5 (Approximation Factor): The SSTF algorithm
given in Fig. 2 returns a segment transmission schedule that
yields a number of on-time segments that is at most a factor of
2 compared to the optimal solution.

Proof: We first consider a specific sender in the for-loop
between lines 4 and 11. We let be the set of segments for

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 17:32:55 UTC from IEEE Xplore. Restrictions apply.

SHEN et al.: EFFICIENT ALGORITHMS FOR MULTI-SENDER DATA TRANSMISSION IN SWARM-BASED PEER-TO-PEER STREAMING SYSTEMS 769

TABLE II
LIST OF VIDEO PARAMETERS USED IN THE PAPER

schedule produced by the SSTF algorithm and
be the set of segments for any schedule for sender among

the remaining segment list after the schedule of . In addition,
we use and to represent the number of segments in
these two sets. We draw two observations. First, for any segment

, there exists no segment , such that the transmis-
sion time interval of is a proper subset of that of . Otherwise,

would be in as the foreach-loop in lines 6–11 schedules
the segment with the smallest segment size, which is equiva-
lent to the shortest transmission time. Second, for any segment

, there exists at least one segment such that
the transmission time intervals of and overlap. Otherwise,
would also be in because of the foreach-loop. Combining
these two observations, we have .

Next, let and , where
and are the set of segments for schedules and of
sender determined by the SSTF and the OPT algorithms, re-
spectively. We define and

. Therefore, we have and . Next, be-
cause is a schedule for sender , we have

per the inequality developed in the previous paragraph.
Since are mutually disjoint and

are also mutually disjoint, we have .
Finally, we have

.
Next, we show that the SSTF algorithm is efficient.
Theorem 6 (Time Complexity): The SSTF algorithm given in

Fig. 2 runs in time , where is the number
of senders and is the number of segments.

Proof: Sorting segments in line 3 takes time .
In addition, observe that the for-loop in lines 4–11 repeats for

times and the foreach-loop in lines 6–11 iterates for up to
times. Thus, the time complexity of the SSTF algorithm is

.
We notice that and are typically small values. This is be-

cause is the number of potential senders for a given receiver,
which is in the order of tens of senders and is the number of
segments in each scheduling window, which is also in the order
of a few tens of segments. Thus, our algorithm can easily run in
real time and be invoked frequently to handle the high dynamics
of P2P streaming systems.

VI. EVALUATION

In this section, we evaluate the proposed algorithms and com-
pare them against others in the literature using extensive sim-
ulations and experiments on the PlanetLab wide-area network

testbed. We use a wide range of realistic network and peer pa-
rameters and evaluate several performance metrics using actual
video traces.

A. Simulation Setup

We have implemented an event-driven simulator in Java to
evaluate the performance of the proposed segment scheduling
algorithms and compare them against other algorithms. Five
scheduling algorithms are implemented in this simulator: RF
[9], MC [16], SSTF, WSS, and OPT. The RF algorithm imple-
ments the rarest first algorithm. It schedules the segment with
the fewest potential senders first and among multiple senders,
the one with highest bandwidth and enough available time first.
RF is a fairly common algorithm used in several widely de-
ployed P2P systems, such as CoolStreaming [9] and PPLive
[18]. MC is a quite sophisticated algorithm that has been pro-
posed in the literature. The MC algorithm is based on an ILP for-
mulation, which is converted into a min-cost flow problem and
solved by combinatorial algorithms. While we employ the same
utility function defined in the evaluation section of [16], the
original algorithm can only schedule transmission of fixed-size
blocks. We, therefore, extend that algorithm to support vari-
able-size segments by: 1) dividing each segment into blocks,
2) solving the block transmission problem using their algorithm,
and 3) for each segment, trying to schedule it on the sender
which has been assigned the most number of blocks. If that
sender has used up all the bandwidth, we then try to schedule it
on the sender which has been assigned the second most number
of blocks and so on. SSTF is the implementation of our un-
weighted approximation algorithm and WSS is the implemen-
tation of our weighted approximation algorithm. In the OPT al-
gorithm, we directly solve the ILP formulation in (1) with the
CPLEX ILP solver. In particular, the CPLEX package provides
a set of Java class libraries that allow us to specify and solve our
problems using Java syntax through Java native interface (JNI).

