
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 4, AUGUST 2011 733

IRS: A Detour Routing System to Improve Quality
of Online Games

Cong Ly, Cheng-Hsin Hsu, Member, IEEE, and Mohamed Hefeeda, Senior Member, IEEE

Abstract—Long network latency negatively impacts the perfor-
mance of online games, and thus mechanisms are needed to mit-
igate its effects in order to provide a high-quality gaming experi-
ence. In this paper, we propose an indirect relay system (IRS) to
forward game-state updates over detour paths in order to reduce
the round-trip time (RTT) among players. We first collect extensive
traces for RTTs among actual players in online games. We then an-
alyze these traces to quantify the potential performance gain of the
detour routing. Our analysis reveals that substantial reduction in
the RTTs is possible. For example, our results indicate that more
than 40% of players can observe at least 100 ms of RTT reduc-
tion by routing game-state updates through 1-hop detour paths.
Because of the reduction in RTTs, players can join more gaming
sessions that were not available to them due to long RTTs of the di-
rect paths. Most importantly, we design and implement a complete
IRS system for online games. To the best of our knowledge, this is
the first system that directly reduces RTTs among players in online
games, while previous works in the literature mitigate the long RTT
issue by either hiding it from players or preventing players with
high RTTs from being in the same game session. We implement the
proposed IRS system and deploy it on 500 PlanetLab nodes. The re-
sults from real experiments show that the IRS system improves the
online gaming quality from several aspects, while incurring negli-
gible network and processing overheads. In particular, we observe
that, with the proposed IRS system, more than 80% of game ses-
sions achieve 100 ms or higher RTT reduction.

Index Terms—Gaming experience, latency reduction, perfor-
mance optimization, quality-of-service (QoS).

I. INTRODUCTION

O NLINE games involve real-time interactions among
players. Thus, high network latency becomes one of

the main challenges for providing a high-quality gaming ex-
perience. For example, in first-person shooter games, higher
network latency leads to irregular moves and slow respon-
siveness that affect players’ shooting accuracy. Hence, game
developers must carefully handle network latency to provide
high-quality gaming experience to players. To cope with this,
we aim at reducing the network latency in online games in
which players form sessions.

Manuscript received September 08, 2010; revised December 03, 2010; ac-
cepted January 30, 2011. Date of publication February 14, 2011; date of current
version July 20, 2011. This work was supported in part by the Natural Sciences
and Engineering Research Council (NSERC) of Canada and the British Co-
lumbia Innovation Council. The associate editor coordinating the review of this
manuscript and approving it for publication was Dr. Gene Cheung.

C. Ly and M. Hefeeda are with the School of Computing Science, Simon
Fraser University, Surrey, BC V3T 0A3, Canada.

C. Hsu is with Deutsche Telekom R&D Lab USA, Los Altos, CA 94022 USA.
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TMM.2011.2114645

Fig. 1. Game sessions in online games.

We define a session as a set of players that frequently ex-
change game-state updates among themselves. The concept of
session is fairly general and can be concretely defined in var-
ious types of online games. For example, in first-person shooter
games, players start a session once they mutually agree on the
same game settings such as map and rules. In large-scale simu-
lation games, players that are close by in the virtual world form
a session, because they are likely to interact with each other and
share the same area of interest. We strive to minimize the pair-
wise network latency among players in each session, in order to
maximize the overall gaming quality. In extreme cases, such as
games similar to and , where
game clients only communicate with centralized game servers,
each client form a game session with the server (i.e., the server
is in all game sessions).

At a first glance, directly sending update messages from a
player to another player (or server) seems to minimize the net-
work latency in online games. This, however, is not true because
the Internet routing is not optimal in terms of network latency
[1], and sending update messages through relay players may
lead to shorter network latency. For illustration, Fig. 1 shows
several players in an online game, in which edges represent
network connections, and they are annotated with their RTT
(round-trip time) values. In this figure, observe that the triangle
of players C1, C5, and H1 violates the triangle inequality. That
is, the length of the side (C1, H1) is longer than the sum of the
other two sides (C1, C5) and (C5, H1). This is called a triangle
inequality violation (TIV). It is clear that routing game-state up-
dates from C1 to H1 through C5 leads to shorter end-to-end RTT
than directly sending these updates from C1 to H1. The path
C1-C5-H1 is called a detour path. Recent works, such as [2],
report that TIVs are not due to measurement errors, and detour
paths can often be found in the Internet [3].

In this paper, we rigorously analyze the potential of using
detour paths in online games to reduce RTTs among players

1520-9210/$26.00 © 2011 IEEE

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 17:31:21 UTC from IEEE Xplore. Restrictions apply.

734 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 4, AUGUST 2011

and the impact of this RTT reduction on the actual player per-
formance in different types of online games. Furthermore, we
present a system called the Indirect Relay System (IRS) to effi-
ciently leverage detour paths in online games. The IRS system
directly reduces RTTs in online games, while earlier works mit-
igate the negative impacts of latency by either applying latency
compensation techniques [4, Ch. 6] or matching players exclu-
sively with nearby players in terms of RTTs [5]–[7].

In particular, the contributions of this paper can be summa-
rized as follows.

• We conduct RTT measurements among players of a pop-
ular online game. Our trace files contain more than 18.8
million pairwise RTT measurements collected from online
game players distributed over almost 8000 subnets.

• Using our traces, we quantify the potential of the detour
routing in online games. We show that more than 40% of
players can observe 100 ms or more RTT reduction by
routing game-state updates through 1-hop detour paths. We
also show that, with detour paths, players can join online
game sessions that were not available to them because of
the long network latency of the direct paths.

• We analyze the expected impact of the detour routing on
player performance in different online games. We report
improvements in various player performance metrics, such
as lap completion time in car racing games and hit ratio
in first-person shooter games. Our results indicate that
game developers can employ detour routing to improve
the gaming quality, attract more players, and increase their
revenues.

• We design and implement the complete IRS system, which
provides three services: 1) it employs network coordinate
systems to efficiently identify potential detour paths; 2) it
sends a few end-to-end probing messages to rank these
detour paths; and 3) it monitors the lateness of game-state
updates on the active detour path and dynamically switches
to other detour paths to cope with network dynamics.

• We extensively evaluate the proposed system using ex-
periments in PlanetLab and on residential computers with
DSL and cable modem access links. The experimental
results show that the proposed system: 1) significantly
reduces RTTs among players; 2) increases number of
peers a player can connect to and maintain good gaming
quality; 3) imposes negligible network and processing
overheads; and 4) improves gaming quality and player
performance.

We emphasize that although network latency is arguably the
most important network quality-of-service (QoS) metric deter-
mining the gaming quality of online games, other QoS metrics
including packet loss rate and delay jitter also affect gaming
quality. For concrete discussion, we concentrate on network la-
tency in this paper, but the proposed system can employ other
QoS criteria to identify detour paths, rank detour paths, and
switch active detour paths. Since multiple QoS criteria can be
jointly considered in too many different ways, we believe that
how to incorporate multiple QoS criteria in the IRS system is
rather a game-specific design decision and thus is beyond of the
scope of this paper.

The remainder of this paper is organized as follows. In
Section II, we survey related work in the literature. We give
an overview of online games and the proposed detour routing
in Section III. We quantify the potential of detour routing in
Section IV. Then, we present the complete system design in
Section V. We implement the proposed system and evaluate
it on more than 500 PlanetLab nodes and on several home
computers in Section VI. Section VII concludes the paper.

II. RELATED WORK

A. Latency Compensation

Coping with network latency is critical to the quality of on-
line games [8]. Current latency compensation techniques can
be roughly categorized into two groups: time manipulation and
matchmaking. Time manipulation techniques compensate for
latency by adjusting the timestamp of game-state updates. These
techniques can further be classified into two approaches: time
delay, such as lockstep and event-locking, and time warp, such
as dead reckoning.

Lockstep and event-locking are two popular techniques used
in practice. The lockstep algorithm [9] controls the consistency
among players with unpredictable and varying latency. With
this algorithm, players send out game-state updates every
fixed interval, and a player is blocked until receiving updates
from all other players. In event-locking [10], a player sends
game-state updates to a gaming server, and the server relays
them to all other players in the same session. While lockstep
and event-locking are suitable for local area networks, they
perform poorly in the Internet [11]. In dead reckoning [12], [13],
players extrapolate the behavior and states of gaming objects
and thus can continue rendering frames even if game-state
updates are late. To maintain consistency, players agree upon
thresholds of prediction errors on individual game-states, and
game-state corrections are sent by the server if these thresholds
are exceeded. Under this principle, several improvements have
been proposed for dead reckoning, e.g., the authors of [14]
propose to augment it with synchronized clocks to improve
the consistency of gaming objects. While time manipulation
techniques attempt to hide network latency from players, they
may cause negative side effects. More precisely, time delay leads
to poor responsiveness and time warp results in inconsistency
and irregular moves due to game-state corrections. Therefore,
time manipulation techniques may not work in networks with
long and varying latency.

