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Abstract—Several studies have shown that a significant fraction of fresh
fruits is discarded at the retail and consumer levels, wasting precious
resources, polluting the environment, and contributing to increased food
prices. An important factor contributing to this problem is the lack of
scalable solutions for determining fruit ripeness and remaining lifetime.
We propose a cost-effective solution that leverages the sensing capa-
bilities of phones and machine learning models to analyze the optical
properties of fruits at various ripening stages. The proposed solution is
non-invasive, works for different fruits, and produces intuitive outputs,
e.g., Unripe/Ripe/Expired and the percentage of remaining lifetime, en-
abling retailers and consumers to minimize food waste. We implement
a proof-of-concept mobile application, RipeTrack, and demonstrate the
accuracy and robustness of the proposed approach using an extensive
empirical study with multiple fruits, including avocados, pears, bananas,
nectarines, and mangoes. Our results show, for example, that RipeTrack
can identify the ripeness level of avocados and pears with an accuracy
of 95% and 98%, respectively, and it can predict their remaining lifetimes
with an accuracy of 93% and 97%. Our results also show that RipeTrack
can easily be extended to new fruits using transfer learning, and it
functions in realistic environments, e.g., homes and grocery stores, that
have diverse illuminations.

Index Terms—Fruit Ripening, Mobile Applications, Hyperspectral Imag-
ing, Spectral Analysis

1 INTRODUCTION

Food waste is a pressing global issue, with approximately
17% of the world’s food production going to waste [1]. In
the United States alone, an estimated 30-40% of food goes
uneaten annually, resulting in about 160 billion pounds of
wasted food [2]]. Food waste results in an unnecessary 8-10%
increase in greenhouse gas emissions [1] and the loss of land,
water, energy, and labor used for farming, transporting,
storing, and disposing of food.

A significant fraction of food waste in fresh produce,
i.e., fruits and vegetables, occurs at the retail and consumer
levels, up to 31% according to the USDA Economic Research
Service [3]. This is partly due to the lack of cost-effective
and scalable solutions that retailers and consumers can use
to predict the ripeness level and remaining lifetime of fresh
produce. Specifically, most retailers and consumers still use
visual (e.g., color) and/or tactile (e.g., firmness) inspection
to assess the ripeness level of fresh produce, which is a slow
process with limited accuracy [4]. This means retailers may
discover very late that a batch of fruits is near expiration,
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which leaves little time to offer discounts to accelerate the
sale of such fruits, leading to significant food waste and
revenue loss. Similarly, consumers may purchase fruits that
are not suitable for their use (either close to expiration or
not yet sufficiently ripe), likely discarding them.

Multiple biochemical and technological solutions have
been proposed to non-invasively estimate the pre- and post-
harvest ripeness level of fruits. For example, some fruits
emit various amounts of ethylene gas in different stages
of their ripeness [5]. Commercial devices, e.g., [6], measure
ethylene emission rates, which are then correlated to fruit
ripeness. Near-infrared (NIR) spectroscopy has also been
proposed for assessing the ripeness of multiple fruits [7].
And, recently, electromagnetic waves in the sub-tera Hertz
range (50-600 GHz) have been proposed to estimate the
ripeness level of fruits [8]], [9]. While these methods offer
higher accuracy than manual inspection, they require spe-
cialized hardware setups and are too complex and expen-
sive to be used by end consumers and retailers; they are
more suitable for food inspection facilities, sorting lines,
large warehouses, and processing plants.

In this paper, we address the problem of estimating
the ripeness level and remaining lifetime of fruits using
only smartphones. This is a challenging research problem for
multiple reasons. First, the external features and colors of
many fruits, e.g., avocados, do not significantly change with
ripening. Rather, the changes accompanying ripening, e.g.,
conversion of starch to sugar, occur inside the fruits. Thus,
we need to examine the internal changes of fruits without
damaging them. In addition, chemical changes due to ripen-
ing happen gradually, making it hard to use such changes
in predicting the remaining lifetime of fruits. Second, fruits
exhibit diverse ripening patterns and lifetimes, and a gen-
eral solution should account for these differences. Third,
the characteristics of smartphone cameras and sensors vary
across manufacturers and models. Also, smartphones are
used in everyday environments, e.g., grocery stores and
homes, which unlike laboratories, have uncontrolled and di-
verse illumination. The wide diversity of smartphones and
illuminations further complicates tracking changes inside
fruits.

We propose a cost-effective solution for assessing fruit
ripeness and remaining lifetime using smartphones. Our
solution analyzes the optical properties of fruits in different
ripening stages without damaging them. It then maps these
properties to easy-to-understand categories by consumers
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and retailers, such as Unripe, Ripe, and Expired. Our solu-
tion also estimates the remaining lifetime of fruits, enabling
retailers and consumers to minimize food waste. Our rig-
orous experimental study demonstrates the accuracy of the
proposed solution.

Specifically, the contributions of this paper are:

o We conduct spectral analysis of different fruits through-
out their lifetime using a hyperspectral camera in §4}
Our analysis shows the limitations of relying only on
external visual features to assess fruit ripeness, and
it demonstrates the feasibility of tracking chemical
changes occurring inside fruits using signals in the 400-
1000 nm range, which is the same range of camera
sensors on smartphones.

o We present a method for conducting spectral analysis to
assess fruit ripeness and remaining lifetime on smart-
phones in

o We analyze the auto-catalytic ethylene production pro-
cess that accompanies fruit ripening, and we define
intuitive ripeness and lifetime labels based on this
analysis in §6]

e« We implement a mobile application, RipeTrack, to
demonstrate the practicality of the proposed approach
in §7

o We conduct an extensive evaluation study to analyze
the accuracy, robustness, and extensibility of RipeTrack
in Our results show, for example, that RipeTrack
can identify the ripeness level of avocados and pears
with an accuracy of 95% and 98%, respectively, and
it can predict their remaining lifetimes with an accu-
racy of 93% and 95%. Our results also demonstrate
the robustness of RipeTrack to diverse illuminations
and smartphones. Further, we show the generality of
RipeTrack by extending its functionality to new fruits
using transfer learning, including e.g., bananas, man-
gos, and nectarines, and we test it in multiple grocery
stores.

To the best of our knowledge, this is the first work
that assesses fruit ripeness using only smartphones. Recent
works [8], [9] utilize sub-tera Hertz waves, which are not
available on smartphones. Other works for food analysis,
e.g., [10], [11], [12], [13], do not address fruit ripeness. For
example, LigRay [10] and RF-EATS [11]] identify liquids, Liq-
uidHash [12] detects adulteration in liquids, and CapCam
[13] tests water contamination. We summarize the related
works in The code and datasets of this work are open
source [14].

2 BACKGROUND AND RELATED WORK

Fruit Types and Ripening Process. There are two broad
categories of fruits: climacteric and non-climacteric. Climac-
teric fruits, such as pears, apples, avocados, and bananas,
continue their ripening process after they are harvested
from their plants. Non-climacteric fruits, such as grapes,
strawberries, and blueberries, stop ripening once harvested.
We focus on climacteric fruits, as non-climacteric fruits are
typically ripe by the time they reach grocery stores.
Assessing fruit ripeness is a complex problem, as it
depends on many factors, including external features such
as shape, firmness, and color, as well as internal features
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such as moisture content, soluble solids, acidity, and sweet-
ness. At a high level, as the fruit ripens, it transforms from
being hard, sour, often greenish, and odorless to soft, sweet,
colorful, and fragrant. These changes are due to the various
chemical reactions that occur mainly inside the fruit. For
example, starch molecules are converted into sugars during
ripening. Cell walls of the fruit begin to degrade, which
makes it softer and changes its moisture content.

Ripeness Metrics. Multiple objective metrics have been
developed to measure various aspects of fruit quality and
ripeness [15], [16], [7], including Dry Matter (DM), Titratable
Acidity (TA), Oil Content, and Total Soluble Solids (TSS or
Brix). These metrics help in crucial aspects of fruit farming
and handling, such as determining the ideal time to harvest,
sorting fruits based on the characteristics needed for cer-
tain products (e.g., sweetness level), and adjusting storage
environmental conditions to suit different fruits. However,
devices that measure these metrics, e.g., [17], are typically
expensive, complex to set up and operate, and/or require
elaborate calibrations. In addition, these metrics are less
useful for end consumers and retailers, who are mostly
interested in more direct metrics, such as the remaining
lifetime of fruit, and intuitive classification, such as Un-
ripe/Ripe/Expired. We define and measure such metrics.

Assessing Fruit Ripeness. Fruit ripeness can be assessed at
two main stages: (i) pre-harvest to decide the ideal time to
harvest and (ii) post-harvest to track the suitability of fruits
for consumption. The post-harvest stage has multiple sub-
stages, including transportation, storage, display at retailers,
and use by consumers. We focus on tracking fruit ripeness
for retailers and consumers in the post-harvest stage, where
up to 31% of fruits are wasted [3]].

Traditional approaches, which are still in use by many re-
tailers and consumers, manually assess fruit ripeness based
on features such as color and firmness [4]. For example, the
guidelines in [15] provide Color Gauges for evaluating the
quality and ripeness of fruits such as tomatoes and apples.
Comparing fruit colors against such charts is neither easy
nor accurate, especially under different lighting conditions
in homes and grocery stores. Rizzo et al. [16] summarize
automated approaches that utilize machine learning to as-
sess ripeness using images captured by regular RGB cam-
eras. However, as demonstrated in §4] the external colors
and visual features may not accurately reflect the chemical
changes happening inside some fruits.