We choose two high-quality videos with different character-
istics from the Arizona State University video trace library [37]
to analyze the performance of our algorithms. Table II summa-
rizes the main parameters of the videos. We use the PSNR as the
perceived video quality metric and as the segment weight
in our simulation. The simulator puts every GOP into one seg-
ment, so that segment has a decoding deadline of ,
where . Packing each GOP into a scheduling
unit ensures that every received segment can be decoded inde-
pendently at the receiver, since dependency among video frames
is restricted within a GOP. Some previous algorithms, like the

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 17:32:55 UTC from IEEE Xplore. Restrictions apply.

770 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 4, AUGUST 2011

TABLE III
PEER UPLOADING BANDWIDTH DISTRIBUTION

original MC algorithm proposed in [16], divide videos into fixed
size blocks as scheduling units. This can cause segments not to
be decodable, because even if a very small part of a segment
is not received on-time, the whole segment cannot be decoded,
which results in degraded video quality.

We simulate a dynamic system with a total number of 2000
peers. We initially pre-deploy the video sequences on only 1%
of the peers chosen randomly, which form the initial seeding
peers. We run the simulation for 24 h for each algorithm. In-
dividual peers dynamically join and leave a swarm at different
times during the streaming of a video sequence. The joining and
leaving times are randomly chosen from the whole simulation
time period following a uniform distribution. Upon joining a
swarm, each peer is instructed to stream the video sequence. We
also simulate dynamic replication of video segments as peers
can upload segments as soon as they have downloaded those
segments from other peers. We consider a peer matching service
that randomly provides each new peer up to ten senders. Each
new peer then connects to these senders, runs the scheduling
algorithm, and requests segments following the scheduling re-
sults. We set the scheduling window to be 10 s in simulations.

The simulator determines each sender’s uploading bandwidth
following the distribution given in Table III. This bandwidth
distribution is proposed in a paper [38] based on various mea-
surement studies on both corporate and residential users. We
note that peers do not contribute all their bandwidth to P2P
streaming, because doing so slows down other Internet appli-
cations such as e-mail and Web. The contributed bandwidth of
each class of peers is also given in this table as recommended in
[38]. With the randomly chosen bandwidth, the simulator fairly
distributes available bandwidth among all connections and pre-
dicts the transmission time for each packet accordingly. Finally,
in the OPT and WSS algorithms, the system parameter is set
to be 100, which means the time slots are 100 ms long in our
formulation.

We run the simulator independently for each considered algo-
rithm on a commodity PC, with a 2.66-GHz Intel CPU and 8 GB
of memory. We define three performance metrics: the average
perceived video quality , the continuity index , and the load
balancing factor . The average perceived video quality is com-
puted by assuming that all late segments result in zero PSNR
and defining , where is the average
perceived video quality of video frames in segment . In our
setup, it is the average PSNR value of the segment. We define
the continuity index as the number of segments that arrive by
their decoding deadlines over the total the number of segments
in the video. That is, . Last, we define the
load of sender as its uploading bandwidth utilization, which is

, where accounts for the total
size of all segments scheduled on that sender in one scheduling
period and is the length of scheduling window. The load bal-

ancing factor is then computed as the standard deviation of
loads for all scheduling periods on that sender. Similar perfor-
mance metrics are used in other works in the literature, such as
[9] and [39]. We note that we compute all performance metrics
using the successful transmissions.

B. Simulation Results

1) Overall Comparison: For each simulation, we calculate
the average performance for each peer across all the scheduling
periods. We iterate through all peers and compute the cumu-
lative distribution function (CDF) curves of each performance
metric. We repeat the same computation for each scheduling al-
gorithm. The results are summarized in Fig. 3.

Fig. 3(a) plots video quality achieved by different algorithms.
This figure shows that the WSS and SSTF algorithms substan-
tially outperform the other two heuristic algorithms RF and MC
and they stay very close to the OPT. First, for the lowest 5%
of the peers in terms of perceived video quality, the WSS and
SSTF algorithms achieve an average perceived video quality of
at least 27 dB and 28 dB, respectively, where the optimal solu-
tion achieves 29 dB, while the MC and RF algorithm can only
achieve 16 dB and 17 dB, respectively. Second, both the WSS
and SSTF algorithms achieve more uniform and higher video
quality for all peers compared to the two heuristic algorithms.
This is shown by the concentration of the CDF curves between
25 dB and 35 dB by the two algorithms, while the CDF curves of
the other two heuristic algorithms are spread over larger ranges,
from 15 dB to up to 30 dB.