Matchmaking-based latency compensation techniques pre-
vent a new player from starting a session with other players
that have high network latency to that new player. Such tech-
niques can be implemented at a centralized server, such as
in Htrae [5], [15], or at individual game clients, such as in

: [16]. For example, Htrae uses
IP-to-geolocation databases and network coordinate systems to
predict network latency, and prevents players with high network
latency from matching. Htrae favors players that are geograph-
ically close in proximity, e.g., a player in Japan may never be
matched with another player in Canada. Matchmaking-based
latency compensation effectively reduces the number of players
each player can play with and may not support specific matches.
Specific matches refer to those sessions formed beforehand

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 17:31:21 UTC from IEEE Xplore. Restrictions apply.

LY et al.: IRS: A DETOUR ROUTING SYSTEM TO IMPROVE QUALITY OF ONLINE GAMES 735

among a predefined group of players. In contrast, the proposed
IRS system directly reduces network latency, which allows
each player to match with more players.

B. Detour Routing for Latency Reduction

Several overlay networks have been proposed to improve
the Internet routing performance from various aspects. For
example, resilient overlay network (RON) [17] uses overlay
routing to find network paths other than those reported by the
Internet routing protocols. RON allows end systems to quickly
recover from link congestion and/or path outage. OverQoS
[18] uses overlay routing to provide QoS enhancements in the
application layer. Detour paths have also been used to reduce
network latency. For example, Savage et al. [1] point out
that direct path between two IPs may lead to longer network
latency than a detour path through a third IP. More recently,
detour paths have been used in peer-to-peer (P2P) overlays
[19], [20]. The authors of [19] propose a system to use inferred
autonomous system (AS) maps and ping probes to find detour
paths. Their system uses breadth-first search to find detour
paths. The authors of [20] propose a symbiotic overlay net-
work, which provides peering incentive by associating a peer
with other peers only when they can mutually help each other to
reduce network latency toward some Internet servers. Similar
to [20], the IRS system is built on the distributed detour path
discovery method proposed in [21].

Game developers can borrow ideas from the aforementioned
systems to realize detour routing. However, to the best of our
knowledge, detour routing is not used in most existing games. In
this work, we demonstrate how to leverage detour routing in on-
line games, which has not been explored before in the literature.
Different from our preliminary work [22], the present paper rig-
orously analyzes the potential of detour routing. We achieve this
by conducting a large scale RTT measurement study using IP
addresses collected from actual online games. We then perform
extensive trace-driven simulations to quantify the performance
improvement achieved by detour paths in both the network layer
(such as RTT reduction) and the application layer (such as lap
time in a racing game). We also present new empirical results
from actual deployment on residential computers.

III. BACKGROUND AND OVERVIEW

A. Online Games

Online games are roughly classified into two types: avatar
games and omnipresent games [8]. In avatar games, a player
controls a single character, which exists at a precise location
in the virtual space, and can only interact with nearby objects.
Avatar games include shooter games, role-playing games, action
games, and sports games. These games are further categorized
into first-person avatar games in which a player views through
the character’s eyes, and third-person avatar games in which a
player sees the character from a distance. In omnipresent games,
a player concurrently controls a group of characters, and can
interact with objects that are close to any of these characters.
Omnipresent games include real-time strategy games and sim-
ulation games.

Players of different types of games can tolerate different
amount of quality degradation caused by network latency,
which can be quantified by the gaming performance of players

[8], [23], [24]. This is because games have various degrees of
tightness on the delivery deadline of game-state updates. For
example, high network latency leads to irregular moves, which
has a negative impact on players’ lap completion time in racing
games. In contrast, players of real-time strategy games contin-
uously monitor gaming objects on a large map, and may be less
sensitive to irregular moves of a single object. In fact, several
experimental studies show that while players of omnipresent
games can tolerate up to 1 s RTT, players of avatar games have
more stringent latency requirements: 100 and 500 ms RTT for
first-person and third-person avatar games, respectively (see
[8] for a survey and the references therein for more details).
Network latency higher than these thresholds would lead to
drops in gaming performance, and could turn players away
from the online games.

While our online game model (see Fig. 1) is applicable to var-
ious online games, we will only consider online avatar games in
the rest of this paper for concrete discussion. In avatar games,
each player runs a copy of the game software on his/her ma-
chine, and we refer to this machine as a client. Once a player
decides to play the game, he/she needs to find other players
through a centralized server called the lobby server. A game ses-
sion has a set of game settings including number of players and
gaming rules. Clients in the same session exchange game-state
updates. In each gaming session, one of the clients is chosen as
the host, which runs the main gaming logic, validates the legit-
imacy of game-state updates, and forwards valid updates to all
clients in the same session.

In some online games, a distributed session discovery method
is used, where a client connects to a master server for a list of
gaming hosts. Upon getting the list of active hosts, the client
probes individual hosts and decides which host to connect to.
In contrast to lobby severs, master servers maintain minimum
amount of state information: most of the time, only the IPs of
game hosts are provided to a new client. The difference between
lobby and master servers does not affect the IRS system, and in
the rest of this paper, we use lobby servers to refer to both lobby
and master servers unless otherwise specified.

B. Detour Routing for Online Games

We study the performance improvements of online games
by reducing the RTT values among players in the same ses-
sion. Reducing the RTT is accomplished by finding detour paths
with one or more intermediate clients through which the gaming
traffic is routed. These intermediate clients are called relays.
Each relay client on the path adds an extra one-way delay for
processing and forwarding the traffic. We define a detour path as
an application-level routing path that results in end-to-end delay
(including the overhead) shorter than that of the direct Internet
path. A -hop detour path goes through relays, where .
When , the direct Internet path between source and desti-
nation clients is used without any relays.

The direct path between a pair of clients may have longer
RTT than a detour path between them, because of TIVs in the
Internet. For example, clients C1, C5, and H1 in Fig. 2 form a
TIV. With TIVs in the Internet, we can minimize the pairwise
network latency among clients in the same session by locating
the best detour path for each pair of clients. To utilize detour
paths, each client maintains a detour routing table. The table of

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 17:31:21 UTC from IEEE Xplore. Restrictions apply.

736 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 4, AUGUST 2011

Fig. 2. Locating TIV using network coordinate systems.

Fig. 3. Setup for measuring relay latency and traffic overheads.

a client has entries for other clients with which this client ex-
changes messages. For example, assume that client C1 in Fig. 2
sends messages only to the host H1. In this case, the detour
routing table of C1 will have an entry , which means
that data sent to H1 should be sent through the relay client C5.

Our first task in this paper is to explore whether this traffic re-
laying process yields a better gaming experience. We will study
the magnitude of the expected performance improvement in dif-
ferent types of online games when a detour path includes up to

, or relay clients, where is the number of relay
clients that yields the minimum delay between the two ends of
the detour path.

C. Quantifying Latency and Traffic Overheads

Sending game-state updates through a relay client leads to ad-
ditional latency and traffic overheads. We chose two popular on-
line games: and : , and
use them to quantify actual overheads. is an om-
nipresent game and : is a first-person
shooter game; readers interested in more details about them are
referred to [25]. The setup of our experiments is illustrated in
Fig. 3. We first play a game on a commodity PC with 2.8 GHz
Intel CPU for 30 min, and we capture the game-state updates
and structure them into a trace file. We then use a traffic gener-
ator to replay the captured game-state updates toward our PC,
and at the same time we play a new 30-min game session. We
also run a relay utility, which is a UDP proxy, to send game-state
updates back to the traffic generator. This relay utility measures
the latency overhead as the difference between the time an up-
date arrives at our PC’s network adapter and the time it goes
onto the network adapter’s outgoing queue.1

Concurrently running the online game and relay utility on
the same PC allows us to measure realistic overheads. We ob-
serve an average latency overhead of 6.2 ms in
and 6.5 ms in : . This experiment
reveals that, even with modern online games, the latency
overhead is insignificant. Our experiments also indicate that
game-state updates on average incur 40-kb/s traffic overhead

1We implement the relay utility in operating systems for higher accuracy.
Similar utilities can also be implemented in the application level [26].

in : and 42 kb/s in ,
which are insignificant to broadband access links. Our traffic
overhead measurements are in line with those reported in the
literature [27].

IV. POTENTIAL OF DETOUR ROUTING IN ONLINE GAMES

A. Trace Collection

We need a pairwise RTT dataset of online games to quan-
tify the potential benefits of detour routing. Unfortunately, there
are no publicly available datasets of pairwise RTTs among a
large group of game clients. Existing RTT datasets are either
sparsely constructed without pairwise measurements, such as
the dataset used in [7], or not publicly available due to business
reasons, such as the Xbox dataset used in [5]. Therefore, we
had to collect our own RTT dataset with pairwise RTT measure-
ments among gaming clients and we are willing to share them
with the research community. We compile the RTT dataset in
three steps, which are detailed in the following.

1) Collecting IPs of Game Clients: We first identify IPs
used by game clients. We use the utility2 to achieve this.

is an open-source command-line utility that allows users
to browse the information of individual gaming sessions.
supports various gaming protocols, and it works as follows.
Once a user specifies the online gaming protocol and lobby
server address, connects to the lobby server and requests
a list of active hosts. then iteratively connects to each
host, requests session information, and displays the information
to users. We note that does not give IPs of all clients in
gaming sessions, instead only the host IPs are returned. This is
because modern online gaming protocols prevent hosts from
disclosing client IPs to other clients, in order to avoid possible
denial-of-service (DoS) attacks. We use to collect IPs of
all hosts, and we use them to represent all gaming clients.

