
Dynamic Control of Receiver Buffers
in Mobile Video Streaming Systems

Farid Molazem Tabrizi, Student Member, IEEE, Joseph Peters, and

Mohamed Hefeeda, Senior Member, IEEE

Abstract—We propose a novel algorithm to efficiently transmit multiple Variable-Bit-Rate (VBR) video streams from a base station to

mobile receivers in wide-area wireless networks. The algorithm multicasts video streams in bursts to save the energy of mobile

devices. In addition, the algorithm adaptively controls the buffer levels of mobile devices receiving different video streams according to

the bit rate of the video stream being received by each device. Compared to previous algorithms, the new algorithm enables dynamic

control of the wireless channel and allows the base station to transmit more video data on time to mobile receivers. This is done by

providing finer control over the bandwidth allocation of the wireless channel. The problem of optimizing energy saving has been shown

to be NP-Complete. We prove that our algorithm finds a feasible schedule if one exists and always produces a correct schedule even

when dropped frames are unavoidable. We analytically bound the gap between the energy saving resulting from our algorithm and the

optimal energy saving and show that our results are close to optimal. We analyze the tradeoff between the fine control over bandwidth

allocation and energy saving and demonstrate that in practical situations, flexible and finer control of bandwidth allocation will result in

significantly lower frame loss rates while achieving higher energy saving. We have implemented the proposed algorithm as well as two

other recent algorithms in a mobile video streaming testbed. Our extensive analysis and results demonstrate that the proposed

algorithm outperforms the other two algorithms; it results in higher energy saving for mobile devices and fewer dropped video frames.

Index Terms—Mobile video streaming, mobile TV, energy optimization, quality optimization, wireless video multicasting

Ç

1 INTRODUCTION

IN recent years, mobile devices have become more
powerful in terms of computing power, memory, screen

size, and screen quality. This provides an improved
experience for viewing TV and multimedia content and
has resulted in increasing demand for multimedia services
for mobile devices [1]. However, video streaming to mobile
devices still has many challenges that need to be
addressed. For example, mobile devices are small and
can only be equipped with small batteries that have limited
lifetimes. Thus, conservation of the energy of mobile
devices during streaming sessions is needed to prolong
the battery lifetime and enable users to watch videos for
longer periods. Another challenge for mobile video is the
limited wireless bandwidth in wide-area wireless net-
works. The wireless bandwidth is not only limited, but it is
also quite expensive. For instance, Craig Wireless System
Ltd. agreed to sell one quarter of its wireless spectrum to a
joint venture of Rogers Communication and Bell Canada
for $80 million [2], and AT&T sold a 2.5 GHz spectrum to
Clearwire Corporation in a $300 million transaction [3].
Thus, for commercially viable mobile video services,
network operators should maximize the utilization of their
license-based wireless spectrum bands.

In this paper, we consider the problem of multicasting
multiple Variable-Bit-Rate (VBR) video streams from a
wireless base station to many mobile receivers over a
common wireless channel. This problem arises in wide-area
wireless networks that offer multimedia content using
multicast and broadcast services, such as Advanced
Television Systems Committee-Mobile/Handheld (ATSC
M/H) [4], WiMAX [5], 3G/4G cellular networks that enable
the Multimedia Broadcast Multicast Services (MBMS) [6],
and Digital Video Broadcast-Handheld (DVB-H) [7].

We propose a new algorithm to efficiently transmit video
streams from a base station to mobile receivers. The
transmission of video streams is done in bursts to save
the energy of mobile devices. Unlike previous algorithms in
the literature, e.g., [8], [9], [10], [11], the new algorithm
adaptively controls the buffer levels of mobile devices
receiving different video streams according to the bit rates
of the video streams. Our algorithm minimizes frame loss
by dynamically providing finer control over the allocation
of bandwidth to video streams whenever the aggregate bit
rate of the video streams increases. In addition, the
proposed algorithm uses variable-bit-rate video streams,
which are statistically multiplexed to increase the utilization
of the expensive wireless bandwidth. We prove that our
algorithm finds a feasible schedule for all frames of all
video streams if one exists, and always produces a correct
schedule. We also analytically bound the gap between the
energy saving resulting from our algorithm and the
maximum possible energy saving, and we show that our
results are close to optimal. We analyze the complexity of
our algorithm and show that it can easily run in real time.
By dynamically controlling the wireless multicast channel
and adjusting the receivers’ buffers, our algorithm allows

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 5, MAY 2013 995

. F. Molazem Tabrizi is with the Department of Electrical and Computer
Engineering, University of British Columbia, 2332 Main Mall, Vancouver,
BC V6T 1Z4, Canada. E-mail: faridm@ece.ubc.ca.

. J. Peters and M. Hefeeda are with the School of Computing Science, Simon
Fraser University, 250-13450 102nd Ave, Surrey, BC V3T 0A3, Canada.
E-mail: {peters, mhefeeda}@cs.sfu.ca.

Manuscript received 31 May 2011; revised 21 Jan. 2012; accepted 3 Feb. 2012;
published online 28 Feb. 2012.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-2011-05-0286.
Digital Object Identifier no. 10.1109/TMC.2012.56.

1536-1233/13/$31.00 � 2013 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS

the base station to transmit more video data on time to
mobile receivers. Also, we discuss the tradeoff between
finer control over the wireless channel and the achieved
energy saving. We show that in practical scenarios, having
more flexible control of the bandwidth in our algorithm
results in significantly lower frame loss rates while
achieving close to optimal energy saving.

We have implemented the new algorithm in a mobile
video streaming testbed [12]. We have also implemented
the recent algorithm proposed in [8] and an algorithm used
in some commercial base stations for broadcasting VBR
video streams [13], [14]. Our empirical results demonstrate
the practicality of our new algorithm. Our results also show
that our algorithm outperforms other algorithms as it
delivers more video frames on time to mobile receivers
and it achieves higher energy saving.

The rest of this paper is organized as follows: We review
related work in Section 2. In Section 3, we describe the
wireless network model that we consider and we state the
problem addressed in this paper. We present the proposed
algorithm in Section 4. We empirically evaluate our
algorithm and compare it against others in Section 5. We
conclude the paper in Section 6.

A preliminary version of this work appears in [15]. The
current paper presents substantial extensions including an
improved algorithm, a complete theoretical analysis, and an
extensive empirical evaluation.

2 RELATED WORK

Energy saving at mobile receivers using burst transmission
(i.e., time slicing) has been studied in [9] and [10].
Simulations are used in these studies to show that time
slicing can improve energy saving for mobile receivers.
However, no burst transmission algorithms are presented.
Some video encoders adjust the quality of video streams to
produce Constant-Bit-Rate (CBR) video streams which
makes them less complex when being transmitted. But
this results in noticeable quality degradation for the video
[16]. A burst transmission algorithm for constant-bit-rate
video streams is proposed in [11], but this algorithm
cannot handle VBR video streams with fluctuating bit
rates. In this paper, we consider the more general VBR
video streams which can achieve better visual quality and
bandwidth utilization [17].

Variable-bit-rate encoding of video streams results in
higher quality video by assigning more bits to complex
frames and fewer bits to less complex frames. This results in
more complicated requirements for applications of VBR
streams [18]. Transmitting VBR video streams over a
wireless channel while avoiding buffer overflow and under-
flow at mobile devices is a difficult problem [19]. Rate
smoothing is one approach to reducing the complexity of this
problem. The main idea in this approach is to transmit video
streams in constant-bit-rate segments and let the receiver
store some data ahead of time to avoid large changes in the
transmission bit rate of video streams. This reduces the
complexities resulting from variability of video stream bit
rates. The performance of smoothing algorithms can be
measured by different metrics like the peak bit rate,
the number of changes in the bit rate, traffic variability,

and the receiver buffer requirements. The minimum
requirements of rate smoothing algorithms in terms of
playback delay, lookahead time, and buffer size are dis-
cussed in [20]. The smoothing algorithm proposed in [21]
minimizes the number of rate changes.

