
GazeStereo3D: Seamless Disparity Manipulations

Petr Kellnhofer1,2 Piotr Didyk2,3 Karol Myszkowski2 Mohamed M. Hefeeda4 Hans-Peter Seidel2 Wojciech Matusik1

1MIT CSAIL 2MPI Informatik 3Saarland University, MMCI 4Qatar Computing Research Institute

a)

Sc
re

en

Sc
re

en

b) c) d) e) f )

Figure 1: Beyond common disparity mapping (a) our approach adapts to attended regions such as the Armadillo (b) or Bunny (d) and
modifies disparity in that region to enhance depth and reduce discomfort from the accommodation-vergence conflict (c,e). To that end we build
non-linear remapping curves and use our novel perceptual model to ensure a seamless transition between them (f).

Abstract

Producing a high quality stereoscopic impression on current displays
is a challenging task. The content has to be carefully prepared in
order to maintain visual comfort, which typically affects the quality
of depth reproduction. In this work, we show that this problem
can be significantly alleviated when the eye fixation regions can
be roughly estimated. We propose a new method for stereoscopic
depth adjustment that utilizes eye tracking or other gaze prediction
information. The key idea that distinguishes our approach from
the previous work is to apply gradual depth adjustments at the eye
fixation stage, so that they remain unnoticeable. To this end, we
measure the limits imposed on the speed of disparity changes in
various depth adjustment scenarios, and formulate a new model that
can guide such seamless stereoscopic content processing. Based
on this model, we propose a real-time controller that applies local
manipulations to stereoscopic content to find the optimum between
depth reproduction and visual comfort. We show that the controller is
mostly immune to the limitations of low-cost eye tracking solutions.
We also demonstrate benefits of our model in off-line applications,
such as stereoscopic movie production, where skillful directors can
reliably guide and predict viewers’ attention or where attended image
regions are identified during eye tracking sessions. We validate
both our model and the controller in a series of user experiments.
They show significant improvements in depth perception without
sacrificing the visual quality when our techniques are applied.
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1 Introduction

A mental image of the surrounding world is built in the human visual
system (HVS) by performing a sequence of saccadic eye movements
and fixating at a sparse set of locations. This enables resolving fine
spatial details in the fovea region of the retina, where the density
of photoreceptors is highest, while it gradually reduces towards
the retina periphery [Banks et al. 1991]. Gaze-contingent displays
use eye tracking technology to monitor the fixation location and
to conform the quality of depiction to the variable photoreceptor
density. This way a more efficient control of the level of detail
in geometric models [Murphy and Duchowski 2001], the image
resolution in foveated rendering [Guenter et al. 2012], the state
of luminance adaptation in tone mapping [Jacobs et al. 2015], the
amount of blur in depth-of-field effects [Duchowski et al. 2014a],
and the level of video compression [Geisler and Perry 1998] can be
achieved, to name just a few key applications. When the fixation is
shifted to another location the image content must be adjusted ac-
cordingly, and saccadic suppression [McConkie and Loschky 2002;
Loschky and Wolverton 2007], i.e., cutting off conscious registration
of the blurred retinal signal due to fast saccadic eye motion (up to
1000 deg/s), is employed to hide the visibility of such adjustments.
This imposes stringent requirements on the overall latency in the
rendering system, as well as on the precision and sampling rate of
eye tracking, which is used for the next fixation prediction.

The strategy of gaze-driven content manipulation is in particular
interesting in the context of stereoscopic displays [Duchowski et al.
2014a]. Due to the well-known accommodation-vergence conflict
[Hoffman et al. 2008; Zilly et al. 2011; Shibata et al. 2011] the
range of disparities that can be shown on such screens is limited.
To alleviate the problem, stereoscopic content has to be carefully
prepared and manipulated [Lang et al. 2010; Didyk et al. 2011;
Oskam et al. 2011]. This usually includes an aggressive compression
of the depth range that can be presented on the screen, and, as a
result, flattens the entire scene.

To address this problem, we propose gaze-contingent disparity pro-
cessing that preserves depth information as much as possible around
the fixation point and compresses it everywhere else. The key idea
behind these manipulations is that they are performed at the eye
fixation stage and remain imperceptible. We conduct a series of
psychophysical experiments and observe that the HVS is insensitive
to relatively fast, but smoothly performed depth manipulations, such
as local depth range changes, or bringing the fixation point to the
screen surface during the actual fixation. Based on the experimen-
tal outcome, we build a model that predicts the speed with which



depth manipulations can be performed without introducing visible
temporal instabilities. Such sub-threshold manipulations allow us
to hide any latency issues of the eye tracker device, which makes
our approach applicable even for low-cost devices. We investigate a
number of applications for both real-time disparity optimization as
well as offline content preprocessing. The contributions of this work
are:
• a perceptual model that predicts the visibility of disparity ma-

nipulations during fixation,
• a metric of depth manipulation perceptibility,
• a real-time controller for adjusting stereoscopic content based

on eye tracker data,
• a perceptual validation of the controller in terms of its seamless

operation and local depth enhancement, and
• offline saliency-based solutions for disparity manipulation and

scene cut optimization that improve viewing comfort.

2 Background

In this section we briefly discuss the dynamic aspects of the stereo-
vision with special emphasis on the HVS limitations in perceiving
depth changes. We consider two cases that fully determine the HVS
operation modes in the response to such depth changes. When a
target slowly changes its position in depth and screen space, the eye
vergence is combined with a smooth pursuit eye motion to fuse the
left and right images and maintain the target in the foveal region.
When fixation switches between two targets that significantly differ
in the depth and screen location, vergence must be combined with
saccadic eye motion to achieve the same goal. In the former case,
the speed of motion-in-depth (MID) is the key factor that determines
the visibility of resulting depth changes (Sec. 2.1) and activates
different eye vergence mechanisms (Sec. 2.2). In the latter case, the
saccadic suppression is the dominant factor in hiding depth changes
(Sec. 2.3).