To collect IPs of game clients around the globe, we developed
scripts to run on more than 550 PlanetLab nodes, and
each PlanetLab node ran 60 times. After combining all
collected IPs together, we had 28 924 distinct game client IPs.
We use this set of IPs in our experiments.

2) Measuring RTTs Among Clients: We next describe how
we measure the RTT between any two client IPs. Since we have
no control over the game clients, we measure the pairwise RTT
using the utility. supports measuring RTT between
two arbitrary IPs, and has been shown to be fairly accurate [28].

uses DNS servers that support recursive queries for RTT
estimation, and returns errors if abnormal measurement results
are observed.

Measuring all pairwise RTTs among the considered 28 924
client IPs would take prohibitively long time. To accelerate the
measurements without losing accuracy, we cluster client IPs into
/24 subnets, and we measure the RTT between each pair of sub-
nets. We then use the RTT between two subnets as the RTT be-
tween any two gaming client IPs in these two subnets. We can
do this without degrading the accuracy because measures
RTT between two clients using their authoritative name servers,
and clients on the same /24 subnet most likely share the same
authoritative name server. After the clustering, we have 8063
subnets. For each subnet, we randomly pick a client IP in that

2[Online]. Available: http://www.qstat.org

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 17:31:21 UTC from IEEE Xplore. Restrictions apply.

LY et al.: IRS: A DETOUR ROUTING SYSTEM TO IMPROVE QUALITY OF ONLINE GAMES 737

subnet as a representative. We then conduct pairwise RTT mea-
surements only among these 8,063 representative client IPs. We
did not measure RTTs between client IPs in the same subnet.
Absence of these measurements, however, does not bias the
quantification of the potential of detour routing. This is because
clients on the same subnet are unlikely to be on each other’s de-
tour paths.

To conduct the RTT measurements, we developed scripts to
run on the 550 PlanetLab nodes mentioned above for
two weeks. On every PlanetLab node, we ran 12 measurement
processes. Each process repeatedly measured the RTT of two
randomly chosen representative client IPs, and wrote the suc-
cessful measurement results into a data file. The measurement
processes worked independently, and we merged all data files
before analyzing them. For each IP pair, we measured their
RTTs for ten times, and we report the medium RTT. Over this
two-week experiment, we collected 18 884 321 RTT measure-
ments, equivalent to about 230 GB of raw data.

We notice that, like other utilities, may lead to biased
measurement results. We filtered out unreliable measure-
ments as follows. First, we dropped all measurements with
RTTs 1 ms, as they are probably due to content-tracking
firewalls/proxies [20]. Second, we sort all of the RTT measure-
ments, and for each subnet pair with more than one RTT result,
we used its median RTT as the final RTT. Using median RTT
to filter out transient congestion and packet loss was suggested
by the authors of [29], who also use the utility to measure
RTTs. After filtering out unreliable measurements, we have
12 930 645 distinct pairwise RTTs. These pairwise RTTs are
stored in a matrix, which we call the RTT matrix.

3) Limitations of the Traces: We acknowledge that our traces
are generated with some practical inference heuristics, which
may not always be accurate. For example, some game devel-
opers may deploy dedicated game servers to host online game
sessions, and their IPs will be included in our traces. The mea-
surement errors of are also well known and may lead to
under estimated RTTs because authoritative name servers are
likely to be better connected than game clients. Part of these
measurement errors are unavoidable, unless we gain access to
the source code of game clients, which is less possible to aca-
demic groups. Nonetheless, the way we quantify the potential
of the IRS system can be applied to more accurate RTT dataset
if they become publicly available.

B. Notations and Performance Metrics

We study the potential of detour routing using the aforemen-
tioned RTT matrix. For a pair of clients and , we let
be the RTT value between them. In Section III-C, through ex-
periments, we found that the one-way relay overhead is about
6 ms. However, we acknowledge that the relay overhead would
increase as more client pairs use the same relay client, and thus
we set 12 ms to be conservative. We then define
as the minimum RTT of all -hop detour paths between clients

and , where . More precisely, we define by in-
duction as

. (1)

For any , we define as the -hop shortest distance
between and , which has the minimum RTT among all detour
paths with up to intermediate clients. Specifically, we write
the -hop shortest distance as

(2)

where . Finally, we use to denote the -hop
shortest distance, which is the minimum RTT among all possible
detour paths with any lengths. Mathematically, we have

(3)

We use the RTT matrix and (2) to recursively derive the -hop
shortest distances. To compute the -hop shortest distance, we
employ a modified Dijkstra’s algorithm that takes relay over-
head into consideration.

We define performance metrics to evaluate the potential of
detour routing in the following.

1) Pairwise RTT Reduction: We define the -hop RTT reduc-
tion between clients and as the RTT difference be-
tween their -hop shortest distance and their direct dis-
tance. Similarly, we define their -hop RTT reduction
as the difference between their -hop shortest distance
and their direct distance. To derive the overall -hop (or

-hop) RTT reduction, we can iterate through all pairs
of known clients, and compute the shortest distance for
each of them. This, however, may take prohibitively long
time. To cope with this computational complexity, we only
consider sample client pairs. That is, we randomly pick
500,000 pairs of clients and compute 0-hop, 1-hop, 2-hop,
3-hop, and -hop shortest distances for each pair. We do
not report -hop shortest distances with , because we
did not observe clear improvement when increasing from
3 to 4. This is because of the nontrivial overhead incurred
by 4-hop, 4 24 96 ms. We mention that when choosing
the random client pairs, we only consider those pairs with
valid direct RTT values. This is because we cannot fairly
compute the RTT reduction of client pairs with no direct
distance.

2) Reachability: We define reachability as the number of
players a game client can connect to and maintain good
gaming quality. Different game types have different
thresholds on RTTs [8], and these thresholds in turn define
the reachability of a client. We compute the reachability
of various RTT thresholds for different game types.

3) Relay Load: For each game client, we define its relay load
as the number of active detour paths going over this client.
The relay load indicates how much overhead the detour
routing system imposes on each game client, which has a
direct impact on gaming quality.

C. Results for Potential Improvements

1) RTT Reduction: We compute the average RTT among
all pairs for 0-hop (direct), 1-hop, 2-hop, 3-hop, and -hop.
Fig. 4(a) shows the results, where we also plot the 95% con-
fidence interval. The figure shows that a clear reduction in the
average RTT is possible using detour routing. For example, with
only one relay node, the average RTT drops from about 160 ms
to less than 60 ms. The figure also shows that most of the gain

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 17:31:21 UTC from IEEE Xplore. Restrictions apply.

738 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 4, AUGUST 2011

Fig. 4. Distribution of RTT reduction due to detour routing. (a) Average RTT
reduction. (b) RTT reduction.

Fig. 5. Distribution of the optimal number of hops in detour paths.

is achieved by using only one relay node. Next, we compute the
CDF (cumulative distribution function) of the RTT reduction
across all player pairs. The results are shown in Fig. 4(b) for
0-hop, 1-hop, 2-hop, 3-hop, and -hop detour routing. The re-
sults in Fig. 4(b) show that 80% of player pairs observe RTT re-
duction using detour routing. Most importantly, the figure shows
that about 40% of player pairs observe at least 100-ms RTT re-
duction. In summary, Fig. 4 shows that using detour routing sig-
nificantly reduces RTTs among gaming clients.

2) Optimal Number of Hops : We define the number of
optimal hops as the number of relay nodes traversed by the op-
timal detour path. We compute the number of hops using the
Dijkstra’s shortest path algorithm implemented in the Boost
Graph Library (BGL).3 We plot the distribution of the number
of hops in the optimal detour paths in Fig. 5. This figure shows
that almost 50% of optimal paths can be found within 1-hop.

3) Reachability: As mentioned in Section I, different types
of games have different thresholds on RTTs, and these thresh-
olds in turn define the reachability of clients. We compute the
reachability of various RTT thresholds: 50, 100, and 200 ms. For
each threshold, we iterate through every client IP and identify all
other client IPs that have RTT values shorter than the threshold
to the subject client. We call these clients reachable clients, and
we count them. We repeat this process for 0-hop, 1-hop, 2-hop,
3-hop, and -hop. Then, we compute the difference between
the results achieved by -hop detour routing and direct
paths (0-hop). In Fig. 6, we plot the CDF curve of the results for
200-ms threshold; other results are similar. The figure shows,
for example, 95% of clients can reach at least 100 additional
players with 2-hop detour routing. This means that employing
detour routing helps players to find more potential players to
start gaming sessions, while maintaining good gaming quality.
This is in contrast to previous works on player matching, such

3[Online]. Available: http://www.boost.org/

Fig. 6. Additional players allowed by detour routing.

as [5], [7], which constrain players’ reachability to maintain
gaming quality.