In [22], a smoothing algorithm is proposed to minimize
traffic variability subject to a given receiver buffer size and
startup delay. The algorithms in [23] reduce the complexity
by controlling the transmission rate of a single video stream
to produce a constant-bit-rate stream. Ribas-Corbera et al.
[24] suggest smoothing algorithms to reduce the peak
bandwidth requirements for video streams. In [25], a
Monotonically Decreasing Rate (MDR) algorithm for
smoothing the bit rates of video streams is discussed. This
algorithm produces segments with monotonically decreas-
ing bit rates for video streams to remove the resource
allocation complexities resulting from upward adjustment.
The worst case buffer requirement in this algorithm is
unbounded which makes it unsuitable for mobile receivers
with limited buffer capacity. None of the above smoothing
algorithms considers energy saving as a performance metric
as these algorithms are not designed for mobile multicast/
broadcast networks with limited-energy receivers. In [26],
an online Smoothing Algorithm for Bursts (SAB) is
introduced which tries to minimize the percentage of lost
frames due to bandwidth and buffer limitations. The
algorithm calculates the minimum and maximum possible
bit rates for video streams without experiencing buffer
underflow and overflow instances. SAB transmits video
data in bursts to achieve energy saving for mobile receivers,
however the algorithm considers the transmission of only
one video stream.

A different approach to handling VBR video streams is to
employ joint rate control algorithms. In this approach,
control of the bit rates of video streams is achieved by using
joint video coders [27], [28], [29], which consist of joint rate
allocators, VBR coders, and decoders, to jointly encode video
streams and dynamically allocate bandwidth to them. For
example, Rezaei et al. [27] propose joint video coding and
statistical multiplexing for video transmission. In their work,
statistical multiplexing is implemented inside the encoders
so the bandwidth is distributed among the bitstreams
according to their coding complexities. They use time slicing
to achieve energy saving. However, this mechanism requires
access to expensive joint video encoders.

A recent algorithm for transmitting VBR video streams to
mobile devices without requiring joint video encoders is
presented in [8]. This algorithm, called SMS, performs
statistical multiplexing of video streams. In SMS, the
receiver buffer is divided into two equal size parts and
the transmission time for each video stream is divided into
time windows. During each time window, the base station
transmits data to fill half of the buffer while the other half is
being drained, and repeats this process in the following
time windows. Unlike the proposed algorithm in this paper,
the SMS algorithm does not dynamically control the buffers
of the receivers. We show that dynamic control of buffers
improves the performance in terms of dropped video
frames and energy consumption of mobile devices.

996 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 5, MAY 2013

The VBR transmission algorithms deployed in practice
are simple heuristics. For example, in the Nokia Mobile
Broadcast Solution (MBS) [13], [14], the operator determines
a burst size for each video stream and a time interval �T
based on which bursts are transmitted. This means that for
each video stream a burst is transmitted every �T seconds.
The network operators have to choose the time interval and
burst sizes manually and also make sure that their selection
does not result in overlapping bursts and buffer overflow/
underflow instances for the receivers. The time interval is
calculated on the basis of the size of the receiver buffers and
the largest bit rate among all video streams and is used for
all video streams. Basically, �T is set to B=rS where rS is the
highest bit rate among video streams and B is the buffer size
for the receivers. It is difficult to assign bit rate values to VBR
video streams to achieve good performance while avoiding
buffer underflow and overflow instances at the receivers.

In this paper, we compare our proposed algorithm to the
SMS algorithm [8] (which represents the state-of-the-art in
the literature) and to the algorithm used in the Nokia
Mobile Broadcast Solution (which represents one of the
state-of-the-art algorithms in practice).

3 SYSTEM MODEL AND PROBLEM STATEMENT

3.1 System Model

We study the problem of transmitting several video streams
from a wireless base station to a large number of mobile
receivers. We focus on multicast and broadcast services
enabled in many recent wide-area wireless networks such
as DVB-H [7], MediaFLO [30], WiMAX [5], and 3G/4G
cellular networks that offer Multimedia Broadcast Multicast
Services [6]. In such networks, a portion of the wireless
spectrum can be set aside to concurrently broadcast
multiple video streams to many mobile receivers. Since
the wireless spectrum in wide-area wireless networks is
licence-based and expensive, maximizing the utilization of
this spectrum is important. To achieve high bandwidth
utilization, we employ the variable-bit-rate model for
encoding video streams. Unlike the constant-bit-rate model,
the VBR model allows statistical multiplexing of video
streams [8], and yields better perceived video quality [17].
However, the VBR model makes video transmission much
more challenging than the CBR model in mobile video
streaming networks [19].

Mobile receivers are typically battery powered. Thus,
reducing the energy consumption of mobile receivers is
essential. To save energy, we employ the burst transmission
model for transmitting video streams, in which the base
station transmits the data of each video stream in bursts at a

higher bit rate than the bit rate used to encode the video.
The burst transmission model allows a mobile device to
save energy by turning off its wireless interface between the
reception of two bursts [19], [31]. The arrival time of a burst
is included in the header of the preceding burst. Thus, the
clocks at mobile receivers do not need to be synchronized.
In addition, each receiver is assumed to have a buffer to
store the received data. Fig. 1 shows a high-level depiction
of the system model that we consider. Saving energy of the
wireless interface is important because the network inter-
face can consume as much as 70 percent of total power
when the display is not on [32], and as much energy as the
display when it is on full brightness [33]. In addition, if the
wireless interface is on, even if no data is being received, it
can consume nearly as much energy as when it is actually
receiving data [34].

We note that in wireless broadcast/multicast networks,
the parameters of the physical layer, e.g., signal modulation
and transmission power, are fixed for all receivers. These
parameters are chosen to ensure an acceptable average bit
error rate for all receivers in the coverage area of the base
station. Therefore, per-user adaptation is typically not used
in wireless broadcast/multicast networks. Instead, mechan-
isms such as Forward Error Correction (FEC) are commonly
used to support users in the coverage area.

In broadcast/multicast networks, the transmission is
one-way from the base station to the receivers, with no
feedback channel from the receivers because there could be
too many of them. However, an external channel could exist
to allow user interactivity with the transmitted video
streams, for example voting for best player during a soccer
game. The external channel is a unicast channel. We note
that in mobile TV networks, a mobile receiver is typically
equipped with a separate interface and controlling logic for
receiving mobile TV signals than the interface used to make
phone calls and establish unicast sessions. Our work
optimizes the downward broadcast/multicast channel,
and not the unicast channel.

We list all symbols used in the paper in Table 1.

MOLAZEM TABRIZI ET AL.: DYNAMIC CONTROL OF RECEIVER BUFFERS IN MOBILE VIDEO STREAMING SYSTEMS 997

Fig. 1. The network model considered in this paper.

TABLE 1
Symbols Used in This Paper

3.2 Problem Statement

To achieve the burst transmission of video streams
described in Fig. 1, we need to create a transmission
schedule that specifies for each stream the number of
bursts, the size of each burst, and the start time of each
burst. Note that only one burst can be transmitted on the
broadcast channel at any time. The problem we address in
this section is to design an algorithm to create a transmis-
sion schedule for bursts that yields better performance than
current algorithms in the literature.