2.1 Motion in depth

It has been suggested that the HVS sensitivity to the motion in depth
(MID) speed expressed as vergence angle differentials is constant
with distance to screen, and it follows Weber’s Law with 10% speed
change being the just-noticeable difference [Portfors-Yeomans and
Regan 1996]. This fraction gets higher for complex scenes due to
the presence of monocular cues [Harris and Watamaniuk 1995]. The
sensitivity to the MID is poorly correlated with the sensitivity to
frontoparallel motion, but it is well correlated with the static disparity
sensitivity under different base disparity and defocus conditions
[Cumming 1995]. The HVS sensitivity to temporal disparity changes
seems to be relatively low [Kane et al. 2014]. We exploit this
property in our seamless remapping model.

A unique target with distinctive frontoparallel motion is known
to have a very strong “pop-out” effect. However, no such effect
was observed when disparity, as the only cue, induced MID of
stereoscopically observed targets [Harris et al. 1998].

In this work, we complement these findings by measuring the HVS
sensitivity for the speed of a scene depth range change as well
as the speed of smoothly shifting the fixation point towards the
accommodation plane (the screen plane) as relevant for stereoscopic
displays.

2.2 Eye vergence

Eye vergence is performed through a fast and possibly imprecise tran-
sient (trigger) mechanism that is activated for larger depth changes
as well as a slower and precise sustained (fusion-lock) mechanism

that compensates for the remaining fusion inaccuracies [Semmlow
et al. 1986]. Slower depth changes with the ramp velocity below
1.4 deg/s can be fully processed by the sustained mechanism, while
the motoric eye vergence (transient or sustained mechanisms) might
not be even required for small depth changes that are within Panum’s
fusional area, in which case sensoric fusion in the brain might be
sufficient. For stereoscopic displays the eye vergence is excessively
dragged towards the screen plane and at the screen depth the ver-
gence error is smallest [Duchowski et al. 2014a]. This may be caused
by the accommodation-vergence cross-link when the incorrect focus
cue at the screen plane shifts the vergence towards the screen [Kim
et al. 2014].

In this work, we control the speed of depth manipulations, so that
only the sustained mechanism and the sensoric fusion are activated,
which minimizes intensified efforts of the oculomotor system. At
the same time, the eye vergence is kept as close to the screen
plane as possible, which reduces the vergence error, the vergence-
accommodation conflict, the frame violation effect [Zilly et al. 2011],
and crosstalking between the left and right eye images [Shibata et al.
2011], and improves the viewing comfort and quality [Peli et al.
2001; Hanhart and Ebrahimi 2014].

2.3 Saccadic suppression

The HVS cuts off the sensory information during fast saccadic eye
motion to avoid the perception of blurred retinal signal, which is
referred as the saccadic suppression. The duration of actual saccadic
eye motion depends on its angular extent and falls into the range
of 20–200 ms. Each saccade is preceded by a preparatory stage
with a latency of 200 ms, where new sensory information is cut off
80 ms prior to the eye motion initialization to the saccade completion
[Becker and Juergens 1975]. McConkie and Loschky [2002] have
shown that a switch from a significant blur to a sharp image can
be detected by the observer even 5 ms after the end of a saccade.
However, the tolerable delay can grow to up to 60 ms [Loschky and
Wolverton 2007] for more subtle blur changes as in multi-resolution
techniques [Guenter et al. 2012; Geisler and Perry 1998].

The eye vergence is a relatively slow process that for stereoscopic
displays takes in total about 300–800 ms [Templin et al. 2014]. The
actual time depends on the initial disparity and the vergence motion
direction. In general, the motion towards the screen plane is faster
than in the opposite direction with the maximum velocity of about
20 deg/s. The latency prior to the eyeball vergence initialization
amounts to 180–250 ms [Semmlow and Wetzel 1979; Krishnan
et al. 1973]. This effectively means that the eye vergence motion is
typically continued after the saccade completion and approx. 100 ms
are needed before new sensory information can actively guide the
vergence to the target depth. In this respect, our seamless disparity
manipulation shows some similarities as it may induce eye vergence
motion after the saccade completion.

3 Previous work

In this section, we discuss the previous work on general disparity
manipulations (Sec. 3.1) as well as the disparity processing tech-
niques that are driven by gaze direction (Sec. 3.2). We also provide a
brief overview of other gaze-driven applications (Sec. 3.3), and dis-
cuss the suitability of the saccadic suppression (Sec. 2.3) for hiding
disparity manipulations.

3.1 Disparity manipulation

Disparity range compression is one of the most common disparity
manipulations [Shibata et al. 2011; Zilly et al. 2011; Hoffman et al.



2008; Lang et al. 2010; Didyk et al. 2011] employed to avoid the
accommodation-vergence conflict. Since this task shares many simi-
larities with luminance range compression, standard tone mapping
operators [Reinhard et al. 2010] can easily be adapted for disparity
processing [Lang et al. 2010]. However, special care should be
taken to avoid depth reversals when using local operators which
for luminance could be explicitly used to expand the local contrast.
Didyk et al. [2011] proposed a perceptual model for disparity that
mimics the disparity processing done by the HVS and applies this for
disparity manipulations. In the context of automultiscopic displays,
the problem of extreme depth compression was addressed [Didyk
et al. 2012; Masia et al. 2013; Chapiro et al. 2014]. These techniques
aim at fitting disparities into a very shallow range taking care that
the crucial disparity details are preserved. Such techniques can be
also driven by additional saliency information. In the context of real-
time solutions, simple but efficient methods include baseline and
convergence manipulations [Jones et al. 2001; Oskam et al. 2011].
The common feature of all these techniques is maintaining good
image quality in all regions regardless of the observer’s current gaze
direction. In our work, we go beyond that and try to improve per-
ceived quality based on the available gaze information. Additionally,
we directly address the visibility problem of disparity manipulation.