4) Relay Load: We report the relay loads of -hop simu-
lations as they represent the worse-case scenario on relay over-
head. Fig. 7(a) plots the mean relay load of different number of
random IP pairs requesting detour paths. This figure shows that
the mean relay load increases when more IP pairs need relay
clients. In Fig. 7(b), we plot the CDF curve for the relay load of
individual clients when 8000 random IP pairs concurrently re-
quest for detour paths. This figure illustrates that more than 90%
of clients have relay load less than three, but a small number
of them (about 2%) have relay load larger than 10. Fig. 7 re-
veals that although most clients will not be overloaded by de-
tour routing, very few of well-connected clients may be over-
loaded. While well-connected clients are likely to have higher
network capacity, in some rare cases, high relay load may lead
to degraded gaming quality. Therefore, when designing the de-
tour routing system (see Section V-B), we provide an admission
mechanism for the potential relay clients to avoid quality degra-
dation due to high relay load.

D. Impact on Player Performance

Player performance is an indication of gaming quality: low
frame rates, sluggish responsiveness, and irregular moves affect
players’ ability to interact with other players, and thus often lead
to poor player performance. The player performance metrics are
defined in the context of each game type, and could be quite
different from one to another. For example, higher shooting ac-
curacy in first-person shooter games is important, while shorter
finish time in car racing games is desired. Furthermore, the same
game type may have multiple player performance metrics. Many
subjective user studies, e.g., [8], [11], [24], [30]–[35], define
performance metrics for various games. Here, we analyze the
impact of detour routing on several player performance metrics
defined in previous works. We do this by leveraging on the ex-
tensive results already available in the literature. More specifi-
cally, we extract sample points from figures in [11], [30], [32],
which map network latency to player performance metrics. For
network latencies that do not appear in the figures, we com-
pute the expected player performance using interpolation and
extrapolation.

Due to space limitations, we only present some sample
results.

1) First-Person Shooter Games: Beigbeder et al. [11] study
the effect of network loss and latency on player performance
in Unreal Tournament, which is a popular first-person shooter
game. In first-person shooter games, each player controls an

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 17:31:21 UTC from IEEE Xplore. Restrictions apply.

LY et al.: IRS: A DETOUR ROUTING SYSTEM TO IMPROVE QUALITY OF ONLINE GAMES 739

Fig. 7. (a) Mean relay load of all clients and (b) per-client relay load with 8000 IP pairs.

Fig. 8. Improvements in a first-person shooter game. (a) Hit ratio. (b) Death
count.

avatar, and sees through its eyes a virtual world. Players move
in the virtual world, and try to kill other players and/or bots con-
trolled by computer algorithms. There are several modes for Un-
real Tournament games. The base mode is called deathmatch,
where each player tries to kill as many other players as possible.
If a player is killed in a deathmatch game, he/she would rejoin
the game for a limited number of times. The score of each player
is determined by the number of players he/she kills. Players
have a wide selection of weapons to use. These weapons can
be classified into high, medium, and low precision. High preci-
sion weapons are more vulnerable to network latency, as small
aiming inaccuracy can lead to miss shots.

Based on [11], we chose two player performance metrics that
are most affected by the network latency, and we describe them
in the sequel. We first consider hit ratio, which is the ratio of
hit shots over the total fired shots. The hit ratio is measured
using high precision weapons during 10-minute games. We then
consider death count, which is the number of times a player dies
in a 5-minute deathmatch game. In Fig. 8, we plot the impact
of latency reduction on the player performance in first-person
shooter games. In particular, Fig. 8(a) depicts the improvements
in the hit ratio. This figure shows that 60% of players gain at
least 20% hit ratio improvements with 2-hop detour routing, and
some of them can improve their hit ratio by as much as 40%.
Fig. 8(b) shows a similar improvement in death count.

2) First-Person Car Racing Games: Pantel and Wolf [30] ex-
plore the impacts of latency on player performance in the Vir-
tual RC Racing game. In car racing games, each user drives a
car running on a racing track for several laps. The goal is to
finish a target number of laps as soon as possible. Players need
to follow the racing track as close as possible, because missing
the track means sudden speed reduction and higher chances for

Fig. 9. Improvements in a first-person racing game.

collisions. High network latency results in irregular frame up-
dates, which in turn increases the chances for players to leave
the track, and thus have a longer finish time.

Using a subjective study, Pantel and Wolf [30] summarize
the players’ gaming experience as follows. With RTT at 50 ms,
players are not aware of any imposed latency. At 100 ms, players
can feel the unresponsiveness when steering, but do not observe
rendering issues. At 200 ms, players clearly see the frame rate is
dropping, and the cars are harder to control. Finally, at 500 ms,
the gaming quality becomes so bad, and players would rather
stop playing. This subjective study clearly indicates network la-
tency has great impacts on the user satisfaction in racing games.

For objective metrics, we adopt two player performance met-
rics from the study in [30]. We first consider lap time, which is
the average time a player finishes a lap. Each player runs five
laps, and the average lap time is computed across all players
in the study. We next consider frequency of leaving the track,
which is defined as the number of times a player accidentally
leaves the track for each lap. This is computed by replaying each
player’s five lap race to count the number of times he/she leaves
the track. As a sample result, we present the lap time improve-
ment in Fig. 9. This figure illustrates that 60% of players achieve
2 s or more lap time reduction with 2-hop detour routing. This
is a nontrivial reduction as typical lap time in racing games is
less than 14 s and the winning lap time is often within 1 ms of
the second place [8].

3) NFL Football Games: Nichols and Claypool [32] study
the impacts of network latency on Madden NFL Football, which
is a network game running on Sony PlayStation 2. Two main
player performance metrics are identified in this game: Running
and Passing performance. Only the Running performance has
been quantified in the study in terms of average attempt gain
in yards. The experimental results show that longer network la-
tency results in smaller yards gained, and the precise mapping

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 17:31:21 UTC from IEEE Xplore. Restrictions apply.

740 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 4, AUGUST 2011

Fig. 10. Improvements in a football game.

is extracted from the figures in [32]. The extracted data shows
that the attempt gain performance decreases when network la-
tency increases, and as high as can
be achieved. We plot the relative improvement on the number of
yards gained per attempt in Fig. 10. The figure shows that 70%
of players observe improvement in their average yard gains with
2-hop detour routing.

V. DESIGN OF THE IRS

A. System Overview

We propose the IRS, which utilizes the triangle inequality in
the Internet to form detour paths for faster delivery of game-state
updates. Consider a gaming network with a lobby server and
clients. We say that client leads to a detour path from to if
and only if . The goal of our IRS
system is to efficiently find detour paths between two clients
and , and utilize the detour paths to reduce RTT between them.
To achieve this, the IRS system performs the following three
operations between and .

1) Identify up to most promising relay clients using a net-
work coordinate system, where is a system parameter.

2) Rank these potential relay clients based on end-to-end RTT
measurements, which allow client to find the best detour
path to reach .

3) Monitor the network and relay client conditions and dy-
namically switch detour paths if the active one is congested
or the relay client fails.

The IRS system has two components: IRS server and IRS
client. The IRS server is implemented as a module in the lobby
server to manage coordinates of clients and assist clients to uti-
lize detour paths in order to reduce the RTT between any two
clients. The IRS client implements a network coordinate system
and runs on game clients. The IRS system can work with any
network coordinate system, such as Vivaldi [29]. Each game
client maintains a neighbor set and randomly probes clients
in . The client then adjusts its coordinates based on the RTT
measurements and the coordinates of its neighbors. The number
of neighbors of each client is a system parameter. Client pe-
riodically (every s) sends updates of its coordinates and
RTT measurements (, where) to the IRS server.
This enables the IRS server to maintain a current view of the
gaming network, and to determine the likelihood of any two
clients being part of a detour path. Then, the IRS server uses
an efficient algorithm to find the most promising detour paths

between two given clients, which is presented in Section VI.
We control the overhead of the algorithm by heuristically set-
ting thresholds on the changes in the coordinates and RTT
measurements below which the updates are not sent.

B. Identifying Potential Detour Paths

To identify potential detour paths, we employ network coor-
dinate systems, which enable us to derive pairwise RTT mea-
surements without imposing high probing overhead. A network
coordinate system assigns each client a point in a coordinate
space such that computing the distance between the coordinates
of two points gives the RTT estimate between the clients asso-
ciated with these two points. The coordinates of each client are
derived from a few RTT measurements between that client and
its neighbors, which are chosen by a bootstrap service when the
client joins the coordinate system or through a gossip protocol.
At a first glance, we may think that finding detour paths can be as
simple as using network coordinates to find the relay client with
the smallest end-to-end RTT among all possible relay clients.
This approach, unfortunately, does not work, because most co-
ordinate spaces satisfy the triangle inequality [29], and thus RTT
estimations computed using network coordinate systems form
no TIVs.