In particular, we study the problem of broadcasting S
VBR video streams from a base station to mobile receivers
in bursts over a wireless channel of bandwidth R Kbps. The
base station runs the transmission scheduling algorithm
every � sec; we say that � is the scheduling window. The
base station receives the video data belonging to video
streams from streaming servers and/or reads it from local
video databases. For example, the base station can be
broadcasting a live hockey game, which it receives from the
streaming server of a sports media network, as well as
several prerecorded TV episodes and movies from a video
database. The base station aggregates video data for � sec.
Then, it computes for each stream s the required number of
bursts. We denote the size of burst k of video stream s by
bsk (Kb), and the transmission start time for it by fsk sec.
The end time of the transmission for burst k of stream s is
fsk þ bsk=R sec.

After computing the schedule, the base station will start
transmitting bursts in the next scheduling window. Each
burst may contain multiple video frames. We denote the size
of frame i of video stream s by lsi (Kb). Each video frame i
has a decoding deadline, which is i=F , where F is the frame
rate (fps). The goals of our scheduling algorithm are
1) maximize the number of frames delivered on time (before
their decoding deadlines) for all video streams, and
2) maximize the average energy saving for all mobile
receivers. We define the average energy saving as
� ¼

PS
s¼1 �s=S, where �s is the fraction of time that the

wireless interfaces of the receivers of stream s are turned off.

4 PROPOSED ALGORITHM

4.1 Overview

We propose a novel algorithm, which we call the Adaptive
Data Transmission (ADT) algorithm, to solve the burst
transmission problem for the VBR video streams described
in Section 3. The key idea of the algorithm is to adaptively
control the buffer levels of mobile devices receiving
different video streams.

Since we consider VBR video streams, the bit rate of each
video is changing with time according to the visual
characteristics of the video. This means that the rate at
which the buffer contents of mobile devices are consumed is
also changing with time. In other words, there are times
when the buffer content of one receiver is being consumed
slowly, due to the low bit rate of the video at that time,
while the buffer content of another receiver is being
consumed at a high rate. Based on this, our algorithm
adaptively defines control points in time to decide how
much data, and for which stream, the base station should
transmit. Our algorithm defines these control points in such

a way that when the buffer contents of the receivers are
being consumed faster, the decision points are closer
together for finer control to ensure that no receiver faces
buffer underflow, and when the buffer contents are
consumed at a lower rate, the decision points are coarser
to save energy. We will show how our algorithm adaptively
defines control points and how this saves energy and
prevents buffer underflow/overflow instances.

The ADT algorithm defines control points at which it
makes decisions about which stream should have access to
the wireless medium and for how long it should have access.
Control points for each video stream are determined
separately based on a parameter �, where 0 < � � 1. This
parameter is the fraction of a receiver’s buffer capacityB that
is played out between two control points. The parameter �
can change dynamically between scheduling windows but is
the same for all video streams. At a given control point, the
base station selects a stream, computes the buffer level of the
receivers for the selected stream, and can transmit data as
long as there is no buffer overflow at the receivers.

For small values of �, control points are closer to each
other (in time) which results in smaller bursts. This gives
the base station more flexibility when deciding which video
stream should be transmitted to meet its deadline. That is,
the base station has more opportunities to adapt to the
changing bit rates of the different VBR video streams being
transmitted. For example, the base station can quickly
transmit more bursts for a video stream experiencing high
bit rate in the current scheduling window and fewer bursts
for another stream with low bit rate in the current
scheduling window. This dynamic adaptation increases
the number of video frames that meet their deadlines from
the high-bit rate stream while not harming the low-bit rate
stream. However, smaller bursts may result in less energy
saving for the mobile receivers because they may turn their
wireless interfaces on and off more often. In each transition
from off to on, the wireless interface incurs an overhead
because it has to wake up shortly before the arrival of the
burst to initialize its circuits and lock onto the radio
frequency of the wireless channel. We denote this overhead
by To, which is on the order of milliseconds depending on
the wireless technology. We analyze the impact of � on the
energy saving and number of frames that arrive on time,
theoretically in Section 4.3, and empirically using a mobile
video streaming testbed in Chapter 5.

4.2 Details

The proposed ADT algorithm is to be run by the wireless
base station to schedule the transmission of S video streams
to mobile receivers. The algorithm can be called periodically
every scheduling window of length � sec, and whenever a
change in the number of video streams occurs. As will be
shown in the next section, the algorithm is computationally
efficient and can easily run in real time.

We define several variables that are used in the
algorithm. Each video stream s is coded at F fps. We
assume that mobile receivers of video streams have a
buffer capacity of B Kb. We denote the size of frame i of
video stream s by lsi (Kb). We denote the time by which the
data in the buffer of a receiver of stream s is completely
played out (so the buffer is completely drained) by ds sec.

998 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 5, MAY 2013

Thus, ds is the deadline for receiving another burst of
stream s. We use the parameter M (Kb) to indicate the
maximum size of a burst that could be scheduled for a
video stream in our algorithm when there are no other
limitations like buffer size. In some wireless network
standards, there might be limitations on the value of M.
In this paper, we assume that the buffer capacity is small,
so the upper bound M on the burst size does not affect our
algorithm in practice. A control point is a time when the
scheduling algorithm decides which stream should be
assigned a burst. A control point for video stream s is set
every time the receivers of stream s have played out �B Kb
of video data as shown in Fig. 2.

The algorithm schedules bursts in scheduling windows
of � sec. In each scheduling window, the scheduler
schedules � sec of data that will be played within that
scheduling window. We assume that, during each schedul-
ing window, the algorithm also has access to a small
amount of data (as large as the size of the buffer) from the
next scheduling window. Therefore, if all � sec. of video
data for the video streams were scheduled within the
current scheduling window and there is still some extra
time remaining, the scheduler can schedule some bursts
from the next scheduling window within the current
scheduling window. Let us assume that the algorithm is
currently computing the schedule for the time window tstart
to tstart þ � sec. The algorithm defines the variable tschedule
and sets it equal to tstart. Then, the algorithm computes
bursts one by one and keeps incrementing tschedule until it
reaches the end of the current scheduling window, i.e.,
tstart � tschedule � tstart þ �. For instance, if the algorithm
schedules a burst of size 125 Kb on a channel with 1 Mbps
bandwidth, then the length of this burst will be 0.125 sec
and the algorithm increments tschedule by 0.125 sec. The
number of video frames for video stream s that belong to
the current scheduling window and are scheduled until
tschedule is denoted ms. This gives the receiver of stream s a
playout time of ms=F sec. Based on this, we can define the
playout deadline for stream s at time tschedule as

ds ¼ tstart þms=F: ð1Þ

We let ps denote the number of frames played out at the
receivers of stream s by time tschedule. Therefore, we can define
ps as ps ¼ tschedule � F . The next control point hs of stream s
after time tschedule will be when the receivers of stream s have

played out �B Kb of video data. We compute the number of
frames gs corresponding to this amount as follows:

Xpsþgs
i¼psþ1

lsi � �B <
Xpsþgsþ1

i¼psþ1

lsi : ð2Þ

The control point hs is then given by

hs ¼ tschedule þ gs=F : ð3Þ

In our algorithm, we use �min and�max to define the range
within which the value of � can vary. The operator presets
these values based on the desired control over bandwidth
and flexibility in energy saving.