To enable tracking internal changes in fruits, several
works have proposed using NIR signals that can penetrate
fruit surfaces. For example, Olarewaju et al. [18] use a bench-
top spectrometer operating in the 700-2500 nm range to
measure dry matter and oil content in avocado to predict
its ripeness. The survey in [7] summarizes recent methods
that utilize NIR signals to measure various metrics, e.g., DM,
Brix, and TA. These methods, however, are tightly coupled
with the considered fruit and metric(s), and thus, they are
hard to generalize to other fruits or even to other varieties
of the same fruit.

Finally, AgriTera [8] and Meta-Sticker [9] propose using
sub-tera Hertz waves to estimate fruit ripeness in terms
of DM and Brix. However, sub-tera Hertz signals are not
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currently available on smartphones.

Other Food Analysis Systems. Multiple works have pro-
posed systems to analyze various aspects of foods [12], [19],
[13], [110, 200, [201], [21], [22]. LiquidHash [12] models the
motion of air bubbles inside bottles to detect adulteration in
liquids. CapCam [13] estimates the surface tension of liquids
to identify alcohol concentration and water contamination
levels. Vi-Liquid [19] identifies liquids by measuring their
viscosity coefficients using phone accelerometers. RF-EATS
[11] and LiqRay [10] utilize RFID tags to distinguish be-
tween various liquids. PowDew [20] detects counterfeit in-
fant formula by analyzing the interaction of water droplets
with the powdered formula using smartphones. MeatSpec
[21] uses multi-spectral cameras to detect meat adulteration.
MobiSpectral [22] identifies organic fruits using spectral
analysis. Similar to the work in this paper, MobiSpectral
reconstructs the spectrum using a machine learning model,
which is based on [23]. We compare the proposed recon-
struction model against the one in MobiSpectral and show
that our model is more efficient. For example, in inference
mode, it runs 30 times faster and requires 2.4 times less
memory compared to MobiSpectral, which is crucial for
mobile platforms with limited resources. Our model also
produces better reconstruction results, as shown in

Summary. Prior works for assessing fruit ripeness utilize ex-
pensive devices that require special setups and calibrations,
which make them more suitable for inspection laboratories
and large manufacturing facilities. Further, most of these
works are designed for a specific fruit or small group of sim-
ilar fruits. In contrast, RipeTrack is designed for consumers
and retailers, uses only smartphones, works in diverse and
practical environments, provides intuitive ripeness metrics,
and can easily be extended to different fruits.

3 PROBLEM DEFINITION AND CHALLENGES

The problem addressed in this paper is how to determine
the ripeness level and remaining lifetime of climacteric fruits
using smartphones operating in regular environments such
as grocery stores and homes without damaging these fruits.
We summarize the challenges of tackling this problem in the
following.

Non-destructively Tracking Internal Changes. As men-
tioned above, fruits undergo chemical changes during the
ripening process, which transform some materials into oth-
ers, e.g., starch to sugar, and alter the water and solid con-
tents of the fruits. To track these internal changes without
damaging the inspected fruits, we propose using spectral
analysis, which can identify materials based on their elec-
tromagnetic properties [24]. This, however, is a challenging
task because the internal fruit changes occur gradually over
a period of time, and more importantly, the output organic
materials from these changes are not substantially different
from the input materials in terms of spectral analysis. That
is, the differences in the spectral characteristics of organic
materials found in fruits are very subtle. Thus, in % we first
conduct an experimental study to investigate the feasibility
of assessing fruit ripeness using spectral analysis utilizing
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a hyperspectral camera that captures more than 200 bands.
Our analysis shows that spectral signatures can be created
to represent the chemical compositions of fruits throughout
their lifetimes, which provides accurate information for
assessing their ripeness.

Hyperspectral cameras are expensive (tens of thousands
of dollars) and require strict illumination (halogen sources),
which is hard to achieve in environments such as grocery
stores and homes. In §5, we propose a method to conduct
spectral analysis on phones. This method uses various sig-
nals captured by phones and upscales them into spectral
bands similar to the ones captured by hyperspectral cam-
eras, which provides the needed information to assess fruit
ripeness.

Difficulty of Determining Ripeness Level. The ripeness
level of some fruits, e.g., bananas, can be estimated from
their color. However, the external appearance of many other
fruits, e.g., avocados and green apples, does not significantly
change with time, which makes it harder to assess their
ripeness level. Further, even for fruits that do change colors,
the changes could be difficult for inexperienced consumers
to detect. For example, some types of pears gradually
change their color from greenish to yellowish as they ripen,
which is not easy to distinguish, especially in low lighting.
In §6, we present our approach for modeling the ripeness
level and fruit lifetime based on the emission rate of the
ethylene gas that accompanies the ripening process.

Diversity of Phones and Illuminations. To be of practical
value, a mobile application for ripeness analysis must func-
tion in everyday environments such as grocery stores and
homes. These environments, however, have quite diverse
illumination sources, including LED with different color
temperatures, fluorescent, sunlight, and arbitrary mixtures
of these sources. In contrast, inspection facilities, where
spectral analysis is typically performed, have strict illumi-
nation conditions. In addition, the application should work
with various phones that may have different resolutions
and processing steps for RGB images, e.g., white balancing,
demosaicing, and color transformation. NIR camera systems
on phones may also operate in different wavelengths (be-
tween 940 and 980nm) and resolutions. The diversity in
phones and illuminations negatively impacts the accuracy
of the spectral analysis, as such analysis relies on detecting
small variations of the reflected signals from the scene. In
we present methods to handle this diversity and improve
the robustness of the proposed system.

4 TRACKING INTERNAL CHANGES IN FRUITS US-
ING HYPERSPECTRAL CAMERAS

Light wavelengths penetrate fruit surfaces at different
depths [25]. While this penetration is at the millimeter scale,
it provides valuable information for analyzing the fruits.
This is the basis of spectral analysis of fruits in general.
Prior works have shown that spectral analysis in various
ranges of the spectrum can identify organic materials. For
example, soluble solids, e.g., sugars, can be observed in
the 750-1100 nm range [26], oil content in avocados can be
measured in the 2200-2400 nm range [18], water content
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Figure 1: Spectral analysis of fruits over their lifetime using a hyperspectral camera in the 400-1000 nm range.

can be discerned in the 960-980 nm range [27], and the
breaking down of Chlorophyll into pigmentation can be
tracked in the visible light (400-700 nm) range [15]. Many of
the previous works, however, use hyperspectral cameras or
spectrometers operating in ranges that extend beyond the
available range in smartphone cameras, which is 400-1000
nm. In addition, each of these works focuses on a specific
organic material, which may not generalize to other fruits.

In this section, we conduct experiments to demonstrate
the feasibility of assessing fruit ripeness and remaining
lifetime using a hyperspectral camera that operates in the
400-1000 nm range, which has not been done before in the
literature. Our goal is to provide a general framework for
analyzing the spectral characteristics of different fruits over
their lifetime.

Figure shows our experimental setup. The model
of the hyperspectral camera is Specim IQ. The scene is
illuminated using a halogen light source, following the
recommendations of the camera’s manufacturer. The camera
captures 204 spectral wavelengths (aka bands), each with a
spatial resolution of 512 x 512 pixels. Thus, the output of
this camera is 3-D hyperspectral images with dimensions of
512 x 512 x 204, providing spatial details of objects in the
captured scene as well as how they reflect different wave-
lengths in the spectral domain. The normalized reflectance
across wavelengths is known as the spectral signature, which
is computed per pixel.

We analyze the spectral signatures of several fruits
throughout their lifetimes, including Pear (Bartlett), Pear
(Bosc), Avocado Hass, Avocado (Organic), Mango, and Ba-
nana. As detailed in we coordinated with local grocery
stores to obtain fruit samples on the same day they were de-
livered, and we cross-checked the observed lifetimes versus
the expected ones reported in the food science literature.
We kept the samples in our lab, which has temperature,
light, and humidity levels similar to those found in homes
and grocery stores where such fruits are typically displayed
and stored. For each fruit sample, we captured a hyperspec-
tral image every 24 hours using the same conditions (i.e.,
halogen light source with the same intensity and camera
mounted on a tripod to ensure the same capturing distance
and angle). We kept capturing hyperspectral images of the
fruits until they expired. These experiments lasted close to
40 days.

For every fruit, we compute a signature for each day

of its lifetime. We present representative signatures of Pear
(Bartlett) and Avocado (Organic) in Figure (I} other fruits
exhibit similar patterns. These two fruits differ significantly
in terms of shape, color, texture, and lifetime. To avoid
cluttering the figures, we plot signatures every three days.

Let us first focus on the spectral signatures of pears
in Figure As pears ripen, their exterior color grad-
ually changes because chlorophyll (the greenish color)
breaks down into new pigments (yellowish-reddish). These
changes can be tracked by the reflectance level in the visible
light range between 400 and 700 nm. In addition, during
the ripening process, the water content increases due to
the chemical reactions that break down starch into simpler
sugars. Changes in the water content across different days
can be seen in the right part of the figure, around the 960-
980 nm range. Furthermore, the increase of water over time
leads to more light absorption by the fruit across most
wavelengths, which is shown in the figure by the more
flattened curves with lower reflections in the later days of
the fruit’s lifetime. Compare, for instance, the signatures of
Day 1 and Day 7 around the 690-710 nm range and the
disappearance of the curve dip over time around that range.
This occurs because the new color reflects more light in that
range.