We then report the continuity index in Fig. 3(b). This figure
illustrates that the WSS and SSTF algorithms result in much
higher continuity index than the RF and MC algorithms. For
example, more than 98% of the peers observe a continuity index
of at least 60% using the proposed WSS and SSTF algorithm,
while less than 40% of the peers observe that continuity index
for the RF and MC algorithms. This means employing the WSS
and SSTF algorithms significantly reduces the playout glitches
at receivers. Fig. 3 clearly shows that the proposed WSS and
SSTF algorithms result in much higher and smoother video
streaming quality, compared to the MC and RF algorithms.

We next plot the load balancing factor in Fig. 3(c). Exces-
sive load balancing factor may slow down some senders, which
could discourage users from contributing to the P2P network.
This figure illustrates that the WSS algorithm achieves at most
29% deviation and thus distributes the transmission load fairly
among senders. The SSTF algorithm leads to a little bit higher
load balancing factor, but still within 35% deviation, and at the
same time, they produce better video quality and higher conti-
nuity index as shown in Fig. 3(a) and (b). Meanwhile, the other
two algorithms result in similar diversity in the load imposed on
peers but worse video quality as shown in the figures.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 17:32:55 UTC from IEEE Xplore. Restrictions apply.

SHEN et al.: EFFICIENT ALGORITHMS FOR MULTI-SENDER DATA TRANSMISSION IN SWARM-BASED PEER-TO-PEER STREAMING SYSTEMS 771

Fig. 3. Overall comparison among different algorithms. Sample results from ��������	�
. Note: the running time curves for the SSTF and RF algorithms are
not visible in the figure because they are very close to 0. (a) Video quality. (b) Continuity index. (c) Load balance. (d) Running time.

Last, we plot the average running time across all the sched-
uling periods on each sender in Fig. 3(d). We can see that the
SSTF and RF algorithms run much faster than the others. No-
tice that the running time curves for the SSTF and RF algorithms
are not visible in the figure because they are very close to 0. On
the other hand, except for the OPT algorithm, all the other al-
gorithms can run in the scale of milliseconds, which is small
compared to the scheduling window. For the MC algorithm, al-
though the min-cost flow problem can be solved in polynomial
time, converting the ILP problems to min-cost flow problems
as proposed in [16] can result in large number of nodes in the
model; thus, it runs much slower than the SSTF and RF algo-
rithms. Notice that for the OPT algorithm, we set a bound on
the maximum number of iterations for the ILP solver to prevent
it from taking too long to solve the ILP problem, and we do not
consider such cases in the figure.

2) Segment-Level Comparison: Next we iterate through all
the video frames and compute the average PSNR in each
segment for every receiver. We then compute the average
video quality across all peers. We repeat the computation
for all scheduling algorithms. To clearly show the results of
the whole video sequence, we aggregate every ten segments
and compute their average PSNR. Fig. 4(a) plots sample
results from . The figure shows that our WSS
and SSTF algorithms perform much better than the other
two heuristic algorithms throughout the whole video period.
We notice that there are a number of short-period drops
in the whole sequence. These are caused by the missed or
late segments. The figure shows that the number of missed
segments (quality drops) is much smaller in our algorithms
compared to the other two. To clarify it further, we zoom in

several regions of the Fig. 4(a) to individual segment level
and extract three intervals from the whole sequence: The first
50 segments, 50 segments from the middle and 50 segments
from the last part of the video and plot them in Fig. 4(b)–(d),
respectively. These figures clearly show that the WSS and
SSTF algorithms result in higher perceived video quality. The
RF and MC algorithms lead to too many quality drops, which
degrade user experience.