We employ an indirect way to use network coordinate sys-
tems in order to identify potential detour paths. This method is
based on the following observation, which is also used in [20].
Since network coordinates cannot properly embed RTT mea-
surements with TIVs into the resulting coordinates, the RTT es-
timation of two points of a TIV would suffer from a nontrivial
estimation error. We give an example to illustrate the above ob-
servation. Fig. 2 shows a TIV between C1, C5, and H1, where
the numbers next to the links are RTT estimations and the num-
bers in parentheses are estimation errors. The same TIV is also
shown in Fig. 1 with real RTT measurements. We first consider
the long side (C1, H1), its RTT measurement is abnormally long
from the perspective of the network coordinate system, and thus
the RTT estimation should be shorter than the RTT measure-
ment, or equivalently the estimation error should be a nontrivial
negative value. Otherwise, this TIV is successfully embedded
by the network coordinate system, which is impossible because
coordinate spaces satisfy triangle inequality. Similarly, consider
the short sides (C1, C5) and (C5, H1), their RTT measurements
are abnormally short from the perspective of the network co-
ordinate system, and thus the RTT estimates should be longer
than the RTT measurements, or equivalently the estimation er-
rors should be nontrivial positive values. This is shown in Fig. 2,
where the link between C1 and H1 has a negative estimation
error of 30, while the other two links have positive estimation
errors of 40 and 30.

The component that identifies detour paths using the above
observation runs on the IRS server. It uses the RTT measure-
ments and network coordinates collected from the clients to find
the most promising relay clients. First, we define the relay can-
didates as the set of all clients whose RTT measurements from

or were previously reported to the IRS server, that is, a client
is in if and only if and/or are known to the IRS

server. For a given pair of and , the IRS server evaluates the

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 17:31:21 UTC from IEEE Xplore. Restrictions apply.

LY et al.: IRS: A DETOUR ROUTING SYSTEM TO IMPROVE QUALITY OF ONLINE GAMES 741

likelihood of each client in for being the best relay client of
the detour path between and using the likelihood function

if
if
if and
are both known

(4)
where is the estimated RTT between and using
their network coordinates and . Based on the aforemen-
tioned observation on TIVs, relay clients with higher likelihood
function values have higher chances to be on better detour paths.
The IRS server uses the likelihood function to find the most
promising relay clients.

C. Ranking Detour Paths

While the IRS server maintains historical RTT measurements
to identify potential detour paths, these RTT measurements may
be out-dated due to network dynamics. Fortunately, this problem
can be mitigated by conducting on-demand, end-to-end, RTT
measurements through the potential relay clients from to
. Other than more up-to-date measurements, conducting actual

end-to-end RTT measurements has an additional benefit. These
end-to-end measurements allow us to factor in the round-trip
relay overhead , which is dynamic and depends on the cur-
rent load of the relay client . This in turn allows us to avoid
overloading clients with limited resources as these clients have
high values, and thus high end-to-end RTT measurements.

Upon the end-to-end RTT measurements are done, the source
client ranks the potential detour paths in ascending order of
their RTTs. It then uses the first detour path as the active de-
tour path, and keeps other detour paths as backups. Client
then sends a relay request message, which includes its band-
width requirement, to the active relay client . Client checks
whether it still has residual bandwidth to serve as the relay client
of , and sends a relay reply message accordingly. Through the
request/reply messages, each IRS client enforces a maximum
contribution bandwidth, which can be either a system param-
eter or derived by bandwidth measurement tools. An IRS client
can also reject relay requests if its CPU load is too high to for-
ward more packets.

D. Managing Network Dynamics

The IRS system may be affected by network dynamics, such
as network congestion as well as overloaded and disconnected
relay clients. Relay clients may also be under DoS attacks from
malicious clients. The outcome of these events is excessive late-
ness of game-state updates, which results in degraded gaming
quality. To cope with network dynamics, the IRS system pro-
vides an application programming interface (API) for online
games to report excessive lateness of updates or lags. The def-
inition of lag is different from game to game, but in general it
depends on network latency and delay jitter, as well as the tol-
erant levels of the subject game. The precise definition of lag
is therefore determined by game developers and is beyond the
scope of this paper. When a lag occurs, the IRS system switches
over to the next backup detour path for fast recovery. The de-
tour path suffering from network lags becomes a backup de-
tour path, and may be reused at a later time. Switching over to

backup detour paths leads to several benefits. First, it helps the
clients to recover from lags due to network congestion or client
failure and departure. Second, it reduces the load on relay clients
that cannot keep up with forwarding game-state updates, which
prevents the IRS system from overloading relay clients. Last,
it increases the complexity of launching DoS attacks on relay
clients, and thus demotivates malicious clients from attacking
others.

E. Handling Security Concerns

The IRS system carefully handles two types of attacks: DoS
and man-in-the-middle. DoS refers to the attack where an at-
tacker client floods many packets to an opponent in order to in-
flate the RTT between the victim client and its host. The victim
client in turn suffers from sluggish responsiveness and may even
be dropped from the game session [36], which gives the attacker
client advantages. In the IRS system, an attacker client may di-
rect the packet flood toward the victim client’s active relay client
for a DoS attack. This is because the game-state updates be-
tween the victim client and its host pass through the relay client.
The IRS system addresses such DoS attacks as follows. First, the
IRS system never discloses relay candidates of a client to others.
Therefore, an attacker client cannot find the victim client’s relay
client. Second, even if the attacker client accidentally locates
the victim client’s active relay client, and starts a DoS attack
by flooding packets to that active relay client, the victim client
would quickly notice network lags and switch to backup detour
paths. Therefore, victim clients can recover from such DoS at-
tacks. Last, any clients that suffer from packet floods would re-
port high RTT measurements to the IRS server. The IRS server,
therefore, wouldn’t choose them as relay candidates for newly
joined clients.

Man-in-the-middle refers to the attack where an attacker
makes two connections to victims and modifies/delays
game-state updates between them in order to gain advan-
tages. In the IRS system, a client can maliciously report very
low RTT measurements to attract others using it as a relay client
and conduct man-in-the-middle attacks. To handle such attacks,
the IRS client provides an API for online games to selectively
send sensitive data, such as shared keys, over direct paths to
avoid potential eavesdropping. This allows online games to
send encrypted game-state updates using methods such as the
one in [37] and prevent attacker clients from inspecting and
modifying game-state updates. Since a malicious relay player
does not know the actual contents of game-state updates, the
relay player cannot selectively delay critical updates, such
as firing a weapon. Thus, an attacher can only delay all (or
random) updates, and the IRS client on the victim client would
notice network lags and switch to backup detour paths. Hence,
our IRS system can handle man-in-the-middle attacks.

F. The Proposed Algorithm

Fig. 11 gives the high-level pseudocode of the proposed al-
gorithm, which we call Shortest RTT (SRTT) algorithm. The al-
gorithm consists of two parts: server and client. The server first
finds all potential relay clients, and sorts them on their likeli-
hood function values in lines 2–4. It eliminates the clients with
low likelihood function values from the set in line 5, and sends
the remaining potential relay clients to source . Upon receiving

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 17:31:21 UTC from IEEE Xplore. Restrictions apply.

742 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 4, AUGUST 2011

Fig. 11. Proposed algorithm.

the potential relay clients, in lines 2–4, client goes through
the relay clients and conducts end-to-end RTT measurements
through each of them. In line 5, the RTT of the direct path is
measured. Client then sorts the detour and direct paths using
the RTT measurements in line 6 and picks the best one of them
in line 7. The client switches over to backup detour paths in line
8 if lags are reported.

G. Overhead Analysis

The proposed IRS system incurs low processing and network
overheads. The processing overhead on each client is dominated
by line 6, which takes operations as

. Since is a small system parameter,
the processing overhead on clients is negligible. The processing
overhead on the server is dominated by line 4, as line 3 computes

using the closed-form formula in (4). Therefore, the worst
case processing time is , where is the number
of clients in the gaming network. The average number of relay
candidates is typically close to the number of neighbors , and
the average processing time at the server is , where

is a small system parameter, e.g., Dabek et al. [29] state that
using in Vivaldi leads to good performance. Since
the average and maximal processing overheads on the server
are low, and the SRTT algorithm only runs at session initializa-
tion time, a reasonable lobby server can serve a large number of
clients.

The network overhead between clients and the server is small
as each client updates the server at most once every sec, and
each update consists of the coordinates of the reporting client
and on average RTT measurements to its neighbors. Since
is a small system parameter, each update can be packed into a
single packet. Because is in the order of seconds, the network
overhead between clients and the server is negligible. Moreover,
the network overhead among clients is also small. First, a relay
client contributes a small bandwidth (about 40 kb/s as reported
in Section III) toward every client using it as the relay client.
Second, in typical network coordinate systems, a client sends

Fig. 12. IRS client architecture.

control messages to its neighbors infrequently. For example, as
presented in Section VI, our experimental results using Pyxida
[38] show that each client sends a probing message every 16 s
on average. Hence, the network overhead among clients is also
negligible.

VI. IMPLEMENTATION AND EXPERIMENTAL RESULTS

Here, we first describe a real implementation of the IRS
system. Then, we present performance results obtained from
deploying the system on a wide-area testbed (PlanetLab) and
on several home computers with DSL and cable modem access
links.