Unlike pears, avocados do not significantly change their
external color as they ripen. This is shown in Figure
where the reflectance in the visible range is almost constant
and close to zero, as avocados have a dark color that absorbs
most visible wavelengths. Thus, the visible range of the
spectral signatures provides limited help in assessing the
remaining lifetime and ripeness level of avocados. However,
the NIR range, between 700 and 1000 nm, reveals noticeable
differences between the spectral signatures of avocados
across days. For example, the water content increases with
time in avocados, leading to more flattened curves with
lower reflections in the later days of the fruit’s lifetime.

Summary and Proposed Framework. The above experi-
ments reveal subtle differences among spectral signatures
of the same fruit computed at different points in its lifetime.
Some of these differences can be seen in the visible light
range, while others can only be detected in the NIR range.
All experiments were conducted using a hyperspectral cam-
era operating in the 400-1000 nm range.

Thus, instead of analyzing separate organic materials,



IEEE TRANSACTIONS ON MOBILE COMPUTING

e.g., sugar, water, and oil, of individual fruits as done in
prior works [26], [18], [27], [15], we propose constructing
spectral signatures that represent the whole structure and
chemical composition of fruits at different points in their
lifetimes. The shape of the spectral signatures and how
they change over time can provide rich enough informa-
tion for assessing the ripeness and remaining lifetime of
different fruits, alleviating the need to precisely measure
the presence/concentration of various organic materials in
the fruits, which may require complex devices and does not
generalize to different fruits.

5 TRACKING INTERNAL CHANGES IN FRUITS US-
ING SMARTPHONES
5.1 Overview and Limitations of Smartphones

The spectral analysis in §4 was conducted with an expen-
sive (30,000 USD) hyperspectral camera and under ideal
(halogen) lighting conditions. Such cameras have complex
hardware, e.g., collimating lenses and light dispersion com-
ponents, to capture the scene across 200+ bands. Our goal is
to produce comparable spectral signatures utilizing phones
working in arbitrary lighting conditions and then use these
signatures to analyze the remaining lifetime and ripeness
level of fruits. This, however, is a complex problem for
multiple reasons.

The first reason is that smartphone cameras are much
simpler than hyperspectral cameras. As illustrated in Fig-
ure a smartphone camera utilizes a color filter array
(CFA) that enables the 2-dimensional CMOS sensor to cap-
ture light in the Red (R), Green (G), and Blue (B) wavelength
bands. The most common CFA is the Bayer pattern shown
in the figure, where more pixels are allocated to the green
band than to the blue and red bands, since the human
visual system is more sensitive to green color. Each pixel
(photodiode) on the CMOS sensor captures only one of the
three colors according to the filter pattern and converts it
into an electrical signal. The electrical signals from all pixels
are then processed (e.g., amplified and digitized) by the Raw
Image Processing module. Then, a Demosaicing algorithm
is used to interpolate the other two colors based on the
neighboring pixels. Then, additional steps, such as white
balancing, color correction, and compression, are performed
to produce the output RGB image. The simple design of
smartphone cameras allows them to capture only three
bands, unlike hyperspectral cameras that capture more than
200 bands.

The second reason is that smartphone cameras use in-
frared (IR) filters to remove all signals in the 700-1000 nm
range to avoid over-saturating the red band and damaging
the visual quality of RGB images. As discussed in §4] the
NIR range is essential for fruit ripening analysis because
signals in this range can penetrate the fruit surface and
reveal changes happening inside the fruit. The third reason
is the diversity of smartphone cameras and the arbitrary
illumination of the environments in which the smartphones
operate, as we discussed in

In summary, due to their relatively simple design, smart-
phone cameras produce coarse-grained information, which
is insufficient for spectral analysis, as it requires many bands
to create spectral signatures.
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Figure 2: Simplified illustration of smartphone cameras and
their spectral sensitivity. The IR filter removes all signals
beyond 700 nm.

To address these challenges and enable conducting spec-
tral analysis on smartphones, we propose upscaling the few
captured bands by smartphone cameras to many bands.
This is sometimes referred to as spectral reconstruction in
the literature [28], [29], [23]. In the Supplementary Mate-
rials (§A.T), we analyze the state-of-the-art reconstruction
model [23] for the suitability of conducting spectral analysis
of fruits. Our analysis shows that this model produces low-
quality reconstructed bands in the NIR range, leading to
significant errors that compromise the accuracy of spectral
signatures derived from these bands. One of the main rea-
sons behind this poor performance is the absence of any NIR
signals in the input, which causes the model to hallucinate
bands in the NIR range. To address this problem, we present
three possible solutions to obtain NIR signals in Then,
in we present a reconstruction model that produces
more accurate bands in the 400-1000 nm range and is robust
to practical illuminations, which allows the model to be
used for mobile applications in everyday environments. In
the evaluation (§8.3), we show that the proposed model
outperforms the closest model in the literature [22].

5.2 Acquiring NIR Signals on Smartphones

We present three practical solutions to obtain NIR signals
on smartphones. The first one uses the NIR camera on
modern smartphones, similar to [22]. Specifically, many
recent smartphones, e.g., Google Pixel 4, Apple iPhone X,
Samsung Galaxy S8, Huawei Mate 20, and their sequels,
contain NIR cameras. NIR cameras are usually used for
face identification and depth estimation. Depending on the
manufacturer, the NIR camera uses a single band in the
940-980 nm range. Smartphones with NIR cameras come
with illumination sources in the NIR range. These sources
project invisible waves on objects, which are reflected and
captured by the NIR camera. This solution, which we refer
to as RGB+NIR, does not require any hardware changes.

The second solution is to remove the IR filter shown in
Figure Alternatively, commercial camera modules that
do not come with IR filters, such as the Raspberry Pi Camera
Module 3 [30], can be used. This solution, which we refer
to as No IR Filter, is more suitable for imaging systems
designed for specialized tasks, such as quality inspection
devices.

The third solution to obtain NIR signals on smartphones
is to change the CFA to have an explicit filter for the
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NIR channel. Designing a custom filter array is a complex
research problem in its own right, as there are numerous
possible filter patterns, and the performance of each pattern
depends on several factors, including CMOS sensor sensi-
tivity and the processing steps performed on the sensor’s
output. Monno et al. [31] conduct a comprehensive perfor-
mance analysis of various color filter arrays. They present a
4 x 4 filter design that yields the best overall performance
in terms of achieving an explicit NIR band with minimal
impact on the RGB bands. This design, however, was ana-
lyzed using only synthetic data, not real camera sensors. We
identified and purchased a commercial camera sensor with
a similar filter pattern, which is the CMOS Image Sensor
Model AR0237 RGB-IR from ON Semiconductor [32]. This
solution, which we refer to as Custom Filter, can be useful
for designing future smartphones and specialized imaging
systems for quality analysis and inspection.

5.3 Spectral Reconstruction Model

The proposed spectral reconstruction model is shown in
Figure 3] which is designed using vision transformers [33]
similar to recent works, e.g., [23]. Compared to prior works,
however, our model considers the NIR band as an additional
input, introduces new loss functions to enhance accuracy,
improves robustness to diverse phones and illuminations,
and significantly reduces memory requirements and train-
ing and inference times—all are critical factors for phones.
Vision transformers can efficiently learn correlations in
the input data through a mechanism known as self attention
[34]. They divide an image into non-overlapping patches,
map these patches to vectors, and encode the positions
of patches into vectors as well. Then, vectors representing
patches and their positions are passed through an encoding
stage, where the self-attention module captures the cor-
relations among patches. Typically, multiple self-attention
modules are applied in parallel to capture various patterns
and semantic relationships across patches. This attention
focuses on capturing the spatial relationship among pixels
within the image, which is useful for computer vision tasks
such as image segmentation and classification. For spectral
analysis, however, the spectral relationship is also important.

Improving Reconstruction Accuracy. To make the recon-
struction model consider both the spatial and spectral do-
mains, we present two optimizations. For the first optimiza-
tion, we adopt the Multi-head Spectral-wise Attention Block
(M-SAB) proposed in [23], which computes the attention
across spectral bands.

For the second optimization, we propose a loss func-
tion with three components: (i) Mean Relative Absolute
Error (MRAE), (ii) Spectral Angle Mapper (SAM), and (iii)
Spectral Information Divergence (SID). MRAE measures the
absolute relative error between pixel values of the recon-
structed and ground truth bands. It strives to ensure the
accuracy of the reconstructed bands in the spatial domain,
and it is computed as:
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Lyrae = XN — =,
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M
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Figure 3: Architecture of the proposed spectral reconstruc-
tion model. Ly;rag, Lsan, and Lgrp are loss functions
to improve the reconstruction accuracy in the spectral and
spatial domains. S-MSA is a Spectral-wise Multi-head Self-
Attention module, and FFN is a Feed Forward Network.
NIR; and NIR; are bands in the 940-980 nm range used
in training to improve robustness.
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where N is the number of bands, H and W are the spatial
resolution, and X and X represent the reconstructed and
ground-truth bands, respectively.

SAM measures the similarity between two spectra by
computing the angle between them [24]. Figure 4|illustrates
the SAM metric, where the reconstructed and ground truth
bands are first projected and normalized as vectors in the V-
dimensional space, and then the angle between these vectors
is computed. SAM is computed as:
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where z and & are spectral vectors from the reconstructed
and ground truth bands.