3.2 Gaze-driven disparity manipulation

While the existing disparity manipulation techniques are successful
on their own, their immediate adaptation for gaze-contingent setups
is not an obvious task. In this section, we summarize the relatively
few efforts addressing this problem, which are almost exclusively
focused on shifting the whole disparity range with respect to the
display plane (Fig. 2b).

Fisker et al. [2013] investigate the gaze-driven disparity adjust-
ment towards the screen plane in an informal experiment and report
promising results in terms of visual comfort and perceived depth.
Bernhard et al. [2014] perform a full-scale experiment where an
abrupt disparity adjustment to the screen plane is compared to the
static disparity case in terms of the vergence time. In this case,
shorter timings are desirable for reducing the viewing fatigue. They
find that the abrupt disparity adjustment often increases the vergence
time, and suggest that stereo fusion might require some readjust-
ments in such conditions. This might be because the vergence
facilitation effects due to peripheral vision processing is invalidated
[Cisarik and Harwerth 2005]. It is worth noting that in that ex-
periment, the actual saccade is triggered by the color change of a
test square, whose destination is precisely known, and the disparity
adjustment can be performed with a minimal latency. In practical
applications, the problems reported by Bernhard et al. can be aggra-
vated, and the visibility of the disparity change is more difficult to
hide. For this reason, all disparity manipulations that we propose are
performed in a seamless manner so that the stereo fusion is never
disrupted and all latency issues are irrelevant.

The work of Peli et al. [2001] is conceptually close to our idea, and
the authors measure the probability of detecting motion in depth
for the fixated object when its disparity is shifted to zero at various
speeds. The experimental method, however, limits the free explo-
ration of the scene by the observer who is directly instructed to
look at particular target locations. A similar setup with a virtual
hand as a target controlled by a hand-tracking device is explored for
virtual reality applications with head mounted displays [Sherstyuk
et al. 2012]. Chamaret et al. [2010] uses a visual attention model
to predict the new region-of-interest (RoI) to gradually reduce its
disparity to zero. They experimentally derive the maximum disparity
change that remains unnoticeable as 1.5 pixel steps. Hanhart and
Ebrahimi [2014] extend this work by employing an eye tracker for
determining the RoI. They assume a disparity change of 1 pixel

per frame without the frame-rate notion, and obtain favorable user
judgments of such disparity manipulations when compared to the
static disparity case.

We extend the work of Peli et al. [2001] by systematically measuring
the just-noticeable speed of disparity changes for different initial
disparity values. Our measurements are performed for continuous
disparity shifts (Fig. 2b) rather than the discrete steps where the accu-
mulated effect of disparity manipulation is not considered [Chamaret
et al. 2010]. For the first time, we perform similar measurements
for changes in the disparity range (Fig. 2c), and build a model that
integrates both scaling and shifting of disparities. Based on the
model we propose a novel gaze-contingent disparity mapping that
enables seamless and continuous disparity manipulations, which
significantly enhances the perceived depth.

3.3 Other gaze-driven applications

Gaze location tracking has also been used in other applications. In
foveated rendering [Guenter et al. 2012], the efficiency of image
generation can be improved by maintaining high image resolution
only around the gaze location. The authors reported that seamless
rendering can be achieved with a latency below 40 ms. In a similar
way, chrominance complexity [Liu and Hua 2008] and level of detail
[Murphy and Duchowski 2001] can also be gradually degraded with
distance from the gaze location. Besides improving the rendering
performance, the gaze location has been used to improve the image
quality and the viewer experience. In the context of tone mapping,
the luminance range can be used more effectively by reducing image
contrast in regions that correspond to the peripheral vision [Jacobs
et al. 2015]. Gaze-contingent depth-of-field effects have been mod-
eled to improve the rendering realism [Mantiuk et al. 2011], reduce
the vergence-accommodation conflict [Duchowski et al. 2014b], or
enhance the depth impression [Vinnikov and Allison 2014]. Al-
though all these techniques lead to either reduced costs in rendering
or a better image reproduction, they often require the frame update
to be strictly within the saccadic suppression period. In all cases the
users express dissatisfaction if there is a noticeable lag due to the
insufficient performance of the eye tracker or the rendering.

All these practical results clearly indicate that the use of saccadic
suppression to hide the content change for the new fixation is very
sensitive to the type of performed changes, the eye tracking preci-
sion, and the overall system latency. In gaze-contingent disparity
manipulations, abrupt depth changes must be completed within the
saccadic suppression, as new sensory information acquired after-
wards actually guides the eye vergence motion (Sec. 2.3). On the
other hand, the saccade must be effectively completed for a pre-
cise determination of the target depth, which leaves little room for
fully informed scene depth manipulation. While there exist methods
for predicting the saccade landing position based on some initial
saccade direction and velocity measurements, e.g., using a ballis-
tic model [Komogortsev and Khan 2008], any inaccuracies in this
respect could be a serious hindrance for any gaze-driven disparity
manipulation effort. For all those reasons, in this work we advocate
seamless depth manipulations, when the new fixation is established.

4 Overview

In this work, we propose a new technique for manipulating stereo-
scopic content that accounts for the gaze information. To enhance
perceived depth our method expands its range around the fixation
location and reduces it in unattended regions that do not contribute
significantly to depth perception. Additionally, objects around the
fixation location are moved towards the screen to reduce artifacts
such as visual discomfort (stereoscopic displays or virtual reality sys-
tems) or reduced spatial resolution (multi-view/lightfield displays).
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Figure 2: (a) Two objects as displayed in depth on a stereoscopic
screen with their absolute disparity from the screen and the relative
disparity between them. (b) Shifting of disparity moves both objects
jointly, and thus changes absolute but preserves relative disparities.
(c) Scaling of disparity changes mutual distances between objects
and therefore both absolute and relative disparities.

The main challenge here is to apply manipulations that adapt to
rapid changes in fixations on the fly. We identify the following
requirements guiding our design:
• depth manipulations should be performed with a speed nearly

imperceptible to the observer so that the manipulations do not
interfere with artistic designs,

• as the fixation point can change unexpectedly, it should always
be possible to quickly recover to a neutral depth that provides
acceptable quality across the entire image.