C. Prototype Implementation and Experimental Setup

To evaluate the proposed algorithms in a real system, we have
developed a prototype P2P streaming system and deployed it
on PlanetLab [40]. Fig. 5 shows the high level diagram of our
prototype system implementation. The system consists of one
tracker and a set of peers interested in streaming a video file.
The tracker is used to coordinate all peers. It keeps a list of all
currently active peers in the peer manager module and performs
peer matching in the peer matching module when a peer asks for
a list of neighbors. There are several peer matching algorithms
proposed in the literature, such as [41] and [42]. Since in this
paper we focus on the scheduling part of the system, we use the
random peer matching algorithm for its simplicity. That is, the
tracker randomly selects a peers from the peer list and returns
them to the requesting peer.

On the peer side, each peer contains three main modules:
the peer manager module that establishes and maintains con-
nections with other peers, the buffer map manager module that
keeps track of the availability of segments on this peer, and the
scheduler module that does segment transmission scheduling
based on its neighborhood information and buffer map avail-
ability information.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 17:32:55 UTC from IEEE Xplore. Restrictions apply.

772 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 4, AUGUST 2011

Fig. 4. Segment-level quality comparison among different algorithms. Sample results from ��������	�
. (a) Over the whole video sequence. (b) Sample period
(i). (c) Sample period (ii). (d) Sample period (iii).

Fig. 5. High-level diagram for the prototype of our P2P streaming system implementation.

The system works as follows.
1) The tracker starts by listening on a port that is known to all

the peers.
2) All peers start by first connecting to the tracker in time ran-

domly distributed across the whole experiment. We assume
the first few peers connected to the tracker have the whole
video sequence. The rest of peers get a list of neighbors

from the peer matching algorithm once they connect to the
tracker and start exchanging data with their neighbors.

3) On each peer, for each scheduling period, the scheduler
computes a segment transmission schedule based on the
senders and segments information and then the peer re-
quests data from its senders accordingly. The received data
are put into the buffer for playout and the buffer map is then

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 17:32:55 UTC from IEEE Xplore. Restrictions apply.

SHEN et al.: EFFICIENT ALGORITHMS FOR MULTI-SENDER DATA TRANSMISSION IN SWARM-BASED PEER-TO-PEER STREAMING SYSTEMS 773

Fig. 6. Overall comparison among different algorithms. Sample results from ��������. Note: the running time curves for the SSTF and RF algorithms are not
visible in the figure because they are very close to 0. (a) Video quality. (b) Continuity index. (c) Load balance. (d) Running time.

updated for the next scheduling period. This process con-
tinues until all segments of the video have been considered
by the peer (either scheduled or dropped).

4) For buffer map exchange, we use a periodic broadcasting
scheme: each peer periodically checks its own buffer map
(in our setup, every 5 s). If the buffer map is updated since
last time checked, the peer broadcasts the updates to all its
receivers. In this way, the buffer map availability informa-
tion is exchanged among peers.

5) The experiment stops when all the peers have considered
all segments of the video or when the experiment period
expires.

The experiments involved 500 PlanetLab nodes distributed
across the world. We stream the video used in the
simulation. We randomly pre-deploy the video on 5% of the
nodes and let other nodes join and leave the P2P network at time
randomly distributed during the whole experiment period. We
set the maximum number of senders to ten and use the random
peer matching algorithm to find senders for each receiver. We
use a scheduling window of 5 s and an initial delay of 2 s for
all algorithms. The current sending rate of a sender is estimated
from its previous sending rates in a moving window manner,
which is a commonly used technique for bandwidth estima-
tion. We compute the same performance metrics used in sim-
ulation study (Section VI-A) and we compute them across the
successful transmissions.

D. Experimental Results

We first plot the video quality in Fig. 6(a). This figure shows
that the SSTF and WSS algorithms achieve better quality than

the other two. For example, at the quality level of 30 dB, there
are approximately 90%, 75%, 65%, and 65% peers achieved that
level, for the SSTF, WSS, RF, and MC algorithms, respectively.
Next, we observe that, compared to the results from simula-
tions, the unweighted algorithm SSTF performs better than the
weighted algorithm WSS. This is because some of the nodes on
PlanetLab are quite busy, as their CPU times are shared by many
users. The WSS algorithm involves solving a set of linear pro-
gramming problems, which usually requires considerable com-
putation. The scheduling algorithm runs several scheduling win-
dows ahead of current data requesting window, and if the algo-
rithm runs slower than the data transmission speed, the clients
have to wait for the scheduling results, which will degrade the
performance of the algorithm. During our experiments, we ob-
served such situation happens occasionally on some of the slow
machines on PlanetLab.