SID measures the difference between the probability
distributions of the reconstructed and ground truth bands
[35]. SID first transforms the spectral bands into probability
distributions, and it then calculates the difference between
them, as illustrated in Figure ] SID is computed as:

)

N

N
Lop = mlog () + S anog (L), @
£ wn) = P

=1
where p and ¢ are the normalized vectors of the recon-
structed and ground truth bands.

SAM and SID strive to make the reconstructed bands
as close as possible to the ground-truth bands across the
spectral domain.

The total loss function in our model is given by:

L = Lyprag + w1 X Lgan +wa X Lgrp, 4)

where w; = 0.1 and we = 0.001, which are selected to
ensure SAM and SID do not overpower the other losses as
they could induce distortions in the reconstructed bands if
their weights are high [36].

Improving Robustness. Hyperspectral applications track
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Figure 5: Illustration of the SID loss function.

the value of each pixel across different bands to create
spectral signatures. Pixel values, however, depend on the
illumination of the scene and the camera hardware. This
means various cameras and illuminations may result in
different spectral signatures of the same scene, limiting
the practicality of the proposed approach. To address this
critical issue, we divide the problem into two parts corre-
sponding to the model’s inputs: NIR and RGB images.

NIR cameras on recent phones may not use the same
wavelength. Instead, they pick an operating point in the
940-980 nm range, leading to differences in NIR images
captured by different phones. To mitigate this problem, we
train the model to reconstruct spectral bands with different
NIR images as input. This is illustrated in Figure [3} where
we pair an input RGB image with multiple NIR images
at different wavelengths instead of only one. We call this
approach NIR data augmentation. That is, a single pair of
(RGB, NIR) images is expanded to L pairs of (RGB, NIR;),
(RGB, NIR»), ..., (RGB, NIR,) images, where the NIR images
have different wavelengths. Then, the model is trained to
produce the same reconstruction results for all image pairs.

Unlike NIR images, RGB images are affected by the
scene’s illumination, in addition to their dependence on the
camera hardware. Specifically, most phone manufacturers
implement various proprietary algorithms in the process-
ing pipeline to enhance the visual appearance of the final
images. This means the processing pipeline varies across
cameras. In addition, some essential steps, e.g., white bal-
ancing, estimate the illumination of the scene and adjust the
colors of images accordingly. The variability of RGB images
produced by different phones and under various illumina-
tions significantly reduces the accuracy of the reconstructed
bands.

To address this problem, we employ an image normal-
ization approach similar to [22], where we implement a
deep-learning model that maps an input RGB image to a
common representation, regardless of the camera’s charac-

7

teristics and scene illumination. All RGB images are first
normalized before being used in the reconstruction model.
Specifically, the considered image normalization extends the
white balancing model in [37]. It transforms all images to a
common illumination setting, regardless of the cameras that
captured these images and the illuminations used. As in
[22], we transform all images to the daylight illumination
(5500 Kelvin) setting.

6 DETERMINING GROUND-TRUTH RIPENESS

The goal of this section is to develop an accurate and intu-
itive method for labeling the ripeness levels and remaining
lifetime of fruits. We base our method on an established
body of research in food science. In particular, the emission
rate of ethylene has been established for decades as a robust
indicator for fruit ripening [5]. Briefly, a small amount of
ethylene is generated when a fruit starts to ripen after
harvesting. Then, ethylene catalyzes multiple chemical re-
actions in the fruit, which helps the ripening process. These
reactions, in turn, produce more ethylene, which further
catalyzes more chemical reactions and accelerates ripening.
This is known as the auto-catalytic production of ethylene
in fruits [38].

To develop our labeling method, we conduct experi-
ments to analyze the ethylene emission rate for different
fruits. Our experimental setup is shown in Figure [, which
is similar to setups used in prior works in this domain. The
model of the ethylene measurement device is the Forensics
Detector FD-90A-C2H4 [39], and it provides an accuracy of
1 ppm (part per million) with a range of 0-100 ppm. The
device comes with a probe and gas sampling pump. We
place a fruit sample inside a plastic container with a tight
lid that has a small opening for the probe. The probe is kept
inside the container for 30 seconds, which is the response
time of the device. After recording the ethylene emission
rate, the fruit sample is removed, and the container is kept
open for 3-5 minutes to remove any ethylene traces. Then,
the measurement is conducted for another sample of the
same fruit. Subsequently, the experiment is repeated for
samples of other fruits. Finally, the whole set of experiments
is repeated every day around the same time until the fruits
expire.

Samples of our results are shown in Figure [6p and Fig-
ure[6fc, where we plot the average ethylene emission rate for
every day of the lifetime of pears and avocados. We also plot
the confidence interval for each day as error bars (average
plus/minus one standard deviation). Although pears and
avocados have very different lifetimes, their emission curves
have the same pattern of increasing, then decreasing, and
finally stabilizing. Similar emission patterns were observed
for other fruits in our study.

Prior food science research, e.g., [40], shows that the
unripe stage is characterized by low ethylene emission rates,
where ethylene is produced in the so-called ‘auto-inhibitory”
manner. This inhibition continues until the ripe stage starts,
where ethylene emission increases rapidly until it reaches its
peak in what is referred to as the ‘auto-inductive’ process of
ethylene production. After reaching the peak, the ethylene
emission rate decreases rapidly until it levels off, indicating
the start of the expired stage. Based on this, we define
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Figure 7: Overview of the proposed system to assess fruit

ripeness and remaining lifetime on smartphones.

our ground-truth labeling for ripeness level and remaining
lifetime. We annotate the curves in Figure|6p and Figure 6k
to show the Unripe, Ripe, and Expired stages. We define
the remaining lifetime as the number of days left until a fruit
reaches the beginning of its Expired stage. In our evalu-
ations, we use this ground-truth labeling in training our
classification model in During inference, which is done
on smartphones, ethylene measurement is not performed;
we only use images.

Alternatives. The ethylene emission rate provides accurate
ripeness and lifetime labeling, but it requires a measurement
device. Alternative methods, such as testing fruit firmness
and/or matching its color against pre-defined color charts
[15], [16]], can be used to provide approximate labeling.

7 END-TO-END SYSTEM AND MOBILE APP
7.1 System Overview and Operation

Figure [7] provides a high-level overview of the proposed
system to assess fruit ripeness and remaining lifetime on
phones. It has two deep-learning models for spectral recon-
struction and spatio-spectral classification. The system takes
as input RGB and NIR images of a fruit captured by phones
under arbitrary illumination available in regular environ-
ments such as grocery stores and homes. The RGB and NIR
images are normalized and fed to the reconstruction model,
which produces a configurable number of bands equally
spaced in the 400-1000 nm range. In our experiments,
we set the number of bands to 68. Reconstructing more
bands did not improve the accuracy, while it substantially
increased the processing and memory requirements both at
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Figure 8: Design of the proposed spatio-spectral classifier
for fruit ripeness level and remaining lifetime.

the training and inference stages of the two models. The re-
constructed bands are given to the classifier, which produces
two outputs: ripeness level (Unripe, Ripe, or Expired) and
the remaining lifetime as a percentage.

7.2 Design of the Spatio-Spectral Classifier

We propose a classification model that considers both the
spatial and spectral characteristics of the input bands. This
is crucial for identifying the subtle differences among a
fruit’s spectral signatures at different points in its lifetime.
The proposed model is illustrated in Figure 8} The input
to the classifier is the bands created by the reconstruction
model. These bands are fed to a Feature Extraction module
to compute low-level features. This is achieved by two
convolution layers, interspersed by batch normalization and
Leaky ReLU layers. Then, the extracted features are passed
to a Spatio-Spectral Attention module, which consists of two
attention blocks. The first captures the context among the
spatial features of bands, whereas the second attends to the
spectral features across them.

The classifier produces outputs in two categories:
ripeness level and remaining lifetime. The ripeness level
can be Unripe, Ripe, or Expired. The remaining lifetime is
represented as a percentage instead of an absolute value,
which enables generalization to various fruits with diverse
lifetimes. We configure the classification model to produce
11 classes for the remaining lifetime: 0%, 10%, ..., 100%.
We believe this is a sufficient granularity, as the lifetime
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of most fruits ranges between one to three weeks. Thus,
these 11 classes allow predicting the remaining lifetime in a
granularity of 1-2 days. Nonetheless, the model can easily
be configured to produce different numbers of classes.

7.3 Mobile App

We have developed an Android application as a proof of
concept; sample screenshots are given in Figure [20, and the
code can be found at [14]. The application is written in
Kotlin and compiled using Gradle version 8.0. The image
capturing modules of the application are built on top of the
Android Camera2Basic Project.

The spectral reconstruction and classification models are
developed in PyTorch. They are first trained on a worksta-
tion. Then, the trained models are quantized using the de-
fault quantization parameters in PyTorch, which represent
32-bit floating-point weights as 8-bit integers. This makes
the models run 2-4X faster while having a small impact on
the accuracy. While quantization of the models is optional,
we opted to utilize it to enable RipeTrack to function on
many phones with limited computing resources. Then, the
quantized models are ported to the Android platform using
the PyTorch’s JIT Trace. Finally, the trained and quantized
models are integrated with the mobile application for infer-
ence.

The application can access both the phone’s RGB and
NIR cameras through Android’s Camera API2. It captures
the NIR image immediately after capturing the RGB image
of the scene. The RGB and NIR images are then passed to
the reconstruction model, which creates 68 spectral bands.
The reconstructed bands are then passed to the classification
model, which produces the ripeness level and remaining
lifetime. The application stores intermediary data, e.g., re-
constructed bands, for debugging and further analysis.