To address these requirements, we first study the sensitivity of the
HVS to the temporal disparity changes (Sec. 5). As most disparity
manipulations can be approximated by local scaling and shifting
of depth (Fig. 2), we limit our study to these two manipulations.
Based on the data obtained in the perceptual experiment, we next
demonstrate how the visibility of temporal disparity manipulations
can be predicted (Sec. 6). We use the resulting visible disparity
change predictor to derive a sequence of disparity mapping curves,
so that the target disparity can be achieved seamlessly in a minimal
number of discrete steps (effectively frames) for any input dispar-
ity map (Sec. 7). This enables a number of applications for such
formulated seamless disparity manipulation (Sec. 8). Besides the
main real-time application, in which eye tracking data is available
(Sec. 8.1), we demonstrate a few scenarios where gaze informa-
tion can be either provided beforehand or predicted (Sec. 8.2–8.3).
Futhermore, we propose a metric that predicts the visibility of any
disparity manipulation for all possible gaze directions (Sec. 8.4).

5 Sensitivity to disparity manipulations

In order to determine how fast disparity shift and scaling can be ap-
plied before an observer notices changes, we conducted two separate
threshold estimation experiments that were guided by the QUEST
procedure [Watson and Pelli 1983].

5.1 Experiment 1: Disparity shifting

The goal of the first experiment was to determine the minimum
speed at which a continuous shift of disparity becomes visible to an
observer.

Stimuli Each stimulus consisted of a flat, circular patch that was
textured using a high number of easily visible dots (random dot stere-
ogram – RDS). The size of an individual patch spanned 18 deg. To
investigate the impact of the initial disparity, we considered 7 differ-
ent starting disparities ds ∈ {20, 10, 5, 0,−5,−10,−20 arcmin}
that were measured with respect to the screen depth. An example of
stimuli used in our experiments is presented in Fig. 3a.

a) b)

Figure 3: The random dot stereograms used in our experiments
with disparity patterns in the middle. (a) Flat stimuli for Experiment
1. (b) Spatial corrugation for Experiment 2.

Task In order to measure the speed threshold, a two-alternative
forced choice (2AFC) staircase procedure was used. At each trial a
participant was shown two stimuli in randomized, time-sequential
order. One of them was static while the other was moving in depth
with constant velocity vd. The direction of the motion was chosen to
move the stimulus towards the screen as this is a likely scenario in a
retargeting application. Each of the stimuli was shown for a period
of 2.3 seconds, which was followed by 500 ms of a blank screen.
The participant verged at the center of the stimulus and followed
it as it moved in depth. The task was to decide which of the two
stimuli contained motion or other temporal distortions and indicate
the answer using arrow keys. The velocity of the moving stimuli
was adjusted using the QUEST procedure. We chose to stop the
staircase procedure when the standard deviation of the estimated
threshold became smaller than 6.3 % of the initial estimate. The
range of vd considered by the procedure was set between 1 and
60 arcmin/s, which was determined in a pilot experiment conducted
on five subjects.

Equipment In both experiments, the stimuli were presented us-
ing the NVIDIA 3D Vision active shutter glasses on a 27′′ Asus
VG278HE display with a resolution of 1920×1080 pixels, at a view-
ing distance of 80 cm under normal, controlled office lighting. We
avoided depth distortion due to the time-sequential presentation by
excluding any frontoparallel motion [Hoffman et al. 2011].

Participants 14 participants (2 F, 12 M, 23 to 27 years old) took
part in both our experiments. All of them had normal or corrected-
to-normal vision and passed a stereo-blindness test by describing the
content of several RDS images. Each of them completed threshold
estimation procedures for all ds in a random order. The subjects
were naı̈ve with respect to the purpose of the experiment. The
average duration of the whole experiment was one hour. Participants
were offered a break and they could resume the experiment on the
next day.

Results The results of the experiments are presented in Fig. 4a.
We observed a large variance of stereo sensitivity between subjects
as expected for a general population [Coutant and Westheimer 1993].
We decided for a general model although personalization would be
an option. While our initial hypothesis was that the speed threshold
depends on the initial disparity, an additional analysis of variance did
not show any effect (F(6,72) = 0.42, p = 0.42). This verified that
the initial vergence does not influence the sensitivity significantly,
and therefore, we model the threshold as a constant. Due to the
significant variance in performance of individual users (ANOVA:
F(13,65) = 4.07, p < 0.001), we used the median of all values as an
estimate of the sensitivity threshold (the dashed line in Fig. 4a). Con-
sequently, we model the disparity change thresholds as a constant:

vb = c0, (1)



where c0 = 17.64 arcmin/s.
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Figure 4: Results of Experiments 1 and 2 and our fitted model (a,b).
Colors encode individual subjects; black crosses are median values
across all subjects. (a) Thresholds as a function of the disparity
from the screen (Experiment 1) with global median values shown
as dashed line. (b) Thresholds as a function of the disparity range
(Experiment 2) with both linear and logarithmic fit to median values.

5.2 Experiment 2: Disparity scaling

The goal of the second experiment was to measure how quickly the
scene disparity range can be scaled before the temporal changes
become visible.

Stimuli Similarly to the previous experiment, here we used a patch
textured with a high contrast dot pattern. As we seek a speed thresh-
old for disparity scaling, we considered a patch with a square wave
disparity corrugation (Fig. 3b). To make our model conservative,
we chose corrugation frequency to be 0.3 cpd as the HVS reaches
its pick sensitivity for such a signal [Bradshaw and Rogers 1999].
We also used a square wave instead of sinusoidal one as it general-
izes better for step functions [Kane et al. 2014] which successfully
capture our manipulations that mostly occur between object edges.
Because the sensitivity to disparity greatly depends on the amplitude
of the disparity corrugation [Didyk et al. 2011], we consider different
initial disparity ranges/amplitudes da ∈ {0, 2, 5, 10, 20, 30 arcmin}.
The values were chosen so that they do not result in a diplopia [Tyler
1975; Didyk et al. 2011]. The disparity corrugation was always
centered around the screen plane, i.e., the average disparity of the
patch is zero.