The high-level pseudocode of the ADT algorithm is given
in Fig. 3. The algorithm works as follows: the scheduler
chooses a new video stream to receive a burst at each control
point and also at any point when the buffers of the receivers
of the currently scheduled burst are full (after scheduling
the current burst). When deciding to select a stream, the
algorithm finds the stream s0 which has the closest deadline
ds0 and the stream s00 with the closest control point hs00 . Then
the algorithm schedules a burst for stream s0 until the

MOLAZEM TABRIZI ET AL.: DYNAMIC CONTROL OF RECEIVER BUFFERS IN MOBILE VIDEO STREAMING SYSTEMS 999

Fig. 2. Control points for two video streams.

Fig. 3. The proposed transmission scheduling algorithm.

control point hs00 if this does not exceed the available buffer
space at the receivers of s0. Otherwise, the size of the new
burst for s0 is set to the available buffer space. If the
scheduled burst is as large as the available buffer space,
which makes the buffer full, then the algorithm does not
schedule any bursts for stream s0 before it’s next control
point. This lets the algorithm avoid small bursts for video
streams when the buffers are nearly full and results in more
energy saving for the receivers. The algorithm repeats the
above steps until there are no more bursts to be transmitted
from the video streams in the current scheduling window,
or until tschedule exceeds tstart þ � and there remains data to
be transmitted. The latter case means that some frames will
not be transmitted. In this case, the algorithm tries to find a
better schedule by increasing the number of possible control
points to introduce more flexibility. This is done by
decreasing the value of �. In order to find the largest value
of � that gives us the possibility to transmit all video
streams, we do a binary search between �min and �max. The
search only considers values between �min and �max with a
constant resolution (in our case 0.05), so there is a constant
number of choices of values for �. At each step of the binary
search, we select a value for �, and run the algorithm. If it
was successful, we continue the binary search to try to find a
larger �. Otherwise, we continue binary search to choose a
smaller �. This process finds the largest value of � for which
the algorithm can successfully schedule all video data
within the current scheduling window. If no such � is
found, then the binary search will result in the selection of
�min. It is important to note that the search space is of
constant size, so the number of steps in the binary search is
also constant, and the scheduling algorithm will be run a
constant number of times to find the best �. If � is reduced
in a scheduling window, then it will be gradually increased
in the following scheduling windows based on a linear
function. This means that after scheduling every burst, the
value of �will be increased by a constant value. In our work,
we have used 0.01 as this constant value.

4.3 Analysis and Complexity of the ADT Algorithm

In this section, we show that the proposed algorithm
produces near optimal schedules in terms of energy saving
for mobile receivers. We know that the burst scheduling
problem is NP-Complete [31]. Thus, solving it optimally
and in real time is not feasible. We also show that the
proposed algorithm is efficient and that it can run in real
time. Finally, we prove that the algorithm results in correct
burst transmission schedules with no buffer overflow or
underflow instances at the mobile receivers and no two
bursts overlapping in time.

The following theorem shows that our algorithm
produces near optimal energy saving for mobile devices.

Theorem 1. The difference between the optimal energy saving
and the energy saving of the ADT algorithm is less than or
equal to �rTo

B ð2=�min � 1Þ, where �r is the average bitrate of all
video streams, To is the wake-up overhead for the mobile
receiver circuits, B is the buffer size, and �min is the minimum
value of the control parameter used in the ADT algorithm.

Proof. The amount of energy saving is related to the
number of the bursts scheduled for the video streams. In

our algorithm, we schedule a new burst for a new video
stream whenever we reach a control point or when we
have scheduled a burst for a video stream that
completely fills its receivers’ buffers. So, the number of
bursts will be bounded by the number of control points
and the number of times that a receiver buffer gets full.
We can see from the algorithm that we will not have a
new control point for a video stream s unless we have
transmitted at least �B bytes of data since the previous
control point for s. Since the value of � can vary, we use
� ¼ �min in the remainder of this proof to get bounds.
This means that the number of control points is at most
rsT=ð�BÞ where rs is the average bit rate of video stream
s and T (sec) is the total length of the video stream. Note
that rsT is the total number of bits in video stream s.
When we schedule a burst that fills the buffer of video
stream s, we do not schedule a burst for that stream
again before its next control point. Based on this, we can
see that between two consecutive control points for
stream s, we can have at most one instance that its
receiver buffer gets full and consequently, the total
number of these instances will be bounded by the total
number of control points. Therefore, the total number of
bursts for stream s is at most 2rsT=ð�BÞ. Hence, the total
overhead time that a wireless receiver of stream s is
active is at most 2TorsT=ð�BÞ. The wireless receiver of s
will also be active during the data transmission time of
stream s which is rsT=R. Consequently, the total time
that a wireless receiver of stream s is active is at most
2TorsT=ð�BÞ þ rsT=R. Assuming that all video streams
have the same length T , the total time that the wireless
receivers of all video streams are active is less than or
equal to 2To

PS
s¼1 rsT=ð�BÞ þ

PS
s¼1 rsT=R. Using �r ¼PS

s¼1 rs=S as the average bitrate among all video
streams, we get a lower bound on the energy saving, �,
of the ADT algorithm:

� �
PS

s¼1 T � 2To
PS

s¼1 rsT=ð�BÞ �
PS

s¼1 rsT=RPS
s¼1 T

¼ 1� �r
2To
�B
þ 1

R

� �
:

The size of a burst cannot exceed the size of the buffer,
so the minimum number of bursts that could be
scheduled for video stream s is rsT=B. Consequently,
the overhead time for a wireless receiver of stream s is at
least TorsT=B and the total time that a wireless receiver
of stream s is active is greater than or equal to
TorsT=Bþ rsT=R. This gives an upper bound on the
optimal energy saving, �opt:

�opt �
PS

s¼1 T � To
PS

s¼1 rsT=B�
PS

s¼1 rsT=RPS
s¼1 T

¼ 1� �r
To
B
þ 1

R

� �
:

The difference between the optimal energy saving and
the energy saving of the ADT algorithm is �� ¼ �opt �
� � �rTo

B ð2=�min � 1Þ. tu

1000 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 5, MAY 2013

Figs. 4a through Fig. 4d show the relationships among
��, �r, �, and To according to Theorem 1. Each figure plots
�� against �r for fixed values � ¼ 0:10; 0:20; 0:30; 0:40, and
0.50 using a fixed value of To. The linear relationship of ��
with �r is clear in the figures. It is also clear that decreasing �
increases ��. The sequence of figures shows that ��
increases with increasing wake-up time To. Changing the
value of � when To is small has little impact on ��, but
when To and the average bit rate of the video streams, �r, are
both large, the impact of changes in the value of � on ��
can be substantial. Similarly, increasing the value of To has
little impact when � is small, but the impact can be quite
large when � and �r are both large. Therefore, if energy
saving is critical, and both To and the average bit rate of the
video streams are large, the operator can use � as a control
parameter to adjust the system for more energy saving or
for finer control over the bandwidth which results in a
better dropped frame rate.

Next, we show that our proposed algorithm is compu-
tationally efficient.

Theorem 2. The ADT scheduling algorithm runs in time
OðNSÞ, where N is the total number of control points and S is
the number of video streams.