7.4 Limitations and Extensions

RipeTrack requires NIR signals, and we presented three
solutions to acquire such signals. One of these solutions
offers good accuracy without requiring modifications to
phones. It requires accessing the NIR camera, which is avail-
able in many recent phones. However, some manufacturers,
e.g., Apple, do not currently allow external developers to
access the NIR camera. The models of RipeTrack need to
be trained. Our open-source hyperspectral imaging dataset
[14] provides a starting point. To support new fruits, a few
hyperspectral images would need to be captured and used
to fine-tune the models. In addition, ground-truth labels
for ripeness and lifetime need to be defined by measuring
ethylene emission; alternatively, they can be approximated
using manual methods, such as comparing fruit colors with
standard charts and/or performing firmness tests. Finally,
RipeTrack is designed for climacteric fruits. It is not suitable
for non-climacteric fruits such as grapes, strawberries, and
blueberries. These types of fruits stop ripening after being
harvested, unlike the climacteric ones.

8 EVALUATION

We first describe our setup and datasets in Then, we
demonstrate the accuracy of the proposed three methods

Halo&éh
Lamp with

Figure 9: The testbed used in our experiments.

for conducting spectral analysis on phones in In
we compare the reconstruction model of RipeTrack to the
state-of-the-art. Then, we show the accuracy of RipeTrack in
assessing ripeness levels and remaining lifetime for different
fruits and its extensibility to new fruits in In we
analyze the performance impact of various components of
RipeTrack and demonstrate its robustness to diverse illumi-
nations, phones, and capturing distances. We also analyze
multiple system parameters, e.g., training and inference
times, and we test RipeTrack in five different grocery stores,
demonstrating its practicality.

We share our codes and datasets with the research com-
munity at [14], with details to reproduce our results.

8.1 Experimental Setup

Testbed. Figure |§| shows our testbed, which consists of:

o Hyperspectral Camera: Used to capture hyperspectral
images of fruits for evaluating the spectral reconstruc-
tion model. The camera model is Specim IQ, which
uses a CMOS sensor operating in the 400-1000 nm
range. It captures 204 bands with a spectral resolution
of 3nm. The spatial resolution of each band is 512 x 512
pixels. Thus, the output of this camera is images with
dimensions of 512 x 512 x 204. The camera takes about
180 seconds to capture a single image because it linearly
scans the scene.

o Camera Module with Custom RGB+NIR CFA: Used to
evaluate the spectral reconstruction model. The model
is ON Semiconductor AR0237 [32].

o Smartphone without IR Filter: Used to evaluate the
spectral reconstruction model. The model is Google
Nexus 5X.

o Two Unmodified Smartphones: Used to run RipeTrack
and evaluate its accuracy and robustness across dif-
ferent phones. The models are Google Pixel 4XL and
OnePlus 8 Pro. Both have RGB and NIR cameras.

o Various Light Sources: Used to illuminate the captured
scene and evaluate the robustness of RipeTrack under
diverse illuminations. The testbed has halogen, LED,
and CFL sources.

e Ethylene Measurement Device: Used to measure the
ethylene emission rate, which defines the ground-truth
labeling of the fruit ripeness level and remaining life-



IEEE TRANSACTIONS ON MOBILE COMPUTING

time. The device model is Forensics Detector FD-90A-
C2H4 [39], and it provides an accuracy of 1 ppm (part
per million) and has a range of 0-100 ppm.

Fruits Considered. As summarized in Table [1} the consid-
ered fruits have diverse external features, colors, ripening
patterns, and lifetimes to demonstrate the practicality and
robustness of RipeTrack. For example, pear Bosc takes about
40 days to expire, while pear Bartlett expires in about 12
days. Both pears have different colors, and their colors
change over time. While the organic and non-organic av-
ocados are hard to distinguish visually, the organic version
expires in about 11 days and the non-organic in 19 days.
The choice of two varieties of pears and avocados stresses
our system, because it would need to learn the internal char-
acteristics of visually similar fruits to predict their ripeness
and lifetime. The chosen fruits are among the top items
contributing to food waste [3].

Fruit Ripening Dataset. We purchased samples of each
considered fruit from multiple grocery stores at different
times. We coordinated with the stores to obtain these fruits
early in their ripening process, typically on the day of their
delivery. Although we cannot know exactly when the fruits
were harvested, we cross-checked the observed lifetime of
each fruit against its expected lifetime in the literature.

This dataset contains hyperspectral images spanning the
entire lifetime of fruits and the associated ethylene emission
rates. Specifically, we capture two hyperspectral images
of each fruit sample every 24 hours, taking them from
slightly different angles. We use a halogen light source, as
recommended by the camera’s manufacturer. We mount the
camera on a tripod and fix the capturing distance through-
out the experiments. After taking the hyperspectral image
of a fruit sample, we measure the ethylene emission rate
of that sample using the setup illustrated in Figure [f| We
keep capturing images and measuring ethylene until the
fruit expires. We associate the ripeness level and remaining
lifetime with the captured images at different times using
the method described in §6}

The data collection process lasted more than two months
because capturing a single hyperspectral image takes about
3 minutes, and measuring ethylene requires several minutes
for each sample. The final dataset has 1,913 hyperspectral
images and 1,144 ethylene measurements over the lifetime
of seven different fruits, as summarized in Table|[l} This is a
sizable dataset in this domain. Recall that every hyperspec-
tral image has 204 bands, each is a gray-scale image. That
is, this dataset has more than 390K individual images. This
dataset is used to train the spectral reconstruction model.
Mobile Images Dataset. To realistically evaluate RipeTrack,
we collected a dataset using two different phones: Google
Pixel 4XL and OnePlus 8 Pro. Google Pixel has resolutions
of 800 x 600 and 640 x 480 pixels for the RGB and NIR
cameras, respectively, whereas OnePlus has resolutions of
4032 x 3024 and 2592 x 1944 pixels. We scale all RGB
and NIR images to 640 x 480 pixels. We captured this
dataset while capturing the hyperspectral images dataset
for all fruits. Specifically, for each fruit sample, we capture
RGB and NIR images using one of the phones. We use
illumination sources deployed in real environments (LED

10
Fruit Hypersp. Ethylene  Observed
Samples  Images Readings  Lifetime
Avocado Organic 10 460 230 11
Avocado Hass 3 234 117 19
Pear Bartlett 11 382 209 12
Pear Bosc 3 276 138 40
Banana 12 279 168 7
Nectarine 3 138 138 16
Mango 6 144 144 16
Total 48 1913 1144

Table 1: Summary of the fruit ripening dataset.

and fluorescent). We also use mixtures of these sources and
natural sunlight. In total, we captured 3,865 pairs of RGB-
NIR images of seven fruits over their entire lifetimes. Out
of these pairs, 2,695 were captured using Google Pixel and
1,170 using OnePlus. This dataset is not used in training the
reconstruction model. It is used only to test the accuracy of
estimating fruit ripeness and remaining lifetime.

8.2 Accuracy of Spectral Analysis

The reconstruction model produces bands from which we
create signatures representing different points in the fruit’s
lifetime. Thus, the accuracy of these bands is critical for
conducting spectral analysis. We evaluate the accuracy of
the reconstructed bands by comparing them against the
ground-truth ones captured by the hyperspectral camera.

Training. We train three versions of the reconstruction
model based on the given inputs. The first version is called
No IR Filter, where the input consists of three RGB bands
after the IR filter is removed from the camera. The second
version takes as input the four bands produced by the
custom color filter array and is referred to as the Custom
Filter. The third version represents the case of unmodified
phones, which take separate RGB and NIR images as input;
we refer to this version as RGB + NIR. The fruit ripening
hyperspectral images dataset is used to train and test the
reconstruction model. It is divided into three partitions: 70%
for training, 15% for validation, and 15% for testing. We use
images from the first four fruits in Table [I| in this section,
and we keep the others for later testing the extensibility of
our model.

We measure the accuracy using six performance metrics
commonly used in the literature [24], [22], which are MARE,
SAM, SID, RMSE (Root Mean Square Error), PSNR (Peak-
Signal to Noise Ratio), and SSIM (Structural Similarity Index
Measure. The first four metrics measure the error between
the reconstructed and ground truth bands from different
perspectives. The last two assess the quality of the recon-
structed bands relative to the ground truth ones. We provide
more training details and equations of the performance
metrics in §A.2]in the Supplementary Materials.

Summary of the Results. We report the overall performance
of the three versions of the reconstruction model in Table
where we show only averages. Details of individual fruits
with confidence intervals are given in the Supplemen-
tary Materials. As the table shows, all three versions pro-
duce good reconstructed bands. For example, the average
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MARE RMSE SAM SID | PSNR SSIM
No IR Filter 0.14 0.03 0.10  0.04 31.2 0.95
Custom Filter 0.08 0.01 0.06  0.01 39.4 0.99
RGB + NIR 0.12 0.08 0.08 0.01 34.0 0.97

Table 2: Performance of the reconstruction model. Average
metrics across all fruits are presented.
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Figure 10: Band-wise performance analysis of the recon-
struction model with different inputs.

PSNR is at least 31 dB, and the average SSIM is close to one.
Similarly, the error metrics, especially the crucial SAM and
SID error metrics, are close to zero.