Task The procedure was similar to the previous experiment, with
the exception that instead of the motion introduced to the entire patch,
we introduced scaling to the disparity of the patch as a change of
peak-to-trough amplitude over time. The maximum velocity that was
considered by the 2AFC staircase procedure was set to 20 arcmin/s,
and it was determined in a pilot experiment to be clearly visible.
At such a speed diplopia could be reached during the exposure
time of 2.3 seconds, but in practice, participants usually reported
temporal change before this happened. Each participant performed
one staircase procedure for each value of da in a randomized order.

Results The results of the experiments are presented in Fig. 4b.
We observed a significant effect of the initial disparity range on
the scaling speed threshold (F(5,72) = 10.88, p < 0.001) with a
growing yet saturating tendency. The thresholds for disparity scaling
are generally lower than for shifting. This is expected as disparity
perception is driven mostly by the relative, not absolute, changes of
depth. As a result, the sensitivity of the HVS to the relative disparity
changes is much higher [Brookes and Stevens 1989]. The variance

between users is again significant (F(13,64) = 2.14, p < 0.05).
Similarly as in the previous experiment, we used the median as
an estimate of the thresholds (black crosses in Fig. 4b) to which
we fit an analytic function. Because a linear function yields low
DoF-adjusted R2 = 0.50 and does not adequately describe the
saturating shape visible in the data (dashed line in Fig. 4b), we use a
logarithmic function which is known to be adequate for describing
many mechanisms of the HVS. As a result, we model the disparity
range change thresholds as a function of the disparity magnitude:

vg(s) = c1 + c2 · log (s+ 1), (2)

where s is the disparity range size in arcmin and c1 = 0.1992 and
c2 = 1.787 are the fitting parameters with DoF-adjustedR2 = 0.89.

6 Visible disparity change predictor

Our disparity manipulation sensitivity model from the previous
section predicts visibility of disparity changes for simple stimuli.
To predict visibility of disparity manipulations for complex images,
we define a predictor V that for a given original disparity map
Do : R2 → R, two disparity mapping curves d, d′ : R→ R, and a
time t : R+ predicts whether the transition between the two curves
in time t leads to disparity changes that are faster than the thresholds
in Eq. 1 and Eq. 2. Formally, we define the predictor as:

V(Do, d, d
′, t) =

{
1 if the transition is visible,
0 otherwise.

In order to compute V(Do, d, d
′, t), we have to check whether there

is a location where either absolute or relative disparity (see Fig. 2a)
changes become visible. The first case occurs if there exists a
location x for which the absolute disparity change is faster than the
allowed speed in Eq. 1, i.e.,

∃x∈R2
|D′(x)−D(x)|

t
> vb, (3)

where D′(x) = d′(Do(x)) and D(x) = d(Do(x)). The second
case occurs if there exist two locations x,y such that the relative
disparity between them changes too fast (see Eq. 2), i.e.,

∃x,y∈R2
|∆D′(x,y)−∆D(x,y)|

t
> vg(∆D(x,y)), (4)

where ∆D′(x,y) = D′(x) − D′(y) and ∆D(x,y) = D(x) −
D(y). With these two criteria, we can formulate our predictor as:

V(Do, d, d
′, t) =

{
1 neither Eq. 3 nor Eq. 4 holds
0 otherwise.

This definition holds for small values of t, as the relative disparity
thresholds are a function of disparity magnitude (Eq. 2), which
changes when different disparity mappings are applied. In our work,
we assume that it is sufficient if t is equal to the period of one frame.

7 Seamless transition to target disparity

Our visibility prediction can be used to design a seamless transition
between two disparity mapping curves d and d′. If the two disparity
mappings are similar enough and V(Do, d, d

′, t) = 0 for t equal
to the period of one frame, the transition can be done in one frame.
However, this might not be the case if more aggressive disparity



manipulations are desired. In such cases, it is necessary to spread
the transition over a longer period of time to maintain the speed of
changing disparities below the threshold values. To this end, we
have to construct a sequence of new disparity mapping curves that
will be applied sequentially in consecutive frames. At the same
time, we want to keep the transition time as short as possible. More
formally, for a given original disparity map Do, and two disparity
mapping curves d and d′, we want to find a shortest sequence of
disparity mapping curves di : 0 ≤ i ≤ n, one for each frame i, such
that d0 = d, dn = d′, and ∀1≤i≤nV(Do, di−1, di, ti) = 0. To
make the construction possible, we assume that each curve di is an
interpolation between d and d′. Consequently, we define each curve
di using corresponding interpolation weights wi as:

di(x) = (1− wi) · d(x) + wi · d′(x). (5)

It can be shown (see Appendix) that for this definition of inter-
mediate curves the optimal weights defining the fastest seamless
transition can be obtained as follows:

w0 = 0, wn = 1, wi = wi−1 + ∆wi (6)

∆wi = min
x,y∈R2

(
vb · t

|D′(x)−D(x)| ,
vg(∆Di−1(x,y)) · t

|∆D′(x,y)−∆D(x,y)|

)
,

(7)

where t is the time of one frame. While different parametrizations
of the transitions curves are possible, ours leads to a simple yet
effective solution.

In order to construct the whole transition, we need to iterate Eq. 7
starting with w0 = 0 until we reach wn = 1. This is, however, com-
putationally expensive as the evaluation of Eq. 7 requires iterating
over all pixel pairs x and y, which leads to a quadratic complexity
with respect to the number of pixels in the image. Instead, we pro-
pose a more efficient way of evaluating this equation by discretizing
disparity maps into M values, so that there are only M2 possible
disparity pairs that we have to consider. If M is sufficiently large
this will not create any accuracy issues. Assuming that the dispar-
ity range does not exceed -100 to 100 pixels, M = 512 results in
errors not greater than 1/5 of a pixel size. Consequently, we define
an array H of size M such that H[i] = 1 if the disparity map D
contains values between min(D) + i · |max(D) − min(D)|/M
and min(D) + (i + 1) · |max(D) −min(D)|/M , and H[i] = 0
otherwise. Later, to evaluate Eq. 7, we consider all indices i, j < M
such that H[i] = H[j] = 1, and we refer to the corresponding
values of disparities pi and pj .