A. Implementation

The IRS system is implemented in Java code and it consists
of two parts: client and server. The IRS client runs on game
clients. The IRS server may run on the lobby server or on a
standalone machine. Running the IRS server on a standalone
machine allows multiple lobby servers to share the same IRS
server via remote procedure calls and enables load balancing.
We present the IRS client and server below.

1) IRS Client: The IRS client consists of three modules: 1)
neighbor update module (NUM); 2) client coordinate module
(CCM); and 3) packet forwarding module (PFM). Fig. 12 il-
lustrates the IRS client architecture. The NUM is responsible
for the control messages. It maintains communication channels
with the IRS server and the neighboring clients. When a new
client joins the IRS system, its NUM connects to the IRS server
and requests a list of neighbors. Upon getting the list of neigh-
bors, the NUM connects to the neighbors and schedules periodic
RTT measurements to them. The time intervals between RTT
measurements are adaptive so that neighbors that have stable
network coordinates are assigned longer measurement intervals.
This is to reduce the number of RTT measurements and network
overhead. The NUM is also responsible for sending the coordi-
nates and RTT measurements to the IRS server.

We notice that, while NUM schedules the RTT measure-
ments, it does not implement the network coordinate system
itself. Instead, the network coordinate system is implemented
in the CCM module. The NUM gets the latest coordinates from
the CCM whenever the NUM decides to send a coordinate up-
date to the IRS server, or receives an RTT measurement request
from a neighbor. We implemented the CCM based on the open
source Pyxida project [38], which implements the Vivaldi [29]

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 17:31:21 UTC from IEEE Xplore. Restrictions apply.

LY et al.: IRS: A DETOUR ROUTING SYSTEM TO IMPROVE QUALITY OF ONLINE GAMES 743

Fig. 13. IRS server architecture.

algorithm. We modified the Pyxida implementation to make it
suitable for our IRS system. For example, the original Pyxida
employs a gossip protocol for bootstrapping a new node, while
in the modified version, a server-aided bootstrapping mecha-
nism is realized to leverage on the coordinates stored at the IRS
server. The default Pyxida parameters are used throughout the
experiments if not otherwise specified.

While the NUM and CCM are in the control plane of the
IRS client, the PFM is in the data plane and maintains the de-
tour paths, that is, all game-state updates are sent to the PFM,
and re-transmitted to the destination client. We generate random
synthetic packets to measure end-to-end RTTs, which include
the actual relay overhead. That is, round-trip relay overhead

is part of RTTs reported in our experimental results. The
synthetic packets have random packet sizes between 25 and 100
bytes, while a random number of packets are grouped into bursts
with an inter-burst time of 64 ms.4 The PFM switches over to
backup detour paths whenever network lags occur.

2) IRS Server: The IRS server consists of three modules:
1) coordinate module (CM); 2) detour search module (DSM);
and 3) game session module (GSM). Fig. 13 illustrates the IRS
server architecture. The CM is essentially a database and man-
ages the coordinates and RTT measurements sent by clients.
The CM provides the coordinates and RTTs to the DSM. The
DSM implements the server-side of the SRTT algorithm and
provides detour path lookup service to IRS clients. Upon re-
ceiving a detour lookup request from an IRS client, the DSM
invokes the SRTT algorithm to compute a set of potential de-
tour paths, which are sent back to that client.

While the CM and DSM are sufficient to provide detour path
lookup service, we implemented the GSM in our IRS server to
emulate players, who join and leave game sessions. To emulate
typical game matches, the GSM module periodically creates
a new random game session every 15–60 s, and each game
session lasts between 3–10 min. To be conservative, we chose
rather short game sessions because they lead to more client dy-
namics, which in turn impose more challenges to the proposed
IRS system. We programmed the GSM to generate random
game sessions as follows. We first analyzed the game session
information collected in Section IV-A and derived an empirical
probability mass function (PMF) for the number of players
per session, which is plotted in Fig. 14. We then followed this

4We tried a few other inter-burst times in our experiments, but did not see
noticeable difference. We chose 64 ms to align it with Pyxida’s update frequency
to simplify the implementation.

Fig. 14. Number of players in each game session.

Fig. 15. RTT reduction achieved by the IRS system.

probability distribution to find a random number of players to
form a game session. The GSM randomly chooses that many
IRS clients from all active clients, and it selects a random host
from them. Once the clients are determined, the GSM emulates
this game session by finding detour paths from individual
clients to the host. The GSM achieves this by sending multiple
lookup requests to the DSM. The GSM collects statistics on the
detour and direct paths, and saves them in a log file.

B. PlanetLab Deployment

We deployed the IRS client on more than 500 PlanetLab
nodes. We ran the IRS server on a workstation in our Lab. We
let , 64 ms, 60 s, and .
To rule out time-of-day variations on network conditions, we
instructed the GSM module to perform the same experiment
five times, with each lasting more than nine hours. More than
3000 game sessions with length 3–10 min were randomly
created with the number of players per session following an
empirically-driven probability distribution (see Fig. 11). For
each game session, we collected real RTTs (including relay
overhead) of the detour paths computed by the DSM and saved

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 17:31:21 UTC from IEEE Xplore. Restrictions apply.

744 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 4, AUGUST 2011

Fig. 16. Overhead incurred by the IRS system: (a) number of messages sent by each client in a 9-h experiment and (b) updates per minute received by the server.

Fig. 17. Player performance: (a) lap time in a racing game and (b) hit fraction in a shooter game.

them in a log file, which was then post-processed to quantify
the performance of the IRS system. For comparison, we also
logged RTTs of the direct paths and compute the performance
of the current gaming networks. In the figures, we use IRS to
denote results achieved by our implementation, and Current to
denote results without our implementation.

C. Experimental Results From PlanetLab

1) RTT Reduction: We report the RTT reduction achieved by
our IRS implementation. We compute the RTT reduction of all
game sessions, and plot the CDF in Fig. 15. This figure shows
that nearly all game sessions observe some RTT reduction due
to the IRS system, while more than 60% of them achieve 100
ms or higher RTT reduction.

2) Imposed Overhead: The IRS system incurs some over-
head, including probing messages among clients and update
messages between clients and the server. We count the ac-
cumulated number of probing messages sent by each IRS
client throughout the 9-h experiment, and we plot the CDF in
Fig. 16(a). This figure shows that almost all clients imposed less
than 2000 messages in a 9-h time period, which is about one
packet every 16 s on average. We also compute the number of
update packets received by the IRS server. The update packets
carry either the latest coordinates or RTT measurements. We
compute the average number of update packets per minute at
the server, and we plot it in Fig. 16(b). This figure shows that
the number of update messages is fairly small: up to 300 per
minute are observed. We mention that this experiment mimics
the worst-case scenario where a large number of clients
simultaneously log in to the game server. In reality, the login
times of clients are scattered over a longer period. Under this
worse case scenario, the total peak load on the server is only
five messages per second, which is equivalent to 4.32 kb/s (each

update message contains two coordinates and up to
RTTs, and thus is 108 byte long including all headers). Hence,
Fig. 16(b) illustrates that the load on the IRS server is low,
and it can serve a large number of clients. In addition, this
figure shows a decreasing trend on the IRS server load. This
is because once the client coordinates are stabilized, they send
fewer number of update packets to the server.

3) Player Performance: We compute the expected player
performance improvement due to the RTT reduction achieved
by the IRS system using the same calculation as detailed in
Section IV-D. We present CDFs of two sample player perfor-
mance metrics: lap time and hit fraction. We plot the lap time
improvement in Fig. 17(a) and the hit fraction improvement in
Fig. 17(b). Fig. 17 shows that 30% of players can reduce their
lap times by more than 1 s and 30% of players can increase
their hit fractions by more than 10%. The improvements on
player performance are because of more responsive systems and
smoother rendering, which are due to smaller RTTs achieved
by the IRS system. Fig. 17 indicates that employing the IRS
system leads to higher gaming quality, and thus better player
performance. This in turn will stimulate players to play more on-
line games, and thus increase the revenues of the online gaming
companies.

4) Existence of Backup Detour Paths: Last, we study the
number of detour paths between clients and their hosts. For each
client, we compute the number of detour paths from it to its
host using the end-to-end RTT measurements. We compute the
number of detour paths for individual clients, and we plot its
PMF in Fig. 18. This figure shows that 55% of the clients have
at least one detour path, and 24% of the clients have two or
more. This illustrates that the IRS system finds backup detour
paths even in small scale networks with only 500 clients and
neighbors restricted to 32.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 17:31:21 UTC from IEEE Xplore. Restrictions apply.

LY et al.: IRS: A DETOUR ROUTING SYSTEM TO IMPROVE QUALITY OF ONLINE GAMES 745

TABLE I
RESULTS FROM BZFLAG EMULATOR AND ACTUAL RTT TRACES OF HOME COMPUTERS

Fig. 18. Number of detour paths found by the IRS system.

Fig. 19. Sites in the residential measurement experiments.

5) Summary: Our experimental results clearly show that the
IRS system improves the online gaming performance from sev-
eral aspects: 1) it significantly reduces RTTs in game sessions;
2) it imposes negligible network and processing overheads; 3)
it increases the gaming quality and player performance; and 4)
it allows many clients to have backup detour paths to cope with
system dynamics.