Proof. We showed in the proof of Theorem 1 that the
number of control points for video stream s is at most
us ¼ rsT=ð�BÞ and the number of bursts is at most 2us.
Assuming that the length of each video stream is at least
�B, each video stream has at least one control point. Let
N ¼

PS
s¼1 us be the total number of control points. At

each control point we select the stream with the smallest
deadline and schedule a burst for it. Using a priority

queue, the stream s with the minimum deadline can be

chosen in Oð1Þ time. Maintaining the current deadline

and control point in the priority queue for each stream s

takes time OðlogSÞ each time that it is changed. There-

fore, the total time associated with the priority queue is

OðN logSÞ. The cost of scheduling a burst depends on the

number of frames between two control points. Since the

number of bytes in a burst cannot exceed the buffer size

B, the number of frames that have to be considered in a

scheduling window is at most SB. Since B is a constant,

the cost to schedule all bursts is OðNSÞ and the time

complexity of scheduling is OðN logS þNSÞ ¼ OðNSÞ.
Note that the number of times that the scheduling process

is run in a scheduling window is constant because the

binary search chooses from among a constant number of

� values. Therefore, the total time complexity of the

algorithm is OðNSÞ. tu

We note that our algorithm is linear in terms of S (number

of streams) and N (number of control points). Thus, our

algorithm can easily run in real time. We have actually

implemented our algorithm in a mobile video streaming

testbed. The algorithm indeed runs in real time on a regular

personal computer.
Next, we address the correctness of the proposed

algorithm. We assume that R �
PS

s¼1 rs since a correct

schedule without dropped frames is not possible otherwise.

Theorem 3. The ADT algorithm produces feasible burst

schedules with no two bursts overlapping in time and no

buffer overflow or underflow instances.

MOLAZEM TABRIZI ET AL.: DYNAMIC CONTROL OF RECEIVER BUFFERS IN MOBILE VIDEO STREAMING SYSTEMS 1001

Fig. 4. Maximum possible gap (��) for To values of 10 ms, 25 ms, 50 ms, and 100 ms.

Proof. First, we show that there always exists a value of �
that results in no buffer underflow instances. When the
ADT algorithm is used, there will be time intervals
during which bursts are scheduled, and there will be
slack times when no bursts are scheduled (Fig. 5). The
slack time could happen for two reasons. The first is that
all receiver buffers have been completely filled, so no
bursts will be scheduled for them before their next
control points. Between two consecutive control points,
�B Kb of data will be played out, so the buffer levels of
the receivers will be at least ð1� �ÞB during the slack
time. The second situation when slack time could occur is
at the end of a scheduling window when all video data
for the window has been scheduled and there is no more
data available. However, we have assumed that there is a
small lookahead window that provides access to as much
as a buffer of data from the next scheduling window, so
this case will never happen and we will not run out of
data at the end of a scheduling window. Therefore, when
ADT is used, a slack time period can occur for the first
reason. Based on this, after a slack time and at the
beginning of a period of consecutive bursts, the buffer
levels of all receivers will be at least ð1� �ÞB Kb. Now,
by way of contradiction, assume that there is a case for
which there is no value of � that can avoid buffer
underflows. Assume that stream s is the first video
stream that will have a buffer underflow in this case.
Since all buffer levels are at least ð1� �ÞB Kb during the
slack time, buffer underflow for stream s happens during
an interval containing consecutive scheduled bursts. Let
tb denote the beginning time of this interval and let tu
denote the time when buffer underflow occurs. Let tc be
the time of the last control point before tu. Since buffer
underflow occurs for stream s, this stream was not
selected at time tc for burst scheduling. Let s0 be the
stream that was selected at time tc. Hence, the deadline
for stream s0 is before the deadline for stream s, which is
tu. Since there is no control point between time tc and
time tu, and the control points for each stream are at least
�B bytes apart, the distance between tc and tu is less than
�B bytes. It follows that the buffer levels of both streams
s and s0 are less than �B Kb at time tc. Now, if we denote
the sum of the buffer levels of all video streams at time t
by et, we have etc < ðS � 2ÞBþ 2�B, and etb � Sð1� �ÞB.
On the other hand, we have etc ¼ etb þRðtc � tbÞ �PS

s¼1 rsðtc � tbÞ. Since R �
PS

s¼1 rs, we will have etc �
etb . Therefore, ðS � 2ÞBþ 2�B > Sð1� �ÞB. It follows
that � > 2=ðS þ 2Þ, so any value of � � 2=ðS þ 2Þ will

avoid buffer underflow. This contradicts the assumption
that there is no value of � that avoids buffer underflow.

At each scheduling time, we know the buffer level for
each stream s by subtracting the size of the ps frames that
have been played out at the receiver from the total size of
the ms frames that have been scheduled for stream s.
Based on this, we know the remaining capacity of the
buffer and therefore line 6 of the algorithm (Fig. 3)
guarantees that no buffer overflows occur at the receivers.

Finally, we show that no two scheduled bursts
overlap in time. Each new burst is created starting at
the current scheduling time tschedule in line 6 of the
algorithm (Fig. 3). After scheduling a burst in line 6,
tschedule is updated in line 8 and moved forward as much
as the length of the burst scheduled in line 6. Other than
line 8, there is only one place where tschedule is updated in
the algorithm and that is line 13. In line 13, tschedule is reset
to the start time and the scheduling is started from
scratch. Therefore, the ADT algorithm produces a
feasible burst schedule for the base station. tu

Theorem 3 shows that the ADT algorithm will find a
correct schedule if one exists and there are no constraints on
the value chosen for �. If R <

PS
s¼1 rs, then the available

bandwidth of the wireless channel is insufficient to transmit
all frames of all video streams and buffer underflows are
inevitable. Buffer undeflows are also possible if �min is set
too high or the distance d� between the values of �
considered by the binary search is too large. In particular,
the algorithm must be able to find a value a � 2=ðS þ 2Þ to
avoid underflows. If 2=ðS þ 2Þ < �min þ d�, then ADT will
not find � and underflows could occur. However, even if
undeflows occur, the schedules produced by ADT are
correct with no buffer overflows and no pair of bursts
overlapping. Furthermore, the values �min and d� are under
the control of the operator.

5 EVALUATION

In this section, we rigorously analyze the performance of
the proposed algorithm and compare its performance to
recent algorithms. We start by describing the setup of our
mobile video testbed. Then, we present detailed results for
different performance metrics.

5.1 Testbed and Setup

The testbed that we used to evaluate our algorithm, shown
in Fig. 6, consists of a base station, mobile receivers, and

1002 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 5, MAY 2013

Fig. 5. Bursts are free of buffer underflow instances.

Fig. 6. The testbed used in the evaluation.

data analyzers. The base station includes an RF signal
modulator which produces DVB-H standard-compliant
signals. The signals are amplified to around 0 dB before
transmission through a low-cost antenna to provide
coverage to approximately 20 m for cellular phones.
The base station has a multithreaded design that enables
the broadcast of multiple video streams in real time on a
low-end server.

The mobile receivers in our testbed are Nokia N96 cell

phones that have DVB-H signal receivers and video players.

Two DVB-H analyzers are included in the testbed system.

The first one, a DiviCatch RF T/H tester [35], has a

graphical interface for monitoring detailed information

about the received signals, including burst schedules and

burst jitters. The second analyzer, a dvbSAM [36], is used to

access and analyze received data at the byte level to monitor

the correctness of the received content.
We implemented our ADT algorithm, the SMS algorithm

[8], and the Nokia Mobile Broadcast Solution [13], [14], in

the testbed and integrated them with the IP encapsulator of

the transmitter. We set the overhead To to 100 msec and the

modulator to a Quadrature Phase Shift Keying (QPSK)

scheme and a 5 MHz radio channel. According to DVB-H

standard documents, this gives us net bandwidth of

5.18 Mbps. We fixed the maximum receiver buffer size B

at 4 Mb (500 KB). We prepared a test set of 17 diverse VBR

video streams to evaluate the algorithms. The different

content of the streams (TV commercials, sports, action

movies, documentaries) provided a wide range of video

characteristics with average bit rates ranging from 25 Kbps

to 600 Kbps. The average bit rate of the video streams was

260 Kbps. Each video stream was played at 30 fps and had

length 566 sec. Information about the video streams is

summarized in Table 2. We transmitted the 17 VBR video

streams concurrently to the receivers and we collect

detailed statistics from the analyzers. Each experiment

was repeated for each of the three algorithms (ADT, SMS,

and MBS). In addition, for our ADT algorithm, we repeated

the experiments with several values of the buffer adapta-

tion parameter �.