8 Applications

Disparity manipulations are often performed by stereographers who
use them as a storytelling tool. At the same time, additional disparity
manipulations are applied to reduce the visual discomfort or to find
the best trade-off between the image quality and depth reproduction.
We argue that the second type of manipulation should be performed
in a seamless and invisible way, so it does not interfere with artists’
intentions. In this section, we present applications of our model in
different scenarios where such manipulations are crucial.

8.1 Real-time gaze-driven retargeting

In this section, we propose a real-time disparity manipulation tech-
nique that adjusts disparity information in the stereoscopic content
taking into account gaze information. Our key insight is that depth
information has to be accurate only around the fixation location
and it can be significantly compressed in the periphery where depth
perception is limited [Rawlings and Shipley 1969]. An additional

improvement can be achieved by bringing the attended part of the im-
age close to the screen [Peli et al. 2001; Hanhart and Ebrahimi 2014].
We make use of our technique for creating seamless transitions be-
tween different disparity mappings to assure that our manipulations
do not introduce objectionable temporal artifacts and are robust to
sudden gaze changes. An additional feature of our solution is that be-
cause the temporal changes to disparities are seamless, the technique
is immune to latency issues of the eye trackers.

At every frame, our technique takes as an input the original disparity
map Do(x) together with the current disparity mapping function dp,
and the gaze location g provided by the eye tracking system. Then
it proceeds in three steps (Fig. 5). First, it constructs a candidate
mapping curve dc : R→ R which is optimal for the current frame.
Next, it restricts dc to dt : R → R such that a quick recovery to
a neutral linear mapping dI in case of saccade is possible. As the
last step, the current disparity mapping dp : R → R is updated to
d : R → R which is a single step of the seamless transition from
Sec. 7. The mapping d is then applied to the image.
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Figure 5: Construction of the disparity mapping for real-time retar-
geting. (a) A gaze-weighted disparity histogram is used to determine
horizontal locations of the inner control points of the candidate
curve dc and the vertical offset necessary to minimize disparity from
the screen in the gaze region. (b) An iterative transition algorithm
finds the maximum transition from a neutral linear mapping dI to-
wards the candidate dc in the defined time limit Tl as a target curve
dt. (c) The same algorithm is employed to update the previous curve
dp towards the target curve dt and obtain a new mapping d to be
used for the current frame.

Target curve construction To get the target curve dt, we first
build a candidate curve dc parametrized by four control points
Xi∈0···3 = [xi, yi] as presented in Fig. 5a. The two outer points X0

and X3 restrict the entire scene to the comfort range [rc,0, rc,1] of
the displayable disparity:

X0 = [min (Do), rc,0]

X3 = [max (Do), rc,1].

The two inner points X1 and X2 are responsible for the depth
expansion around the gaze location. Therefore, their positions should
span the range of disparities present around the fixation point. We
define x-coordinates of X1 and X2 as the 5th (p05) and 95th (p95)
percentile of the disparities around the gaze location. The percentiles
are computed based on a histogram ofDo. To restrict its computation
to the attended region and avoid temporal instabilities, we compute
it as a weighted histogram, i.e., each disparity Do(x) contributes to
the histogram according to the Gaussian Gg(x) = G(||x− g||, σ).
Formally, we define the histogram HG as:

HG[i] =
∑

x∈R(i)

Gg(x), i ∈ 0, 1 . . .MG, (8)



such that:

R(i) = {x : min(Do) + i · z ≤ Do(x) < min(Do) + (i+ 1) · z}.
z = |max(Do)−min(Do)|/MG.

The process of choosing the control points is presented in Fig. 5b.
For the purpose of this paper we chose σ to be 2.5 deg, as the
stereoacuity significantly declines with the retinal eccentricity be-
yond this point [Rawlings and Shipley 1969], and the histogram size
MG = 512.

Initially, the inner segment of the curve dt is constructed to map
the disparities of the attended region to the entire available disparity
range, i.e., X1 = [p05, rc,0] and X1 = [p95, rc,1]. This forces
the rest of the curve to be flat, but can also lead to scaling relative
disparities beyond their original values. To prevent this, we limit the
expansion between X1 and X2 by restricting the slope of the curve
to 1. We achieve this by shifting the two control points toward each
other with respect to the midpoint between them. Consequently, we
define the control points X1 and X2 as:

X1 =

[
p05, max(rc,0, rc,0 +

(rc,1 − rc,0)− (p95 − p05)

2
)

]
X2 =

[
p95, min(rc,1, rc,1 −

(rc,1 − rc,0)− (p95 − p05)

2
)

]
.

To bring the attended region close to the screen depth, we force the
50th (p50) percentile of the disparities around the gaze location to
map to 0. We achieve this by shifting all control points by p50. The
final control points are defined as:

X′i = Xi − [0, p50] , for i = 0 . . . 3. (9)

To compute a smooth curve by the control points, we interpolate
values between them using piecewise cubic Hermite interpolation
and store the outcome in a discretized version using 256 bins.

Quick recovery guarantee Depending on the depth variation in
the scene and the gaze location, the disparity mapping curve dc
may correspond to very drastic changes in depth. This is undesired
because we want to maintain a good depth quality even after a sudden
gaze change. We solve this problem by refining dc in such a way that
using our seamless transition strategy we can recover from it within
a predefined time period Tl. To guarantee this quick recovery, we
derive the final target curve dt by constructing a seamless transition
from an identity disparity mapping dI (Fig. 5a) to the candidate
mapping dc according to Eq. 7, and defining dt as the mapping that
is achieved at time Tl (Fig. 5b).