D. Residential Deployment

Although our PlanetLab experiments illustrate that our IRS
system results in performance improvement, we acknowledge
that PlanetLab nodes may have characteristics different from
those of residential machines. To show that the IRS system also
works in residential environments, we deployed IRS clients on
17 home computers with DSL and cable modem access links.
We let , 64 ms, 60 s, and . The
geographic locations of the 17 players are illustrated in Fig. 19.
We use the GSM module to randomly initiate new game sessions
between two players, but users may launch and close their IRS
clients at any time.

Despite a small number of participants, we have identified
more than eight detour paths among them. Fig. 19 shows a rep-
resentative detour path found among residential computers. In
the data collected, an IRS client in Vancouver, Canada, had an
average direct RTT of 199.37 ms to another client in Linköping,
Sweden. The IRS system found a shorter detour path using a

node in Los Altos, CA. The detour path resulted in an average
RTT of only 101.27 ms. During the one-week-long experiment,
we observed consistency in relay node selections. For example,
the Vancouver IRS client consistently picked the relay node in
Los Altos. The only time it selected another node was when the
Los Altos node is offline. The backup detour path, using an-
other node in Vancouver, Canada resulted in an RTT of 162.61
ms. The residential deployment shows that our IRS implementa-
tion works even among home computers with residential access
links, which may have high last-mile delays.

Next, we quantify the impact of our IRS system on gaming
quality using an online game and actual RTT measurements col-
lected from residential computers. We achieve this by emulating
an open source first-person avatar game called BZFlag.5 BZFlag
is a multiplayer tank game, in which several players drive tanks
in a battlefield and shoot each other for as many kills as pos-
sible. BZFlag is a representative online game because it imple-
ments modern latency compensation techniques including dead
reckoning [12], [13] for movement predictions and smoothing
algorithms [39] for correcting inconsistency due to inaccurate
predictions. We have decided to only use computer players in
our emulations in order to eliminate any bias due to human fac-
tors. More specifically, we constructed our emulator on top of
the game latency simulator (GLS) system implemented in [40].
The GLS system closely emulates several BZFlag’s computer
players competing in a battlefield, and stores detailed statistics
such as tank position, number of shots, and number of hits in
log files for offline analysis. The GLS system, however, does
not emulate network latency: a fixed RTT is used throughout
each simulation for all players. We modified the GLS system to
take RTT trace files as input and faithfully emulate real BZFlag
clients running on home computers.

We consider several pairs of residential clients where the IRS
system results in RTT reduction. We first take the trace file of
RTT measurements on the direct path and use it to drive a 1-h
game between two computer players. We next take the trace file
of RTT measurements over the active detour path and repeat the
game. Then, we compare the gaming quality in these two games.
We consider two performance metrics: hit fraction and position
deviation [40]. Hit fraction refers to the ratio of hit shots over
the total shots, while the position deviation refers to the distance
between the displayed tank position and the actual tank position.
Low hit fraction and long position deviation indicate that the la-
tency compensation algorithms implemented in BZFlag cannot
accommodate the excessive network latency, and result in de-
graded gaming quality. We report the average hit fraction and
position deviation for three sample gaming sessions in Table I.
This table clearly shows that residential users with cable modem

5[Online]. Available: http://bzflag.org/

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 17:31:21 UTC from IEEE Xplore. Restrictions apply.

746 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 13, NO. 4, AUGUST 2011

and DSL access links can benefit from the IRS system with sig-
nificant performance improvement: average hit fraction is im-
proved by up to 4.5 times and the average position deviation
can be reduced from about 5 m to 1 m. Our experimental results
illustrate that the IRS system works: 1) in residential networks
and 2) on online games that have implemented modern latency
compensation algorithms.

VII. CONCLUSION

We conducted a large-scale measurement study to quantify
the potential gain of using detour routing in online games. We
studied the pairwise RTT reduction, reachability (additional
number of players that can be reached), and RTT reduction of
0-hop, 1-hop, 2-hop, 3-hop, and -hop detour routing, where

is the optimal number of hops. Our results showed that
significant RTT reduction can be achieved by detour routing,
and simple 1-hop detour routing is sufficient for most practical
cases, as it achieves up to 80% of the RTT reduction achieved
by the optimal -hop detour routing. We analyzed the benefits
of detour routing on the application performance metrics. We
showed that detour routing leads to significant improvement in
several player performance metrics, such as: 1) hit fraction and
death count in first-person shooter games; 2) lap completion
time and frequency of leaving the track in car racing games; and
3) attempt gain in football games. For example, we observed
that 60% of players in first-person shooter games gain 20% hit
ratio improvements, and some of them can improve their hit
ratio by up to 40%.

We then presented a complete IRS system, which allows on-
line game clients to find and utilize detour paths in order to re-
duce end-to-end RTTs. The IRS system supports three opera-
tions. First, the server employs a network coordinate system and
RTT measurements to identify potential detour paths between
any two clients. Second, the source client conducts end-to-end
RTT measurements to the destination via each relay client, and
selects the detour path with the smallest RTT as the active detour
path. Third, the IRS system monitors the lateness of game-state
updates and switches to the best backup detour path whenever
network lags occur. We implemented the IRS system and de-
ployed it on more than 500 PlanetLab nodes and on several
home computers with residential access links. Our experimental
results indicate that the IRS system efficiently reduces RTTs
among game clients, yet imposes negligible network and pro-
cessing overheads. Smaller RTTs result in better gaming quality
and higher player matchability, which are two major QoS met-
rics in online games. We observed that more than 60% of game
sessions achieve 100 ms or more RTT reduction compared with
the current gaming networks.

REFERENCES

[1] S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell, A.
Collins, E. Hoffman, J. Snell, A. Vahdat, G. Voelker, and J. Zahorjan,
“Detour: Informed Internet routing and transport,” IEEE Micro, vol.
19, no. 1, pp. 50–59, Jan./Feb. 1999.

[2] C. Lumezanu, R. Baden, N. Spring, and B. Bhattacharjee, “Triangle
inequality and routing policy violations in the Internet,” in Proc. Conf.
Passive Active Netw. Meas. (PAM’09), Seoul, Korea, Apr. 2009, pp.
45–54.

[3] G. Wang, B. Zhang, and T. Ng, “Towards network triangle inequality
violation aware distributed systems,” in Proc. ACM Conf. Internet
Meas. (IMC’07), San Diego, CA, Oct. 2007, pp. 175–188.

[4] G. Armitage, M. Claypool, and P. Branch, Networking and Online
Games, 1st ed. New York: Wiley, 2006.

[5] S. Agarwal and J. Lorch, “Matchmaking for online games and other
latency-sensitive P2P systems,” in Proc. ACM SIGCOMM, Barcelona,
Spain, Aug. 2009, pp. 315–326.

[6] C. Chambers, W. Feng, W. Feng, and D. Saha, “A geographic redirec-
tion service for on-line games,” in Proc. ACM Multimedia, Berkeley,
CA, Nov. 2003, pp. 227–230.

[7] M. Claypool, “Network characteristics for server selection in online
games,” in Proc. SPIE/ACM Multimedia Computing and Networking
(MMCN’08), San Jose, CA, Jan. 2008, pp. 681808:1–681808:12.

[8] M. Claypool and K. Claypool, “Latency and player actions in online
games,” Commun. ACM, vol. 49, no. 11, pp. 40–45, Nov. 2006.

[9] N. Baughman and B. Levine, “Cheat-proof playout for centralized and
distributed online games,” in Proc. IEEE INFOCOM, Anchorage, AL,
Apr. 2001, pp. 22–26.

[10] F. Cecin, C. Geyer, S. Rabello, and J. Barbosa, “A peer-to-peer
simulation technique for instanced massively multiplayer games,”
in Proc. IEEE Symp. Distrib. Simul. Real-Time Applic. (DS-RT’06),
Washington, DC, Oct. 2006, pp. 43–50.

[11] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunket, E. Agu, and M.
Claypool, “The effects of loss and latency on user performance in
unreal tournament 2003,” in Proc. ACM SIGCOMM Workshop Netw.
Syst. Support for Games (NetGames’04), Portland, OR, Aug. 2004,
pp. 144–151.

[12] Y. Bernierr, “Latency compensating methods in client/server in-game
protocol design and optimization,” in Proc. Game Developers Conf.,
San Jose, CA, Mar. 2001.

[13] J. Vogel and M. Mauve, “Consistency control for distributed interactive
media,” in Proc. ACM Multimedia, Ottawa, ON, Canada, Sep. 2001, pp.
221–230.

[14] S. Aggarwal, H. Banavar, A. Khandelwal, S. Mukherjee, and S. Ran-
garajan, “Accuracy in dead-reckoning based distributed multi-player
games,” in Proc. ACM SIGCOMM Workshop Netw. Syst. Support for
Games, Portland, OR, Aug. 2004, pp. 161–165.

[15] Y. Lee, S. Agarwal, C. Butcher, and J. Padhye, “Measurement and
estimation of network QoS among peer Xbox 360 game players,” in
Proc. Conf. Passive Active Netw. Meas., Cleveland, OH, Apr. 2008,
pp. 41–50.