5.2 Results for Dropped Video Frames

Dropped frames are frames that are received at the mobile

receivers after their decoding deadlines or not received at

all. The number of dropped frames is an important quality

of service metric as it impacts the visual quality and

smoothness of the received videos. Fig. 7 shows the

cumulative total over all video streams of the numbers of

dropped frames for ADT with fixed values of � ranging

from 0.10 to 0.50, and for SMS and MBS. The figure clearly

shows that ADT consistently drops significantly fewer

frames than the SMS and MBS algorithms. The figure also
shows the effect of decreasing the value of � for the ADT
algorithm. The total number of dropped frames decreases
from 6,630 with � ¼ 0:50 to 2,074 with � ¼ 0:20. No frames
are dropped when � is reduced to 0.10. On the other
hand, the SMS algorithm is significantly worse with 9,605
dropped frames. The results for MBS in Fig. 7 were obtained
by running the algorithm for each video stream with
different assigned bit rates ranging from 0.25 times the
average bit rate to four times the average bit rate of the
video stream and then choosing the best result for each
video stream. Even in this total of best cases, the number of
dropped frames is more than 34,000. In practice, an operator
heuristically chooses the assigned bit rates for video
streams, so the results in practice likely will be worse.

We counted the number of dropped frames for each
video stream to check whether the ADT algorithm improves
the quality of some video streams at the expense of others.
Two samples of our results are shown in Fig. 8; others are
similar for different values of �. The curves in the figure
show the average over all streams of the percentage of
dropped frames; each point on the curves is the average
percentage of frames transmitted to that point in time that
were dropped. The bars show the ranges over all video
streams. As shown in the figure, the difference between the
maximum and minimum dropped frame percentages at the
end of the transmission period is small. We conclude that
the ADT algorithm does not sacrifice the quality of service
for some streams to achieve good aggregate results.

We further analyze the patterns of dropped video frames
for each algorithm in more detail. We plot the total number
of dropped frames during each 1 sec interval across all
video streams. Our results are shown in Fig. 9. For the ADT
algorithm with � ¼ 0:50, frames were dropped mostly
during a 150 sec period (between 220 and 370 sec) because
several video streams have high bit rate during this period.
Reducing � to 0.20 permits finer control over the distribu-
tion of bandwidth among the video streams and signifi-
cantly fewer frames were dropped as shown in Fig. 9d.
Further reducing � to 0.10 eliminated all dropped frames as
we have already seen in Fig. 7. The SMS algorithm on the
other hand dropped up to 42 percent of the frames during

MOLAZEM TABRIZI ET AL.: DYNAMIC CONTROL OF RECEIVER BUFFERS IN MOBILE VIDEO STREAMING SYSTEMS 1003

TABLE 2
Video Streams Used in the Experiments

Fig. 7. Total number of dropped video frames.

the period in which the aggregate bit rate of all streams is

high. Using the MBS algorithm results in dropping frames

in a very wide time range. The results from these

experiments confirm the performance benefits that our

ADT algorithm achieves by dynamically adapting to the

changing bit rate nature of VBR video streams by control-

ling the level of receivers’ buffers through the parameter �.
We present the aggregate of average bit rate of all video

streams over time in Fig. 10. We also show the aggregate of

instantaneous bit rate of video streams in Fig. 11. Although

the aggregate of the average bit rate over time does not

exceed the bandwidth capacity, the aggregate of the

instantaneous bit rate of the streams exceeds available

bandwidth. We can see the effect of such changes on

the average buffer level of the receivers in Fig. 12. When the

instantaneous bit rate of the video streams exceeds

the available bandwidth, the average buffer level of

receivers decreases. This is because the size of the played

out data exceeds transmitted data. But when the available

bandwidth exceeds the aggregate of the instantaneous bit

rate, the average buffer level of the receivers increases.

5.3 Results for Energy Saving

We compute the average energy saving � achieved across

all video streams, which represents the average amount of

time that the wireless interfaces are off. The results are

shown in Fig. 13. The figure shows that the average saving

resulting from the ADT algorithm when � ¼ 0:5 is very

close to the optimal energy saving, and is about 6.74 percent

more than the average energy saving achieved by the SMS

algorithm. Also, our experiments show that the energy

saving achieved by ADT is considerably higher than the

MBS algorithm, which achieves an average energy saving

of up to 41.14 percent.

1004 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 5, MAY 2013

Fig. 8. Minimum and maximum number of dropped video frames.

Fig. 9. Dropped video frames over 1 sec periods.

The impact of changing � on the energy saving achieved

by the ADT algorithm is shown in Fig. 14. The average

over all video streams of the energy saving is 89.52 percent

for the ADT algorithm when � ¼ 0:10 which is better than

the SMS algorithm. Increasing � to 0.50 increases the

energy saving to 93.47 percent. The small improvement of

3.95 percent in energy saving is nontrivial but it might not

be large enough in many practical situations to offset the

advantage of minimizing the number of dropped frames

by setting � ¼ 0:10.

Next, we compare the energy saving resulting from the
ADT algorithm to the upper and lower bounds from
Theorem 1. Fig. 15 shows the results for � values of 0.5,
0.3, and 0.1. It is important to note that the upper bound in
the figure is not the optimal energy saving, but it is a
conservative upper bound on the optimal energy saving
which may not be achievable. According to the figure, the
gap between our algorithm and the conservative upper
bound is less than 5 percent for � ¼ 0:5.

Finally, we measured the energy saving for the receivers
of each individual stream to check whether the ADT
algorithm unfairly saves more energy for some receivers at
the expense of others. A sample of our results is shown in
Fig. 16. The figure confirms that ADT does not sacrifice
energy saving in some streams to achieve good average
energy saving.

In summary, the results in this section show that the
proposed algorithm achieves higher energy saving than
previous algorithms, that the saving is uniform across all
mobile receivers, and that the saving is very close to the
optimal energy saving.

5.4 Impact of Changing �

The results in the previous two sections indicated that
changing the value of the buffer control parameter �

impacts the number of dropped frames and the energy
saving achieved by mobile devices. In this section, we
analyze this impact for different values of �. We vary the

MOLAZEM TABRIZI ET AL.: DYNAMIC CONTROL OF RECEIVER BUFFERS IN MOBILE VIDEO STREAMING SYSTEMS 1005

Fig. 10. Aggregate of average bit rate of all video streams.

Fig. 11. Aggregate of instantaneous bit rate of all video streams.

Fig. 12. Average buffer level of receivers.

Fig. 13. Average energy saving.