To shed light on the relative performance of the three
versions, we plot their accuracy across individual bands
in Figure |10 for two representative metrics. The results in
Table 2] and Figure [10 show that the custom CFA provides
the highest accuracy. Surprisingly, using RGB + NIR images,
which does not require any phone modification, provides
better accuracy than removing the IR filter. This is because,
in the first case, the RGB camera still retains the quality of
RGB images. This yields a higher reconstruction accuracy in
the visible range compared to the No IR Filter case, where
the quality of the RGB images is compromised due to inter-
ference with IR signals. Further, the additional NIR image,
which is around 940 nm, enables the model to reconstruct
bands in the 900-1000 nm range with higher accuracy than
the No IR Filter case. We note that the RGB + NIR case has
less accuracy in the 750-850 nm range, because the transition
from the visible range to the NIR range occurs around 700
nm, where all RGB signals are truncated. This provides the
reconstruction model with less information to build on in
the 750-850 nm range, leading to relatively higher errors.

Finally, we show a few samples demonstrating the qual-
ity of the reconstructed bands using RGB and NIR images
in Figure [11] The figure also shows the difference between
each reconstructed band and its corresponding ground truth
one as a heat map.

8.3 Comparison against State-of-the-Art

The proposed spectral reconstruction model in this paper
improves on MobiSpectral [22], by adding multiple loss
functions to enhance the quality of the reconstructed bands
as well as simplifying the design of the neural network to
significantly reduce the computational complexity. MobiS-
pectral itself was built on the state-of-the-art reconstruction
model in [23].

We compare the performance of the proposed recon-
struction model against MobiSpectral using the fruit ripen-
ing dataset described in In both cases, we use RGB and
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Figure 11: Visual comparison of the reconstructed bands
and the ground truth (GT) ones; the bottom row shows the
absolute errors between them as heat maps.
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Figure 12: Performance of the proposed reconstruction
model in RipeTrack versus state of the art (MobiSpectral).

NIR images. We present sample results in Figure |12| for the
two most important metrics: SAM and SID. These results
are the averages of the SAM and SID metrics across the test
partition of the fruit ripening dataset. The figure shows that
the proposed model consistently produces lower SAM and
SID (error) values, especially around the 700-900 nm range.
This range provides valuable information in the invisible
range, which improves the reconstruction accuracy.

In addition, we compare the space and time complexity
by running both reconstruction models successively on the
same workstation (specs are given in §8.5). The results are
summarized in Table @ which shows that the proposed
reconstruction model is more efficient than MobiSpectral.
For example, the inference, i.e., reconstructing 68 bands
from the input four RGB and NIR images, takes on average
0.11 seconds, which is 30X less than the time needed by
MobiSpectral. In addition, the memory footprint of the pro-
posed model is approximately 3.1 GB compared to 10.6 GB
for MobiSpectral. These savings in computational resources
are crucial when the model is deployed on smartphones
with limited resources.

RipeTrack  MobiSpectral
Inference Time  0.11s 35s
GPU Memory 3.1 GB 10.6 GB
Parameters 293,356 3,003,708

Table 3: Computational complexity of the reconstruction
model in RipeTrack and state of the art (MobiSpectral).
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Figure 13: The accuracy of predicting fruit ripeness and
remaining lifetime using images captured by phones.

8.4 Accuracy of Assessing Fruit Ripeness

We evaluate the accuracy of determining fruit ripeness and
remaining lifetime using the mobile images dataset, which
was collected using two unmodified phones under diverse
illuminations. This dataset is divided into two partitions:
85% for training and 15% for testing. Data points in the
testing partition are from fruit samples that were never
seen during training. This stresses our system and shows
its robustness to natural variations in samples of the same
fruit type. The RGB and NIR images in the training partition
are first upscaled to 68 bands using the reconstruction
model. The reconstructed bands are then paired with the
corresponding ground truth ripeness and remaining lifetime
labels to train the classifier.

Average Accuracy. In Figure [[3} we summarize the average
accuracy of estimating ripeness and remaining lifetime for
different fruits. We also measure the accuracy achieved by
the expensive hyperspectral camera under ideal (halogen)
lighting. In this case, the reconstruction model is not in-
voked, and the classifier is trained on actual hyperspectral
bands. This case represents the upper bound (UB) on accuracy
achievable through spectral analysis in the 400-1000 nm
range. As the results in Figure [13|show, RipeTrack achieves
high accuracy for all considered fruits. Specifically, accura-
cies of at least 96% and 93% are observed for ripeness and
remaining lifetime, respectively. In addition, the accuracy
achieved by RipeTrack using phone images is within a few
percentage points from the upper bound; percentages are
shown on top of the bars. We note that the accuracy of
assessing avocado ripeness is slightly lower than that of
pears, because pears exhibit more external changes during
ripening than avocados, which provides additional signals
to our models.

Per-Class Analysis. We examine the accuracy of predicting
individual classes of ripeness and remaining lifetime. A
sample of our results is presented in Figure (14 for the 11
classes of the remaining lifetime; other results are similar.
This is a standard confusion matrix computed across all
fruits, where each row is normalized and contains the prob-
ability distribution of predicting the corresponding label.
Values on the diagonal indicate the percentage of predicted
labels that equal the true labels. The figure shows high
accuracy across all classes, with classes at both ends of the
lifetime achieving relatively higher accuracy, as they are less
challenging to identify compared to other classes.
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Figure 14: Accuracy of predicting individual classes of the
remaining lifetime. Rows: predicted; Columns: actual.
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Figure 15: Extensibility of RipeTrack to other fruits using
transfer learning by fine-tuning the model on a few images.

Extension to New Fruits using Transfer Learning. The
above results were obtained by training and testing
RipeTrack on the first four fruits in Table I} We extend
RipeTrack to the other three fruits (banana, nectarine, and
mango) by fine-tuning its reconstruction and classification
models using transfer learning. Specifically, we randomly
select a subset (70%) of the hyperspectral images of these
three fruits to fine-tune the reconstruction model. For fine-
tuning the classification model, we associate the ground-
truth ripeness level and remaining lifetime with the cap-
tured images at different times using the method described
in §6 Similarly, we randomly select 70% of the data of these
three fruits to fine-tune the classification model.

We report the average classification accuracy in Fig-
ure which was computed on the remaining (test) data
points not used during training. The results confirm the
extensibility and accuracy of RipeTrack: It generalized to
new fruits with totally different shapes, colors, and chemical
compositions than the ones it was trained on by fine-tuning
its models on a few fruit samples.

8.5 System Analysis and In-Store Testing

Ablation Study. We analyze the performance impact of
different components of RipeTrack. Specifically, we evaluate
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Figure 16: Ablation study: Performance impact of various
components of RipeTrack.
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Figure 17: Robustness and generalizability of RipeTrack
across phones. Top row: RipeTrack is trained on images
captured by OnePlus and tested on images captured by
Google Pixel. Bottom row: the other way around.

the accuracy of assessing fruit ripeness using only RGB im-
ages. That is, the ripeness and lifetime classification model
is trained and tested only on the RGB images of the mobile
images dataset described in Then, we add NIR images,
but without spectral reconstruction; i.e., we use pairs of RGB
and NIR images from the mobile images dataset for train-
ing and testing the classification model. Then, we perform
spectral reconstruction from RGB and NIR images and use
the reconstructed bands to train and test the classification
model.

The results of this experiment are shown in Figure
where we also show the upper bound on accuracy obtained
by feeding the ground-truth hyperspectral images to the
model. As the figure shows, RGB images alone provide low
accuracy because they can only model external features of
fruits, whereas the ripening process occurs mainly inside
the fruits. Using the NIR image helped the performance
marginally. This is because the NIR band captured by the
phone is fairly narrow and provides limited information
to the classification model. A substantial improvement is
achieved using the proposed reconstruction model, which
brings the accuracy close to the upper bound. The recon-
struction model effectively utilizes both the NIR and RGB
bands to reconstruct the entire spectrum, providing the
model with rich information.

Robustness to Practical Illuminations. Our mobile images
dataset is captured under diverse illuminations: LED, Flu-
orescent (CFL), and mixtures of these sources and sunlight
(referred to as Mixed). We separate the test partition of the
mobile images dataset based on the illumination source.
Then, we assess the classification accuracy for each illu-
mination source. The results in Figure show that the
image normalization method of RipeTrack mitigates the
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Figure 18: Robustness to illumination diversity: RipeTrack
achieves high accuracy under different illuminations.

differences in illuminations, and the type of illumination
does not impact the accuracy. The accuracy is highest when
using halogen sources because they emit power across the
entire spectrum, helping the phone capture more reflected
signals. Halogen sources, however, are not widely used in
homes and grocery stores as they consume substantially
more energy than other sources. The mixed scenario is
the most challenging, as it includes uncontrolled lighting
sources such as sunlight coming from windows and light
coming from the normal bulbs in our lab. Nonetheless,
RipeTrack still achieves an accuracy of at least 90% in this
challenging scenario.

Robustness and Generalizability of RipeTrack to Di-
verse Phones. We separate the images captured by our
two phones (Google Pixel and OnePlus) and compute the
classification accuracy for each group. Specifically, we train
our models on images captured by one phone (e.g., Google
Pixel) and test images captured by the other phone (One-
Plus). Then, we switch: train on images captured by One-
Plus and test on images captured by Google Pixel. These
phones have very different camera specifications.