[16] G. Armitage, “Optimising online FPS game server discovery through
clustering servers by origin autonomous system,” in Proc. ACM Work-
shop Netw. Oper. Syst. Support for Digital Audio and Video, Braun-
schweig, Germany, May 2008, pp. 3–8.

[17] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, “Resilient
overlay networks,” ACM SIGOPS Oper. Syst. Rev., vol. 35, no. 5, pp.
131–145, Dec. 2001.

[18] L. Subramanian, I. Stoica, H. Balakrishnan, and R. Katz, “OverQos:
An overlay based architecture for enhancing Internet QoS,” in Proc.
USENIX Symp. Netw. Syst. Design and Implementation, San Francisco,
CA, Mar. 2004, pp. 71–84.

[19] S. Ren, L. Guo, and X. Zhang, “ASAP: An AS-aware peer-relay pro-
tocol for high quality VoIP,” in Proc. IEEE Conf. Distrib. Computing
Syst., Lisboa, Portugal, Jul. 2006, pp. 70–80.

[20] C. Lumezanu, R. Baden, D. Levin, N. Spring, and B. Bhattacharjee,
“Symbiotic relationships in Internet routing overlays,” in Proc.
USENIX Symp. Networked Syst. Design and Implementation, Boston,
MA, Apr. 2009, pp. 469–480.

[21] C. Lumezanu, D. Levin, and N. Spring, “PeerWise discovery and nego-
tiation of faster paths,” in Proc. ACM Workshop Hot Topics in Networks
(HotNets’07), Atlanta, GA, Nov. 2007, pp. 1–6.

[22] C. Ly, C. Hsu, and M. Hefeeda, “Improving online gaming quality
using detour paths,” in Proc. ACM Multimedia, Florence, Italy, Oct.
2010, pp. 55–64.

[23] T. Henderson, “The effects of relative delay in networked games,”
Ph.D. dissertation, Dept. Comput. Sci., Univ. of London, London,
U.K., 2003.

[24] S. Zander, I. Leeder, and G. Armitage, “Achieving fairness in mul-
tiplayer network games through automated latency balancing,” in
Proc. ACM SIGCHI Int. Conf. Adv. Comput. Entertainment Technol.
(ACE’05), Valencia, Spain, Jun. 2005, pp. 117–124.

[25] C. Ly, “Latency reduction in online multiplayer games using detour
routing,” M.S. thesis, Sch. Computing Sci., Simon Fraser Univ., Surrey,
BC, Canada, 2010.

[26] K. Chen and J. Lou, “Toward an understanding of the processing delay
of peer-to-peer relay nodes,” in Proc. IEEE Int. Conf. Dependable Syst.
Netw. (DSN’08), Anchorage, AK, Jun. 2008, pp. 410–419.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 17:31:21 UTC from IEEE Xplore. Restrictions apply.

LY et al.: IRS: A DETOUR ROUTING SYSTEM TO IMPROVE QUALITY OF ONLINE GAMES 747

[27] W. Feng, F. Chang, W. Feng, and J. Walpole, “A traffic characterization
of popular on-line games,” IEEE/ACM Trans. Netw., vol. 13, no. 3, pp.
488–500, Jun. 2005.

[28] K. Gummadi, S. Saroiu, and S. Gribble, “King: Estimating latency be-
tween arbitrary Internet end hosts,” in Proc. ACM SIGCOMM Internet
Meas. Workshop, Marseille, France, Nov. 2002, pp. 5–18.

[29] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A decentral-
ized network coordinate system,” in Proc. ACM SIGCOMM, Portland,
OR, Sep. 2004, pp. 15–26.

[30] L. Pantel and L. Wolf, “On the impact of delay on real-time multiplayer
games,” in Proc. ACM Workshop Netw. Oper. Syst. Support Digital
Audio Video, Miami, FL, May 2002, pp. 23–29.

[31] T. Fritsch, H. Ritter, and J. Schiller, “The effect of latency and network
limitations on MMORPGs: A field study of Everquest2,” in Proc. ACM
SIGCOMM Workshop Netw. Syst. Support for Games, Hawthorne, NY,
Oct. 2005, pp. 1–9.

[32] J. Nichols and M. Claypool, “The effects of latency on online Madden
NFL Football,” in Proc. ACM Workshop Netw. Oper. Syst. Support Dig-
ital Audio Video, Kinsale, Ireland, Jun. 2004, pp. 146–151.

[33] M. Claypool, “The effect of latency on user performance in real-time
strategy games,” J. Comput. Netw., vol. 49, no. 1, pp. 52–70, Sep. 2005.

[34] G. Armitage, “An experimental estimation of latency sensitivity in mul-
tiplayer Quake 3,” in Proc. IEEE Int. Conf. Netw., Sydney, Australia,
Sep. 2003, pp. 137–141.

[35] T. Henderson, “Observations on game server discovery mechanisms,”
in Proc. ACM SIGCOMM Workshop Netw. Syst. Support Games, Port-
land, OR, Aug. 2002, pp. 144–151.

[36] J. Yan and B. Randell, “A systematic classification of cheating in on-
line games,” in Proc. ACM SIGCOMM Workshop Netw. Syst. Support
Games, Hawthorne, NY, Oct. 2005, pp. 1–9.

[37] C. Monch, G. Grimen, and R. Midstraum, “Protecting online games
against cheating,” in Proc. ACM SIGCOMM Workshop Netw. Syst. Sup-
port Games, Singapore, Oct. 2006, pp. 1–11.

[38] J. Ledlie, P. Pietzuch, M. Mitzenmacher, and M. Seltzer, “Network
coordinates in the wild,” in Proc. USENIX Symp. Netw. Syst. Design
Implementation, Cambridge, MA, Apr. 2007, pp. 299–312.

[39] K. Lin, M. Wang, J. Wang, and D. Schab, “The smoothing of dead reck-
oning image in distributed interactive simulation,” in Proc. AIAA Flight
Simulation Technol. Conf., Baltimore, MD, Aug. 1995, pp. 83–87.

[40] W. Palant, C. Griwodz, and P. Halvorsen, “Evaluating dead reckoning
variations with a multi-player game simulator,” in Proc. ACM Work-
shop Netw. Oper. Syst. Support Digital Audio Video, Newport, RI, May
2006, pp. 20–25.

Cong Ly received the B.Sc. and M.Sc. degrees from
Simon Fraser University, Surrey, BC, Canada, in
2002 and 2010, respectively.

His research interests include online gaming,
wireless networks, and multimedia applications. In
addition to publications, he served as a Game and
Network Programmer for Crash Tag Team Racing,
Scarface: The World is Yours, and Prototype. He
is currently a Technical Director with Two79 Inc.,
Vancouver, BC, Canada, an innovative company that
specializes in creating unique online experiences.

Cheng-Hsin Hsu (S’09–M’10) received the B.Sc.
and M.Sc. degrees from National Chung-Cheng
University, Taiwan, in 1996 and 2000, respectively,
the M.Eng. degree from the University of Maryland,
College Park, in 2003, and the Ph.D. degree from
Simon Fraser University, Surrey, BC, Canada, in
2009.

He is a Senior Research Scientist with Deutsche
Telekom R&D Lab USA, Los Altos, CA. His
research interests are in the area of multimedia
networking and distributed systems.

Mohamed Hefeeda (S’01–M’04–SM’09) received
the B.Sc. and M.Sc. degrees from Mansoura Uni-
versity, Egypt, in 1994 and 1997, respectively, and
the Ph.D. degree from Purdue University, West
Lafayette, IN, in 2004.

He is an Associate Professor with the School
of Computing Science, Simon Fraser University,
Surrey, BC, Canada, where he leads the Network
Systems Lab. His research interests include multi-
media networking over wired and wireless networks,
peer-to-peer systems, mobile multimedia, and In-

ternet protocols. In addition to publications, he and his students have developed
actual systems, such as pCache, svcAuth, pCDN, and mobile TV testbed.
He serves as the Preservation Editor of the ACM Special Interest Group on
Multimedia (SIGMM) web magazine. He served as the program chair of the
ACM International Workshop on Network and Operating Systems Support for
Digital Audio and Video (NOSSDAV 2010) and as a program cochair of the
International Conference on Multimedia and Expo (ICME 2011). In addition,
he has served on many technical program committees of major conferences in
his research areas, including ACM Multimedia, ACM Multimedia Systems,
and the IEEE Conference on Network Protocols (ICNP). He is on the editorial
boards of the ACM Transactions on Multimedia Computing, Communications
and Applications, the Journal of Multimedia, and the International Journal of
Advanced Media and Communication.

Dr. Hefeeda was the recipient of the Best Paper Award at the IEEE Innova-
tions 2008 Conference for his paper on the hardness of optimally broadcasting
multiple video streams with different bitrates. The mobile TV testbed software
developed by his group won the Best Technical Demo Award at the ACM Mul-
timedia 2008 Conference.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 17:31:21 UTC from IEEE Xplore. Restrictions apply.