We then report the continuity index in Fig. 6(b). This figure
illustrates that the SSTF algorithm results in much higher conti-
nuity index than others: more that 90% of the peers can achieve
a continuity index of at least 80%. The WSS algorithm comes
next: more than 74% of the peers achieve the same continuity
index. The RF and MC algorithms lead to poor continuity index:
about 60%, at the continuity index of 80%. We next plot the
load balancing factor in Fig. 6(c). This figure illustrates that both
the WSS and SSTF algorithms distribute the transmission load
across senders in a fairer manner than the other two algorithms.
Last, we plot the average running time in Fig. 6(d). It shows that
the SSTF algorithm runs faster than all the other algorithms;
thus, it can be used on slow machines that have limited compu-
tational resources.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 17:32:55 UTC from IEEE Xplore. Restrictions apply.

774 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 4, AUGUST 2011

E. Summary and Remarks

We have compared the performance of the proposed WSS
and SSTF algorithms against other segment scheduling algo-
rithms in the literature. We have conducted extensive simula-
tions using a bandwidth distribution that is commonly seen in
real P2P streaming systems, where most peers are residential
users and have limited bandwidth. We have also built a real pro-
totype implementation as a proof-of-concept and deployed it on
PlanetLab. We acknowledge that PlanetLab nodes are well-con-
nected, but nevertheless, we believe that the PlanetLab deploy-
ment still sheds some lights on the performance of our algo-
rithms in the Internet. As we mentioned in Section VII, we are
currently working on evaluating the proposed algorithms in real
deployments.

Last, we note that the streaming performance from the Plan-
etLab experiments are generally better than that in the simu-
lations, e.g., compare the continuity index reported in Fig. 3(b)
and (b). The difference is largely due to the bandwidth setup: we
configure the simulations to use a realistic peer bandwidth dis-
tribution extracted from real bandwidth-constrained P2P users,
while we do not limit peer bandwidth in PlanetLab experiments.
Such diverse setups allow us to evaluate the proposed algorithms
under wider ranges of network environments.

VII. CONCLUSIONS AND FUTURE WORK

We studied the multi-sender data transmission problem in
P2P video streaming systems, where a receiver periodically
computes a transmission schedule for its senders to maximize
its perceived video quality. We formulated the general version
of the problem as an ILP formulation, where different segments
have different weights in terms of video quality improvements.
Optimally solving this ILP problem, however, may take pro-
hibitively long time and is not suitable for P2P video streaming
systems. Thus, we proposed the WSS algorithm that runs in
polynomial time and achieves an approximation factor of 3
in the worst case. We also formulated a simplified version of
the problem with another ILP formulation, where all segments
have the same weight. We proposed the SSTF algorithm for the
simplified model, and we showed that it has an approximation
factor of 2.

To the best of our knowledge, the WSS and SSTF algorithms
are the first two P2P segment transmission algorithms that pro-
vide guarantees on the worst-case performance. For the average-
case performance, we evaluated our algorithms using simula-
tion and PlanetLab experiments using several application-layer
performance metrics. The used performance metrics are: 1) per-
ceived video quality, 2) continuity index, and 3) load balance
factor. Our extensive simulation and experimental results indi-
cate that the proposed WSS and SSTF algorithms not only pro-
vide analytical guarantees on the worst-case performance, but
they also have superior application-layer performance on the av-
erage case compared to other scheduling algorithms proposed in
the literature and used in current P2P streaming systems. Fur-
thermore, our algorithms are computationally efficient and thus
can be implemented in actual P2P streaming systems.

The work in this paper can be extended in several directions.
For example, although the PlanetLab experiments shed some
light on the application-level performance of the proposed WSS

and SSTF algorithms in the Internet, PlanetLab nodes may not
accurately represent actual peers. Deploying and evaluating our
algorithms in a widely-used P2P streaming system, such as Vuze
[43], is one of our future works. The actual deployment can also
be used to evaluate the applicability of the proposed algorithms
in P2P live streaming systems. Another direction for future work
is to develop new scheduling algorithms with smaller approxi-
mation factors.