Seamless transition Although dt is built in every frame, in order
to prevent sudden disparity mapping changes, it cannot be directly
used. Instead, in each frame we execute a single step towards this
curve. To this end, we use Eq. 7 to compute a single step of a
transition between previous disparity mapping dp and dt (Fig. 5c).
Finally, we use the resulting curve d to generate a stereo image
presented to the user (see Fig. 6 and Fig. 9) using the image warping
technique of Didyk et al. [2010].

8.2 Seamless disparity mapping in preprocessing

When the gaze location is not available, e.g., during post-production,
our strategies can benefit from additional information about regions
that are likely to be attended. For example, in movie production, it
is common that attended image regions are known and purposely
steered by a director. In other cases, a pre-viewing may be used to

gather such data. In this paper, we define this information as the
probability distributions of gaze locations Sk : R2 → R for each
key frame k ∈ [1, N ]. For the purpose of this paper, we estimate Sk

using an image based saliency estimator proposed by Zhang et al.
[2013]. We also assumed that the entire video sequence is available
so we can optimize the disparity mapping curves across the whole
content. The key idea of this method is to compute per-frame optimal
disparity mapping curves (Fig. 5a), and then optimize them so the
transitions between them (Fig. 5c) are seamless according to our
model.

For every key frame k we build a desired mapping curve d̂k (Fig. 7a).
To this end, we follow the suggestion of Lang et al. [2010] and first
build a histogram of disparity Hw(Dk) similarly to Eq. 8 but with
Gg(x) replaced by the saliency map Sk. We also compute a standard
histogramH(Dk) using the same formula but with a constant weight
1/ND , where ND is the number of pixels in Dk. To account for
different sizes of salient regions across Sk, we normalize Hw(Dk)
by H(Dk) prior to deriving the mapping curve uk as a cumulative
sum:

uk[i] =
∑

j=0..i

Hw[j]

H[j]
.

This mapping attributes a larger disparity range to salient regions.
We then derive d̂k by scaling uk to the displayable range [rc,0, rc,1]
and shifting it to the screen to minimize the expected disparity from
the screen estimated as the 50th (p50) percentile of Hw(Dk):

d̂k = uk · (rc,1 − rc,0) + rc,0 − p50.

There is no guarantee that the series of d̂k results in seamless ma-
nipulations, as drastic changes between neighboring frames can
occur. We address this problem by finding a sequence of curves such
that it provides seamless disparity changes. To this end, we jointly
optimize all curves dk (Fig. 7b) according to the following strategy:

minimize
dk

E = |dk − d̂k|

subject to ∀k∈[2,N ] V(Dk, dk−1, dk, tk − tk−1) = 0

∀k∈[1,N−1] V(Dk, dk, dk+1, tk+1 − tk) = 0,

where tk is the time stamp of the k-th key frame.

We solve this problem iteratively. We initialize dk,0 = d̂k. In the
i-th step we compute the new candidate curve d′k as:

d′k = (1− α)dz + α · d̂k

dz =
dk−1,i−1 + dk+1,i−1

2
,

where α ∈ [0, 1] is obtained by solving a convex 1D problem:

maximize α

subject to V(Dk, dk−1,i, d
′
k, tk − tk−1) = 0

V(Dk, d
′
k, dk+1,i, tk+1 − tk) = 0

using bisection. The mapping curve dk,i is then updated as:

dk,i = (1− β)dk,i−1 + β · d′k,

where β = 0.1 is a step size parameter. We stop the solver when
maxk |dk,i − dk,i−1| < ε. We use ε = 0.1 arcmin, which is
achieved in less than 2 seconds for 50 key frames after ∼ 100
iterations of our fast GPU solver running on a Quadro K2000M
laptop GPU. If sparse key frames are used, then Eq. 5 is used to
compute transitions between the intermediate frames. Samples from
our results are presented in Fig. 7, and we refer readers to the sup-
plemental video for a full demonstration.
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Figure 6: Comparison of our mapping (3rd row) with a static mapping (1st row) and the method of Hanhart and Ebrahimi [2014] (2nd

row) as applied to our rendered image (left) and the image Flowers from the Middlebury dataset [Scharstein et al. 2014] for two different gaze
locations (white dots). A disparity image with a mapping curve is shown in the insets. Crossed disparity is coded orange, uncrossed blue and
screen disparity white. For our method the black curve is the rendered mapping d and the red curve is the target mapping dt.
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Figure 7: Our seamless transition applied to a per-frame saliency-based remapping [Lang et al. 2010]. (a) Two frames from the
per-frame remapped sequence. (b) All per-frame (red) and our seamless transition (green) curves. (c) Our results. The Sintel video and
disparity information are courtesy of the Blender Foundation and Butler et al. [2012], respectively.

8.3 Scene cut optimization

Templin et al. [2014] proposed an optimization for disparity tran-
sitions introduced by video cuts. They argued that minimizing the
disparity difference at a cut reduces the eye vergence times and
thereby improves the perceived image quality and scene understand-
ing. To achieve this goal, disparity has to be retargeted on one or
both sides of the cut and smooth transitions are required to blend to
the original disparity. However, no precise model for such transitions
was provided.

The seamless transition model for disparity mapping in Sec. 7 is
well suited for this task. We optimize the cut by shifting disparities
on both sides of the cut, which can be represented using a linear
curve with a bias (see Fig. 2b). For simplicity, we assume that the
time between subsequent cuts is always long enough to fit the entire
mapping transition. Then, we can optimize each cut independently.