The results are presented in Figure [I7} The first row
illustrates the case where the models are trained on images
captured by the OnePlus phone and then tested on images
captured by the Google Pixel phone. The second row shows
the other way around. The results demonstrate the high
accuracy achieved by RipeTrack across different phones,
showing its robustness and generality. This is achieved by
the RGB image normalization and NIR data augmentation
methods in RipeTrack, which collectively enable RipeTrack
to function on different phones.

Effect of Capturing Distance. We analyze the accuracy of
RipeTrack when capturing images at different distances.
While RGB cameras can capture images multiple meters
away, phone NIR cameras typically have much smaller
operating ranges (a few tens of centimeters). We vary the
capturing distance between 10 and 50 cm and compute the
spectral signature from the reconstructed bands in each case.
The accuracy of the spectral signatures is crucial for the
system’s operation, as significant deviations would lead to
incorrect spectral analysis and ripeness assessment.

We objectively quantify the signature accuracy by com-
puting the SID metric, which measures the similarity be-
tween the probability distributions of two signatures. We
use the signature at 20 cm as the reference, as this is a typical
distance for NIR cameras and produced the best results in
our experiments. The results, shown in Figure [19} indicate
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Figure 19: Effect of capturing distance on the accuracy of
spectral signatures computed from reconstructed bands.

that signatures computed from capturing distances between
20-30 are fairly accurate and close to the reference signature.
The accuracy drops outside of this range because the quality
of the NIR image deteriorates, which in turn impacts the
accuracy of the reconstructed bands. The strength of the
NIR signal rapidly decreases at distances > 40cm, leading
to inaccurate signatures, as shown in the figure. When the
capturing distance is too small (< 10 cm), the phone fails
to capture all reflected NIR signals, negatively impacting
accuracy.

Total Run Time of RipeTrack on Phones. We deployed
RipeTrack on the Google Pixel 4XL phone and measured
the total execution time, from capturing the RGB and NIR
images to producing the final output on the screen. The
average execution time is 191 milliseconds, which includes
the two main spectral reconstruction and classification mod-
els, as well as other smaller tasks such as image alignment,
scaling, and normalization.

Complexity of the Reconstruction Model. The reconstruc-
tion model of RipeTrack has a total of 293,356 parameters.
The model took about 1 hour and 45 minutes to train on
the hyperspectral images dataset using a workstation with
an NVIDIA Titan RTX GPU (24 GB memory), 32 GB main
memory, and 3.60 GHz 16-core (Intel i9-9900K) processor.
The trained reconstruction model has a size of 8 MB. During
inference, the reconstruction model uses about 3.1 GB of
GPU memory. The average inference time on the Google
Pixel 4XL phone is 0.11 seconds to reconstruct 68 bands.

Complexity of the Classification Model. The classification
model has a total of 38,551,475 parameters, and it took about
10 hours to train on the workstation mentioned above. The
trained classification model uses 5.4 GB of GPU memory.
The average inference time to output the ripeness level
and remaining lifetime on the Google Pixel phone is 36
milliseconds.

In-Store Testing. We tested RipeTrack in five grocery stores
that have different settings and illuminations. One of these
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Figure 20: Sample results from in-store testing. RipeTrack
can analyze fruits in realistic environments on unmodified
phones. It also provides a detailed spectral analysis.

stores is a small neighbourhood produce retailer and has its
own farms in the city. The other four belong to major chains,
e.g.,, Walmart Supercenter. We show sample screenshots
of these tests in Figure RipeTrack implements object
detection, which displays dotted boxes around all identified
objects and fruits. The user can then remove any irrelevant
object by tapping and holding it. When a user selects a
fruit, RipeTrack analyzes a patch of 64 x 64 pixels and
displays the estimated ripeness level and remaining lifetime
(Figure[20a). As shown in Figure20b} RipeTrack can analyze
multiple different fruits at the same time. RipeTrack also
allows interested users to visualize and inspect the spectral
signatures and various bands (Figure 20d).

In total, we collected 114 samples of five different fruits
and their mixtures from five grocery stores, as summarized
in Table [} This dataset was collected by capturing RGB
and NIR images by holding the phone at approximately 20—
30 ecm. This dataset is used for testing only; the models of
RipeTrack have never seen it before. Since this is an uncon-
trolled environment and we cannot know the ground truth of
fruit lifetime, we could only conduct a subjective analysis, or
sanity check, of the results produced by RipeTrack. Specif-
ically, we opted to capture images of mostly unripe fruits
or fruits at an early stage of ripening, based on our own
intuition and visual inspection. Then, we assess the ripeness
and remaining lifetime using RipeTrack. Overall, RipeTrack
classified 96% of the samples as Unripe and the remaining
4% as Ripe. It also produced 80%-100% lifetime remaining
for the samples. We believe the results are reasonably accu-
rate and in accordance with grocery stores’ tendency to sell
fresh fruits to maintain customer satisfaction.

9 CONCLUSION

Accurately and easily estimating fruit ripeness reduces
food waste, saves precious natural resources, and helps
consumers and retailers lower costs. We presented a cost-
effective approach that contributes to achieving this goal.
We first showed that fruit ripeness can be assessed by spec-
tral analysis in the visible and NIR (400-1000 nm) range us-
ing a hyperspectral camera. This is similar to the sensitivity
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Fruit Count
Pear 12
Avocado 28
Banana 32
Mango 12
Nectarine 18
Mixed 12
Total 114

Table 4: Dataset captured in five grocery stores under di-
verse and realistic illuminations and fruit arrangements.

range of CMOS sensors on phone cameras. However, phone
cameras typically remove all signals beyond the visible
range (>700 nm) because they may damage image quality.
We presented methods to obtain NIR signals and accurately
reconstruct the spectrum in the entire 400-1000 nm range.
We then presented RipeTrack, a mobile application that per-
forms spectral analysis of fruits and predicts their ripeness
level and remaining lifetime. Through extensive experimen-
tation, we demonstrated that RipeTrack achieves high ac-
curacy for various fruits and generates intuitive outputs for
retailers and consumers. We also showed that RipeTrack can
easily be extended to new fruits using transfer learning, and
it is robust to diverse phones, illuminations, and capturing
distances.
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APPENDIX A
SUPPLEMENTARY MATERIALS

A1

To demonstrate the limitations of current reconstruction
models, we analyze the suitability of the state-of-the-art
method, MST++ [23], for conducting spectral analysis to
assess fruit ripeness and remaining lifetime on smartphones.
MST++ is a deep neural network model and was shown
to outperform all prior works [23]. We train the MST++
model on our hyperspectral fruit ripening dataset, which, as
detailed in has hyperspectral images of multiple fruits,
and each image has 204 bands. The model takes RGB images
as input and produces bands equally spaced across the
visible and NIR range (400-1000 nm).

Following the guidelines for training and evaluating
spectral reconstruction methods [28], we synthesize RGB
images from the captured hyperspectral images using the
sensitivity function of common CMOS sensors on smart-
phone cameras. We also assume ideal (halogen) lighting
conditions. The MST++ model is trained to take RGB images
as input, and it produces bands equally spaced across the
400-1000 nm range. We configured the model to reconstruct
68 bands (instead of 204) to reduce the training and infer-
ence time.

We plot the accuracy of the reconstructed bands by the
MST++ model in Figure |21} The accuracy is measured using
two important metrics: Peak-Signal-to-Noise-Ratio (PSNR)
and Spectral Angle Mapper (SAM) [24]. The first metric
measures the spatial accuracy of each reconstructed band
by comparing its pixels against the corresponding ground
truth band. PSNR is a quality metric, and thus, higher values
are better. The second metric assesses the accuracy along
the spectral dimension by measuring the angle between
the spectra representing reconstructed and corresponding
ground truth bands. SAM is an error metric, and thus, lower
values are better. As Figure 21| shows, both the spatial and
spectral accuracy quickly drop after 700 nm, which is the
end of the visible light range. For example, Figure[21a|shows
that the PSNR of the reconstructed band at 900 nm is about
20 dB, indicating very poor quality. Similarly, Figure
shows that the spectral angle between the reconstructed
band at 900 nm and its corresponding ground truth is 0.2 ra-
dians (11.5 degrees), which is a significant error that would
compromise the accuracy of spectral signatures created from
such bands.

One of the main reasons behind the poor performance of
MST++ is the lack of any NIR signals in the input, which
makes the reconstruction model hallucinate bands in the
NIR range. We presented three possible solutions to obtain

NIR signals in

Limitations of Current Reconstruction Models

A.2 Details of Training and Evaluating the Spectral Re-
construction Model

Training Details. For accurately training the reconstruction
model, it is essential that all inputs to the model are captured
in the same environment, e.g., lighting conditions, capturing
distance, viewing angle, and sensor characteristics, as the
ground-truth bands. Thus, similar to the standard process
of training and evaluating reconstruction models [28], we
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Figure 21: Limitations of the state-of-the-art spectral recon-
struction model [23]: It results in high errors in the NIR
range.

use the raw reflectance data captured by the hyperspectral
camera to create the input bands corresponding to ground-
truth bands. Specifically, we transform the reflectance data
to different inputs using the procedure described in [41].
For example, for the case of No IR Filter, we use the
sensitivity function in Figure[2b|to transform the reflectance
data to produce images as if they were captured by the
Google Nexus 5X after removing the IR filter. Recall that
hyperspectral cameras capture very detailed data about the
scene across many narrow bands in the spectrum. Thus, this
transformation effectively downsamples the reflectance data
and does not significantly affect the accuracy.