REFERENCES

[1] B. Liu, Y. Cui, B. Chang, B. Gotow, and Y. Xue, “BitTube: Case
study of a web-based peer-assisted video-on-demand system,” in Proc.
IEEE Int. Symp. Multimedia (ISM’08), Berkeley, CA, Dec. 2008, pp.
242–249.

[2] P. Rodriguez, S. Tan, and C. Gkantsidis, “On the feasibility of com-
mercial, legal P2P content distribution,” ACM SIGCOMM Comput.
Commun. Rev. (CCR’06), vol. 36, no. 1, pp. 75–78, Jan. 2006.

[3] Y. Tu, J. Sun, M. Hefeeda, and S. Prabhakar, “An analytical study
of peer-to-peer media streaming systems,” ACM Trans. Multimedia
Comput., Commun., Appl., vol. 1, no. 4, pp. 354–376, Nov. 2005.

[4] D. Xu, S. Kulkarni, C. Rosenberg, and H. Chai, “Analysis of a
CDN-P2P hybrid architecture for cost-effective streaming media
distribution,” ACM/Springer Multimedia Syst. J., vol. 11, no. 4, pp.
383–399, Apr. 2006.

[5] J. Liu, S. Rao, B. Li, and H. Zhang, “Opportunities and challenges of
peer-to-peer Internet video broadcast,” Proc. IEEE, vol. 96, no. 1, pp.
11–24, Jan. 2008.

[6] Y. Chu, S. Rao, and H. Zhang, “A case for end system multicast,” in
Proc. ACM SIGMETRICS’00, Santa Clara, CA, Jun. 2000, pp. 1–12.

[7] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, and
A. Singh, “SplitStream: High-bandwidth multicast in cooperative
environments,” in Proc. ACM Symp. Operating Systems Principles
(SOSP’03), Bolton Landing, NY, Oct. 2003, pp. 298–313.

[8] V. Padmanabhan, H. Wang, P. Chou, and K. Sripanidkulchai, “Dis-
tributing streaming media content using cooperative networking,” in
Proc. ACM Int. Workshop Network and Operating Systems Support for
Digital Audio and Video (NOSSDAV’02), Miami Beach, FL, May 2002,
pp. 177–186.

[9] X. Zhang, J. Liu, B. Li, and T. Yum, “CoolStreaming/DONet: A data-
driven overlay network for peer-to-peer live media streaming,” in Proc.
IEEE INFOCOM’05, Miami, FL, Mar. 2005, pp. 2102–2111.

[10] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. Mohr,
“Chainsaw: Eliminating trees from overlay multicast,” in Proc. Int.
Workshop Peer-to-Peer Systems (IPTPS’05), Ithaca, NY, Feb. 2005,
pp. 127–140.

[11] S. Annapureddy, S. Guha, C. Gkantsidis, D. Gunawardena, and P. Ro-
driguez, “Is high-quality VoD feasible using P2P swarming?,” in Proc.
Int. World Wide Web Conf. (WWW’07), Banff, AB, Canada, May 2007,
pp. 903–912.

[12] N. Magharei, R. Rejaie, and Y. Guo, “Mesh or multiple-tree: A com-
parative study of live P2P streaming approaches,” in Proc. IEEE IN-
FOCOM’07, Anchorage, AK, May 2007, pp. 1424–1432.

[13] C. Liang, Y. Guo, and Y. Liu, “Is random scheduling sufficient in P2P
video streaming?,” in Proc. IEEE Int. Conf. Distributed Computing
Systems (ICDCS’08), Beijing, China, Jun. 2008, pp. 53–60.

[14] M. Zhang, Q. Zhang, L. Sun, and S. Yang, “Understanding the power
of pull-based streaming protocol: Can we do better?,” IEEE J. Select.
Areas Commun., vol. 25, no. 9, pp. 1678–1694, Dec. 2007.

[15] V. Agarwal and R. Rejaie, “Adaptive multi-source streaming in het-
erogeneous peer-to-peer networks,” in Proc. SPIE/ACM Multimedia
Computing and Networking (MMCN’05), San Jose, CA, Jan. 2005, pp.
13–25.