Fig. 14. Average energy saving with different values of �.

value of � between 0.10 and 0.50 for our ADT algorithm. For
each value of �, we ran the experiment of transmitting all
video streams and measured the average energy saving as
well as the percentage of video frames that arrived on time.
We plot the results in Fig. 17. Notice that the figure has two
y-axes. The results show that � exposes a tradeoff between
the energy saving and the percentage of frames that arrive
on time. Small � values allow finer control of the wireless
channel and thus increase the chance of transmitting video
frames on time, but small values of � result in more bursts
being used to transmit the same amount of video data, and
each burst incurs an overhead of To. Thus, small � values
result in smaller energy saving. Based on this, an operator
can use larger values of � for lower bit rate video streams
and smaller values of � to have finer control over the
bandwidth of high bit rate video streams. It is important to
note that even with the smallest value � ¼ 0:10 that we
tested, our ADT algorithm still achieves energy saving as
high as the state-of-the-art SMS algorithm.

5.5 Dynamic Adjustment of �

The previous section shows the existence of a tradeoff
between energy saving and the number of on-time video
frames, which is controlled by �. Our ADT algorithm is
capable of adaptively updating the value of � at run time
based on bandwidth limitations and changes in the bit rates
of the video streams to give a good balance between the
number of dropped frames and energy saving. This is
illustrated in the pseudocode in Fig. 3, where the ADT

algorithm dynamically adjusts the value of �. The ADT
algorithm tries to maintain the largest value of � that
achieves the minimum number of dropped frames because
larger values of � allow greater energy saving.

We conducted an experiment to show the merits of
dynamically adjusting the value of � in the range of 0.1 to
0.5, instead of fixing it as in the previous sections. We ran
our ADT algorithm and allowed it to change � at run time.
We chose different values for the scheduling window �: 30,
60, and 120 sec. The results are shown in Fig. 18. When the
scheduling window is 30 sec, the energy saving converges
to 92 percent (Fig. 18b) which is approximately the same as
with a fixed value of � ¼ 0:3, but the total number of
dropped frames for each video stream is 3,162 (Fig. 18a)
which is much better than the 4,896 dropped frames with
fixed � ¼ 0:3. When the scheduling window is 60 sec, the
energy saving is 91.6 percent which is similar to the energy
saving results with a fixed value of � ¼ 0:2 but the total
number of dropped frames for each streams is 1,496 which
is much better than 2,414 with fixed � ¼ 0:2. With a
scheduling window of 120 sec, no frames are dropped
and the energy saving converges to 90.51 percent which is
better than the energy saving of 89.52 percent that results
with a fixed value of � ¼ 0:1 (which also resulted in no
dropped frames).

In summary, the results of this experiment show that
dynamically choosing the parameter � as done by our
algorithm achieves both good energy saving and small
numbers of dropped video frames by dynamically using
smaller values of � when we need finer control over

1006 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 5, MAY 2013

Fig. 16. Min and max energy saving.

Fig. 15. Upper and lower bounds for energy saving.

Fig. 17. The impact of � on energy saving and number of dropped video

frames.

bandwidth, and larger values of � when we do not have

bandwidth limitations. More importantly, network opera-

tors do not need to heuristically set the parameter � for our

ADT algorithm.

6 CONCLUSIONS

We have presented a new algorithm for transmitting

multiple VBR video streams to energy-constrained mobile

devices. The algorithm is to be used by base stations in

wide-area wireless networks that offer multimedia services

in broadcast/multicast modes such as the Multimedia

Broadcast Multicast Service of 3G/4G cellular networks,

WiMAX networks, and Digital Video Broadcast-Handheld

networks. One of the novel aspects of the proposed

algorithm is its ability to dynamically adjust the level of

receivers’ buffers according to the bit rates of the video

streams being received by each receiver. This is done

through dynamically controlling the allocation of wireless

bandwidth to video streams. We showed that the proposed

algorithm computes feasible schedules whenever they exist.

We analytically computed the gap between energy saving

resulting from our algorithm and the optimal energy

saving, and we showed that this gap is small. We presented

a proof-of-concept implementation of the proposed algo-

rithm in a mobile video streaming testbed. We compared

the new algorithm against other algorithms proposed in the

literature and used in practice. We conducted extensive

empirical analysis using a number of VBR video streams

with diverse visual characteristics and bit rates. Our results

show that the proposed algorithm yields high energy

saving for mobile receivers and reduces the number of

video frames that miss their deadlines. The results also

demonstrate that the proposed algorithm outperforms the

current state-of-the-art algorithms.

ACKNOWLEDGMENTS

This work was supported in part by the Natural Sciences

and Engineering Research Council (NSERC) of Canada and

in part by the British Columbia Innovation Council.

REFERENCES

[1] “Global IPTV Market Analysis (2006-2010),” http://www.
rncos.com/Report/IM063.htm, 2006.

[2] “Craig Wireless to Sell Canadian Spectrum for $80m,” http://
www.cbc.ca/fp/story/2010/03/26/2729450.html. 2010.

[3] “AT&T Sells Wireless Spectrum in Southeast to Clearwire
Corporation,” http://www.att.com/gen/press-room?pid=
4800&cdvn=news&newsarticleid=23428, 2007.

[4] “ATSC Mobile DTV Standard,” http://www.openmobilevideo.
com/about-mobile-dtv/standards, 2009.

[5] IEEE 802.16: Broadband Wireless Metropolitan Area Network, http://
standards.ieee.org/getieee802/802.16.html, 2009.

[6] S. Parkvall, E. Englund, M. Lundevall, and J. Torsner, “Evolving 3G
Mobile Systems: Broadband and Broadcast Services in WCDMA,”
IEEE Comm. Magazine, vol. 44, no. 2, pp. 30-36, Feb. 2006.

[7] M. Kornfeld and G. May, “DVB-H and IP Datacast - Broadcast to
Handheld Devices,” IEEE Trans. Broadcasting, vol. 53, no. 1,
pp. 161-170, Mar. 2007.

[8] C. Hsu and M. Hefeeda, “On Statistical Multiplexing of Variable-
Bit-Rate Video Streams in Mobile Systems,” Proc. 17th ACM Int’l
Conf. Multimedia (Multimedia ’09), pp. 411-420, Oct. 2009.

[9] Digital Video Broadcasting (DVB); DVB-H Implementation Guidelines.
European Telecommunications Standards Institute (ETSI) Standard EN
102 377, Ver. 1.3.1, May 2007.

[10] X. Yang, Y. Song, T. Owens, J. Cosmas, and T. Itagaki,
“Performance Analysis of Time Slicing in DVB-H,” Proc. Joint
IST Workshop Mobile Future and Symp. Trends in Comm. (SympoTIC
’04), pp. 183-186, Oct. 2004.

[11] C. Hsu and M. Hefeeda, “Time Slicing in Mobile TV Broadcast
Networks with Arbitrary Channel Bit Rates,” Proc. IEEE
INFOCOM, pp. 2231-2239, Apr. 2009.

[12] M. Hefeeda, C. Hsu, and Y. Liu, “Testbed and Experiments for
Mobile TV (DVB-H) Networks,” Proc. 16th ACM Int’l Conf.
Multimedia (Multimedia ’08), Oct. 2008.

[13] “Nokia Announces World’s First Commercial Solution for
Managing DVB-H Broadcast Services,” http://press.nokia.com/
2005/10/31/nokia-announces-worlds-first-commercial-solution-
for-managing-dvb-h-broadcast-services, 2005.

[14] Private Communication with Nokia’s Engineers Managing Mobile
TV Base Stations, 2010.

[15] F. Molazem Tabrizi, J. Peters, and M. Hefeeda, “Adaptive
Transmission of Variable-Bit-Rate Video Streams to Mobile
Devices,” Proc. 10th Int’l IFIP TC 6 Conf. Networking (NETWORK-
ING ’11), 2011.