Similarly, for the custom color filter array, we use the
sensitivity function in ??. For the RGB + NIR case, we use
the sensitivity function in Figure 2b|but truncate all signals
after 700 nm, similar to what an IR filer does. Then, we
randomly select one of the narrow spectral bands in the
940-980 nm as the NIR image, because most NIR cameras on
phones operate in this range. Training on randomly selected
NIR bands improves the robustness of our model to support
diverse phones.

Performance Metrics. The details and equations of the six

considered performance metrics are given below.

o Mean Relative Absolute Error (MRAE): measures the ab-
solute relative error between pixel values of the recon-
structed bands X and the ground truth bands X. It is
given by:

X(IE, Y, >‘) — X(:L',y, >‘)
X(z,y,\) ’
©)
where N is the number of bands, H and W are the spatial
resolution, and X and X represent the reconstructed and
ground-truth bands, respectively.
e Root Mean Square Error (RMSE): measures the second
order error between pixel values of reconstructed and
ground truth bands, and it is given by:

1 SR
Lyviprare = HWN ;:lyz::l )\gl

1 H W N .
HWNZZZ X(z,y,\) — X(z,y,\)| . (6)

e Spectral Angle Mapper (SAM): measures the similarity
between the reconstructed and ground truth bands by
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MRAE | RMSE | SAM | SID | PSNR 1 SSIM 1
No IR Filter
Pear Bosc 0.1546 £ 0.033  0.0469 + 0.010 0.1360 £ 0.033  0.0707 & 0.027 26.8 £2.0 0.9092 4 0.029
Pear Bartlett 0.1339 £ 0.029  0.0320 & 0.010 0.1086 £+ 0.020  0.0438 + 0.017 303 +£25 0.9404 4 0.023
Avocado Org 0.1299 £+ 0.030 0.0217 & 0.008 0.0762 £ 0.006  0.0124 + 0.002 33.8 3.0 0.9709 4 0.009
Avocado Hass  0.1244 +0.017 0.0183 £+ 0.006  0.0788 4+ 0.007  0.0127 £ 0.002 353 +£3.1 0.9756 &+ 0.005
Average 0.1374 4+ 0.031  0.0310 £+ 0.015 0.1029 + 0.034 0.0378 &= 0.032 31.2 £ 4.5 0.9460 + 0.035
Custom Filter
Pear Bosc 0.0590 £+ 0.010  0.0101 + 0.002  0.0574 4+ 0.007  0.0059 + 0.002 40.1 =15 0.9866 & 0.002
Pear Bartlett 0.0638 = 0.009 0.0096 + 0.002 0.0599 4 0.007  0.0065 + 0.001 405+ 1.7 0.9881 & 0.002
Avocado Org 0.0981 £ 0.023 0.0139 + 0.005 0.0679 & 0.010  0.0092 £+ 0.003 37.6 2.6 0.9818 & 0.007
Avocado Hass  0.0885 4 0.012  0.0113 £ 0.003  0.0645 4+ 0.008  0.0082 £ 0.002 39.2 +2.1 0.9856 + 0.003
Average 0.0761 £ 0.021  0.0111 £ 0.003  0.0620 + 0.009 0.0073 £ 0.002 39.4 +2.2 0.9856 + 0.004
RGB + NIR
Pear Bosc 0.1265 £ 0.028  0.0203 + 0.004 0.0728 & 0.011  0.0094 + 0.003 34.0 +1.8 0.9742 4 0.006
Pear Bartlett 0.1206 £ 0.025 0.0194 + 0.004 0.0829 4 0.008 0.0165 + 0.012 344 +19 0.9743 4 0.006
Avocado Org 0.1303 £ 0.021  0.0222 + 0.006 0.0813 4 0.011  0.0135 £+ 0.004 33.3+23 0.9723 4 0.006
Avocado Hass  0.1102 £ 0.022  0.0204 & 0.005 0.0852 £ 0.015 0.0155 + 0.006 34.1 £2.2 0.9754 4+ 0.006
Average 0.1214 £+ 0.026  0.0206 + 0.005 0.0798 4 0.013  0.0132 &+ 0.007 34.0 =2.1 0.9742 + 0.006

Table 5: Performance comparison of the three versions of the spectral reconstruction model on different fruits.

measuring the angle between the vectors representing
their spectra [24]. It is given by:

I 1 i% ( ZA 1 AT )
SAM = T5r cos )
HW \/Z,\ 1% \/Z,\ 1 73

a=1

@)

where x and # are spectral vectors from the reconstructed
and ground truth bands.

o Spectral Information Divergence (SID): models spectra as
probability distributions and measures the difference be-
tween the distributions representing the reconstructed
and ground truth bands [35]. It is given by:

Lsip = ZP/\ log( > + Zq/\ 10%( ) ®

where p and ¢ are the normalized vectors of the recon-
structed and ground truth bands.

e Peak Signal to Noise Ratio (PSNR): measures the quality of
the reconstructed bands relative to the ground truth ones.
It is given by:

10log,o(1/MSE(X, X)), )

where MSE is the average of the mean square error across
all bands.

e Structural Similarity Index Measure (SSIM): measures the
texture similarity between the reconstructed and the
ground truth bands [42]. It is given by:

725

where S is the structural similarity index calculated for
each band, and the procedure to compute it can be found
in [43], [42].

(1:H1:W,NX(1:H,1:W,\), (10)

A.3 Accuracy of Spectral Analysis

Detailed Results and Comparisons. We summarize the per-
formance of the three versions of the reconstruction model
across different fruits and all performance metrics in Table
Each cell shows the mean and standard deviation for the
corresponding case. We note that MRAE, RMSE, SAM, and
SID are error metrics. Thus, lower values are better, which
is indicated by | in the table. On the other hand, PSNR and
SSIM represent quality metrics and higher values for them
are better, which is indicated by 7.

Multiple observations can be made on Table |5, First, all
three versions of the reconstruction model produce good
reconstructed bands. Specifically, all four error metrics are
close to zero. For example, the average SAM value is less
than 0.103 radians (5.9 degrees), and the average SID is
less than 0.038. SAM and SID are particularly important
for hyperspectral imaging applications since they measure
the similarity between the reconstructed and ground truth
bands across the spectral dimension. Similarly, the PSNR
and SSIM quality metrics are fairly high. The average PSNR
is more than 31 dB for all three versions of the reconstruction
model, and the average SSIM approaches 1.0. Furthermore,
the standard deviation of all metrics is small, indicating
consistent performance.

The second observation on Table[Hlis that the reconstruc-
tion model with the custom color filter array results in the
highest accuracy across all metrics. This is expected as the
filter is purposely designed to optimize the quality of the
captured RGB and NIR bands, considering the sensor sensi-
tivity and processing pipeline of the camera. The third ob-
servation is that the reconstruction model with RGB + NIR
inputs produces better average accuracy than the model
with No IR Filter. This is pleasantly surprising, considering
that it does not require changing the smartphone camera.

To further analyze the accuracy of the reconstructed
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Figure 22: Detailed analysis of the spectral reconstruction model when using three possible inputs: (i) RGB images captured
with No IR Filter, (ii) Images captured with the Custom Filter, and (iii) RGB + NIR images captured by unmodified phones.
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Figure 23: Visual comparison of the reconstructed bands and the ground truth (GT) ones; the bottom row shows the
absolute errors between them as heat maps. Results shown for a sample Pear Bartlett.
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bands and shed some insights on the relative performance of
the three versions of the reconstruction model, we plot the
six performance metrics across all individual wavelength
bands in Figure We note that the y-axis of the error
metrics in sub-figures (a)—(c) is focused on a small range
since the errors are very small. This is done to demonstrate
the differences among the various cases and across different
bands.

Recall that the RGB + NIR case uses two separate
cameras. The RGB camera still uses an IR filter and thus
retains the quality of RGB images. This yields a higher
reconstruction accuracy in the visible light range compared
to the No IR Filter case where the quality of the RGB images
is damaged because of the interference with the IR signals.
This is shown in the left parts (between 400 and 700 nm)
in the sub-figures of Figure 22| Further, the additional NIR
image in this case, which is around 940 nm, enables the
model to reconstruct bands in the 900-1000 nm range with
higher accuracy than the No IR Filter case. However, the
RGB + NIR case has relatively higher errors and lower
quality than the No IR Filter case in the 750-850 nm range.
This is because the transition from the visible range to
the NIR range occurs around the 700 nm band, where all
RGB signals are truncated. Thus, the reconstruction model
has less information to build on in the 750-850 nm range,

20

leading to higher errors.

In addition, the custom color filter array provides lower
errors and higher quality across most bands as shown in
Figure This is because, as illustrated in ??, this filter
provides a wider NIR band around 850 nm and does not
truncate the RGB signals at 700 nm, providing more infor-
mation to the reconstruction model throughout the entire
400-1000 nm range.

Visual Samples of the Reconstructed Bands. We provide
additional samples demonstrating the quality of the re-
constructed bands in Figure The figure also shows the
difference between each reconstructed band and its corre-
sponding ground one as a heat map.

Summary. The presented spectral reconstruction model pro-
duces fairly accurate bands in all three considered cases.
The custom color filter array provides the highest accuracy,
but it requires significant changes to the camera sensor.
Removing the IR filter results in good reconstruction, but it
damages the RGB images. Using RGB and NIR images offers
a practical solution, providing high reconstruction accuracy
without requiring any hardware modifications or damaging
the RGB images.
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