[16] M. Zhang, Y. Xiong, Q. Zhang, L. Sun, and S. Yang, “Optimizing the
throughput of data-driven peer-to-peer streaming,” IEEE Trans. Par-
allel Distrib. Syst., vol. 20, no. 1, pp. 97–110, Jan. 2009.

[17] J. Chakareski and P. Frossard, “Utility-based packet scheduling in P2P
mesh-based multicast,” in Proc. SPIE Int. Conf. Visual Communication
and Image Processing (VCIP’09), San Jose, CA, Jan. 2009.

[18] PPLive. [Online]. Available: http://www.pplive.com/.
[19] X. Hei, C. Liang, J. Liang, Y. Liu, and K. Ross, “A measurement study

of a large-scale P2P IPTV system,” IEEE Trans. Multimedia, vol. 9, no.
8, pp. 405–414, Dec. 2007.

[20] G. Kowalski and M. Hefeeda, “Empirical analysis of multi-sender
segment transmission algorithms in peer-to-peer streaming,” in Proc.
IEEE Int. Symp. Multimedia (ISM’09), San Diego, CA, Dec. 2009, pp.
243–250.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 17:32:55 UTC from IEEE Xplore. Restrictions apply.

SHEN et al.: EFFICIENT ALGORITHMS FOR MULTI-SENDER DATA TRANSMISSION IN SWARM-BASED PEER-TO-PEER STREAMING SYSTEMS 775

[21] Y. Cai, A. Natarajan, and J. Wong, “On scheduling of peer-to-peer
video services,” IEEE J. Select. Areas Commun., vol. 25, no. 1, pp.
140–145, Jan. 2007.

[22] H. Shojania, B. Li, and X. Wang, “Nuclei: GPU-accelerated many-core
network coding,” in Proc. IEEE INFOCOM’09, Rio de Janeiro, Brazil,
Apr. 2009, pp. 459–467.

[23] J. Li and C. Yeo, “Content and overlay-aware scheduling for peer-to-
peer streaming in fluctuating networks,” J. Netw. Comput. Appl., vol.
32, no. 4, pp. 901–912, Jul. 2009.

[24] C. Hsu and M. Hefeeda, “Quality-aware segment transmission sched-
uling in peer-to-peer streaming systems,” in Proc. ACM Multimedia
Systems (MMSys’10), Phoenix, AZ, Feb. 2010, pp. 169–180.

[25] UUSee. [Online]. Available: http://www.uusee.com/.
[26] SopCast. [Online]. Available: http://www.sopcast.com/.
[27] TVAnts. [Online]. Available: http://www.tvants.com/.
[28] Y. Shen, “Efficient algorithms for multi-sender data transmission in

swarm-based peer-to-peer streaming systems,” M.Sc. thesis, Dept.
Comput. Sci., Simon Fraser Univ., Surrey, BC, Canada, 2010.

[29] Y. Wang, J. Ostermann, and Y. Zhang, Video Processing and Commu-
nications. Englewood Cliffs, NJ: Prentice-Hall, 2002.

[30] ILOG CPLEX. [Online]. Available: http://www.ilog.com/prod-
ucts/cplex/.

[31] Interior Point Algorithms: Theory and Analysis, Y. Ye, Ed., 1st ed.
New York: Wiley, 1997.

[32] H. Kellerer, T. Tautenhahn, and G. Woeginger, “Approximability and
nonapproximability results for minimizing total flow time on a single
machine,” in Proc. ACM Symp. Theory of Computing (STOC’96),
Philadelphia, PA, May 1996, pp. 418–426.

[33] M. Goemans, “Improved approximation algorithms for scheduling
with release dates,” in Proc. ACM-SIAM Symp. Discrete Algorithms
(SODA’96), New Orleans, LA, Jan. 1997, pp. 591–598.

[34] A. Bar-Noy, S. Guha, J. Naor, and B. Schieber, “Approximating the
throughput of multiple machines in real-time scheduling,” SIAM J.
Comput., vol. 31, no. 2, pp. 331–352, 2001.

[35] M. Pinedo, Scheduling: Theory, Algorithms and Systems, 3rd ed.
New York: Springer, 2008.