[16] W. Feng and J. Rexford, “Performance Evaluation of Smoothing
Algorithms for Transmitting Prerecorded Variable-Bit-Rate Vi-
deo,” IEEE Trans. Multimedia, vol. 1, no. 3, pp. 302-312, Sept. 1999.

[17] T. Lakshman, A. Ortega, and A. Reibman, “VBR Video: Tradeoffs
and Potentials,” Proc. IEEE, vol. 86, no. 5, pp. 952-973, May 1998.

[18] M. Grossglauser, S. Keshav, and D.N.C. Tse, “RCBR: A Simple
and Efficient Service for Multiple Time-Scale Traffic,” IEEE/ACM
Trans. Networking, vol. 5, no. 6, pp. 741-755, Dec. 1997.

MOLAZEM TABRIZI ET AL.: DYNAMIC CONTROL OF RECEIVER BUFFERS IN MOBILE VIDEO STREAMING SYSTEMS 1007

Fig. 18. The impact of dynamically choosing �.

[19] M. Rezaei, “Video Streaming over DVB-H,” Mobile Multimedia
Broadcasting Standards, F. Luo, ed., pp. 109-131, Springer, Nov.
2009.

[20] P. Thiran, J. yves Le Boudec, and F. Worm, “Network Calculus
Applied to Optimal Multimedia Smoothing,” Proc. IEEE
INFOCOM, pp. 1474-1483, Apr. 2001.

[21] J. Zhang and J. Hui, “Applying Traffic Smoothing Techniques for
Quality of Service Control in VBR Video Transmissions,”
Computer Comm., vol. 21, no. 4, pp. 375-389, 1998.

[22] J.D. Salehi, S.-L. Zhang, J. Kurose, and D. Towsley, “Supporting
Stored Video: Reducing Rate Variability and End-to-End Resource
Requirements through Optimal Smoothing,” IEEE/ACM Trans.
Networking, vol. 6, no. 4, pp. 397-410, Aug. 1998.

[23] J. Lin, R. Chang, J. Ho, and F. Lai, “FOS: A Funnel-Based
Approach for Optimal Online Traffic Smoothing of Live Video,”
IEEE Trans. Multimedia, vol. 8, no. 5, pp. 996-1004, Oct. 2006.

[24] J. Ribas-Corbera, P. Chou, and S. Regunathan, “A Generalized
Hypothetical Reference Decoder for H.264/AVC,” IEEE Trans.
Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 674-687,
July 2003.

[25] H. Lai, J. Lee, and L. Chen, “A Monotonic-Decreasing Rate
Scheduler for Variable-Bit-Rate Video Streaming,” IEEE Trans.
Circuits and Systems for Video Technology, vol. 15, no. 2, pp. 221-231,
Feb. 2005.

[26] P. Camarda, G. Tommaso, and D. Striccoli, “A Smoothing
Algorithm for Time Slicing DVB-H Video Transmission with
Bandwidth Constraints,” Proc. ACM Int’l Mobile Multimedia Comm.
Conf. (MobiMedia ’06), Sept. 2006.

[27] M. Rezaei, I. Bouazizi, and M. Gabbouj, “Joint Video Coding and
Statistical Multiplexing for Broadcasting over DVB-H Channels,”
IEEE Trans. Multimedia, vol. 10, no. 7, pp. 1455-1464, Dec. 2008.

[28] Z. He and D. Wu, “Linear Rate Control and Optimum Statistical
Multiplexing for H.264 Video Broadcast,” IEEE Trans. Multimedia,
vol. 10, no. 7, pp. 1237-1249, Nov. 2008.

[29] M. Jacobs, J. Barbarien, S. Tondeur, R.V. de Walle, T. Paridaens,
and P. Schelkens, “Statistical Multiplexing Using SVC,” Proc.
IEEE Int’l Symp. Broadband Multimedia Systems and Broadcasting
(BMSB ’08), pp. 1-6, Mar. 2008.

[30] “FLO Technology Overview,” http://www.mediaflo.com/news/
pdf/tech_overview.pdf, 2009.

[31] M. Hefeeda and C. Hsu, “On Burst Transmission Scheduling in
Mobile TV Broadcast Networks,” IEEE/ACM Trans. Networking,
vol. 18, no. 2, pp. 610-623, Apr. 2010.

[32] T. Pering, Y. Agarwal, R. Gupta, and R. Want, “CoolSpots:
Reducing the Power Consumption of Wireless Mobile Devices
with Multiple Radio Interfaces,” Proc. ACM MobiSys, pp. 220-232,
2006.

[33] A. Carroll and G. Heiser, “An Analysis of Power Consumption in
a Smartphone,” Proc. Usenix Technical Conf., pp. 1-14, June 2010.

[34] S. Chandra, “Wireless Network Interface Energy Consumption:
Implications for Popular Streaming Formats,” Multimedia Systems,
vol. 9, pp. 185-201, Aug. 2003.

[35] “DiviCatch RF-T/H Transport Stream Analyzer,” http://www.
enensys.com, 2008.

[36] “dvbSAM DVB-H Solution for Analysis, Monitoring, and Mea-
surement,” http://www.decontis.com, 2008.

Farid Molazem Tabrizi received the BSc degree
in software engineering from the Amirkabir
University of Technology, Iran, in 2005, and the
MSc degree in computing science from Simon
Fraser University, Canada, in 2011. He is
currently a PhD candidate in the Department of
Electrical and Computer Engineering, University
of British Columbia, Canada. His research inter-
ests include distributed systems and multimedia
networking. He is a student member of the IEEE.

Joseph Peters received the BSc degree from
the University of Waterloo and the MSc and PhD
degrees from the University of Toronto, Canada,
the latter in 1983. He is a professor in the School
of Computing Science, Simon Fraser University,
Canada. His research interests include multi-
media networking over wireless networks and
the modeling and performance analysis of net-
works including ad hoc, sensor, peer-to-peer,
radio, and wired networks.

Mohamed Hefeeda received the BSc and MSc
degrees from Mansoura University, Egypt, in
1994 and 1997, respectively, and the PhD
degree from Purdue University in 2004. He is
an associate professor in the School of Com-
puting Science, Simon Fraser University, Cana-
da, where he leads the Network Systems Lab.
His research interests include multimedia net-
working over wired and wireless networks, peer-
to-peer systems, mobile multimedia, and Inter-

net protocols. Dr. Hefeeda won the Best Paper Award at the IEEE
Innovations 2008 conference for his paper on the hardness of optimally
broadcasting multiple video streams with different bitrates. In addition to
publications, he and his students have developed actual systems, such
as pCache, svcAuth, pCDN, and mobile TV testbed. The mobile TV
testbed software developed by his group won the Best Technical Demo
Award at the ACM Multimedia 2008 conference. He serves as the
preservation editor of the ACM Special Interest Group on Multimedia
(SIGMM) Web Magazine. He served as the program chair of the ACM
International Workshop on Network and Operating Systems Support for
Digital Audio and Video (NOSSDAV 2010) and as a program cochair of
the International Conference on Multimedia and Expo (ICME 2011). In
addition, he has served on many technical program committees of
major conferences in his research areas, including ACM Multimedia,
ACM Multimedia Systems, and the IEEE Conference on Network
Protocols (ICNP). He is on the editorial boards of the ACM
Transactions on Multimedia Computing, Communications and Applica-
tions (ACM TOMCCAP), the Journal of Multimedia, and the Interna-
tional Journal of Advanced Media and Communication. He is a senior
member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1008 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 12, NO. 5, MAY 2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