[36] R. M’Hallah and R. Bulfin, “Minimizing the weighted number of tardy
jobs on parallel processors,” Eur. J. Oper. Res., vol. 160, no. 2, pp.
471–484, Jan. 2005.

[37] Video Traces Research Group, Arizona State Univ., 2009. [Online].
Available: http://trace.eas.asu.edu/h264/index.html.

[38] Z. Liu, Y. Shen, K. Ross, J. Panwar, and Y. Wang, “Substream trading:
Towards an open P2P live streaming system,” in Proc. IEEE Int. Conf.
Network Protocols (ICNP’08), Orlando, FL, Oct. 2008, pp. 94–103.

[39] K. Graffi, S. Kaune, K. Pussep, A. Kovacevic, and R. Steinmetz, “Load
balancing for multimedia streaming in heterogeneous peer-to-peer sys-
tems,” in Proc. ACM Int. Workshop Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV’08), Braunschweig,
Germany, May 2008, pp. 99–104.

[40] PlanetLab Home Page. [Online]. Available: http://www.planet-lab.
org/.

[41] C. Hsu and M. Hefeeda, “ISP-friendly peer matching without ISP col-
laboration,” in Proc. ACM Int. Workshop Real Overlays and Distributed
Systems (ROADS’08), Madrid, Spain, Dec. 2008.

[42] D. Choffnes and F. Bustamante, “Taming the torrent: A practical ap-
proach to reducing cross-ISP traffic in peer-to-peer systems,” in Proc.
ACM SIGCOMM’08, Seattle, WA, Aug. 2008, pp. 363–374.

[43] Vuze (Azureus) BitTorrent Client. [Online]. Available: http://www.
vuze.com/.

Yuanbin Shen received the B.Eng. degree in in-
formation security from the University of Science
and Technology of China, Hefei, China, in 2004 and
the M.Sc. degree in computing science from Simon
Fraser University, Surrey, BC, Canada, in 2010.

His research interests include peer-to-peer net-
works, multimedia networks, and network security.

Cheng-Hsin Hsu (S’09–M’10) received the B.Sc.
and M.Sc. degrees from National Chung-Cheng
University, Minhsiung, Taiwan, in 1996 and 2000,
respectively, the M.Eng. degree from the University
of Maryland, College Park, in 2003, and the Ph.D.
degree from Simon Fraser University, Surrey, BC,
Canada, in 2009.

He is a Senior Research Scientist at Deutsche
Telekom R&D Lab USA, Los Altos, CA. His
research interests are in the area of multimedia
networking and distributed systems.

Mohamed Hefeeda (S’01–M’04–SM’09) received
the B.Sc. and M.Sc. degrees from Mansoura Uni-
versity, Egypt, in 1994 and 1997, respectively, and
the Ph.D. degree from Purdue University, West
Lafayette, IN, in 2004.

He is an Associate Professor in the School of
Computing Science, Simon Fraser University,
Surrey, BC, Canada, where he leads the Network
Systems Lab. His research interests include multi-
media networking over wired and wireless networks,
peer-topeer systems, mobile multimedia, and In-

ternet protocols.
Dr. Hefeeda won the Best Paper Award at the IEEE Innovations 2008

conference for his paper on the hardness of optimally broadcasting multiple
video streams with different bitrates. In addition to publications, he and his
students have developed actual systems, such as pCache, svcAuth, pCDN, and
mobile TV testbed. The mobile TV testbed software developed by his group
won the Best Technical Demo Award at the ACM Multimedia 2008 conference.
He serves as the Preservation Editor of the ACM Special Interest Group on
Multimedia (SIGMM) web magazine. He served as the program chair of the
ACM International Workshop on Network and Operating Systems Support for
Digital Audio and Video (NOSSDAV 2010) and as a program cochair of the
International Conference on Multimedia and Expo (ICME 2011). In addition,
he has served on many technical program committees of major conferences in
his research areas, including ACM Multimedia, ACM Multimedia Systems,
and the IEEE Conference on Network Protocols (ICNP). He is on the editorial
boards of the ACM Transactions on Multimedia Computing, Communications
and Applications (ACM TOMCCAP), the Journal of Multimedia, and the
International Journal of Advanced Media and Communication.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 17:32:55 UTC from IEEE Xplore. Restrictions apply.