We first use the model of Templin et al. [2014] to find the optimal
bias ho of the pixel disparity maps Dc and Dc+1 on both sides of
the cut at frame c. We follow their suggestion and solve the problem
by minimizing:

ho = arg min
h

∑
x

S(x)V

(
Dc(x)− h

2
, Dc+1(x) +

h

2

)
,

where S : R2 → R is equivalent to the attention probability map
Sk from Sec. 8.2 for the frame c. We use a uniform estimate in our

examples. Function V (a0, a1) stands for the vergence time model
at the cut, where a0 and a1 denote the initial and target disparities
[Templin et al. 2014]:

V (a0, a1) =

{
0.04a0 − 2.3a1 + 405.02 if a0 < a1
−1.96a0 + 3.49a1 + 308.72 if a0 ≥ a1

}
.

Linear mappings dc and dc+1 are then built for each of the two cut
frames with respective disparity shifts hc = −h

2
and hc+1 = h

2
(Fig. 2b). For every other frame i with time stamp ti, we use our
transition model (Eq. 7) to derive the corresponding mappings di as
a transition to the original mapping d0:{

from dc to d0 if i ≤ c
from dc+1 to d0 if i > c

}
for the duration Ti = |ti − (tc + tc+1)/2|. We refer readers to the
supplemental video for an example of the resulting mapping.

8.4 Visibility visualization

In stereo content production when no assumptions can be made
about the attended image region, our predictor of disparity change
visibility (Sec. 6) can be used directly as a metric for the evaluation
of a disparity mapping.

As an input we assume either two disparity mapping curves d and
d′ from two different frames, or the same disparity frame mapped



by two different unknown curves as D and D′. The condition of the
same frame can be relaxed if the distribution of physical depth in
the scene does not change significantly over time. Additionally, we
know the time span T between both inputs.

If only the mapped disparities D and D′ are given, we construct
the best approximation of the mapping curves between them rather
than the mappings from the potentially unavailable original Do

(Sec. 6). The first curve d describes an identity mapping D to
itself. The second curve d′ describes a transition from D to D′

and is constructed using a cumulative histogram, where each value
from D′ is accumulated to the bin corresponding to the value of
D, and finally normalized by the number of accumulated values.
The variance of values accumulated in each bin increases with a
deviation from the global mapping assumption. The bins without
any samples are filled by linear interpolation.
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Figure 8: Output of our metric for 2 mappings as if transitioned
over an interval of 1 second. (a, c) Boundary images. (d, f) Boundary
disparity maps with their mapping curves. (e) The visibility matrix
Q(x) for every absolute and relative disparity. Red values (Q > 1)
represent visible distortions. (b) Visualization of a single row of the
matrix (yellow rectangle) as a distortion from each disparity pixel
(red) with respect to the reference disparity (green) corresponding
to the given row.

Now we can use the predictor V(D, d, d′, T ) to determine the vis-
ibility of a transition from d to d′ in a binary way. To get the
prediction in a continuous form, we can use our transition formula
in Eq. 7 to compute the time Tc needed for a transition from d to
d′ as Tc = n · t, where n is the number of discrete steps required.
This allows us to formulate the metric score Q as the time needed
relative to the time available:

Q =
Tc

T
.

The value units can be interpreted as just-noticeable differences
(JNDs) and values lower than one can be considered imperceptible by
the user, while values significantly larger can cause visible temporal
artifacts as the depth is being transformed from one mapping to
another.

We also have an option to evaluate the metric for every absolute and
relative disparity separately. This way, each pair of disparity values
mapped by d and d′ defines two linear mapping functions for which
Q can be computed the same way. Enumerating all such pairs leads
to a matrix representation Q(x) and allows for a detailed inspection
of the mapping properties and guiding the user towards the source
of distortions. See Fig. 8 for an example.

9 Evaluation

We evaluated the performance of our perceptual model and the
disparity manipulation technique in a user experiment. To this end,
we compared the depth impression and the temporal stability of our
gaze-contingent disparity retargeting (Sec. 8.1) to three potential

alternatives: first, a traditional static mapping which does not adapt
to the gaze location in any way; second, an immediate shift of depth
which brings the depth in the gaze location to the screen without
temporal considerations (similar to [Bernhard et al. 2014]); and
finally, the method of Hanhart and Ebrahimi [2014] as discussed
in Sec. 3.2. Our model was derived for simple stimuli. To test its
performance on complex images that contain more complex depth
cues, we tested three variants of our method with different multipliers
for the speed thresholds in Eqs. 1 and 2. We chose multipliers 1, 2
and 4.

Stimuli The techniques were compared using both captured and
CG content. 4 stereoscopic images from the Middlebury dataset
2014 [Scharstein et al. 2014] and 2 from our own rendering were
used as stimuli (Fig. 6 and Fig. 9).

Task We compared the three variants of our method with each
other as well as with all alternative methods in a 2AFC experiment.
At each trial a participant was shown the question and then the two
stimuli in randomized, time-sequential order. Both contained the
same content but with the disparity mapped in two different ways.
Each of the stimuli was shown for a period of 10 seconds, which
was followed by 800 ms of a blank screen. The participant answered
one of the following questions:
• Which demo has more depth?
• Which demo is more stable?

The user could choose to repeat the sequence at will.

Equipment The stimuli were presented using the polarized glasses
technology on a 24” Zalman ZM-M240W display with a resolution
of 1920×1080 pixels, at a viewing distance of 80 cm under normal,
controlled office lighting. The display technology was chosen not
to interfere with the eye tracker Tobii EyeX that was used for the
gaze-adaptive mapping. A chin rest was employed to improve the
tracking performance and to prevent the participant from moving
away from the optimal viewing angle.

Participants 14 participants (2 F, 12 M, 23 to 27 years old) took
part in the study. All of them had normal or corrected-to-normal
vision and passed a stereo-blindness test by describing content of
several RDS images. The subjects were naı̈ve to the purpose of the
experiment.

0 %

50 %

100 %

Ours (1x) Ours (2x) Ours (4x) Ours (1x) Ours (2x) Ours (4x)

StabilityDepth reproduction
Ours (2x) Ours (4x) Static Shift Hanh. & Ebrah.

Figure 10: Results of our validation study for both the depth re-
production and stability questions. Each group of bars compares a
variant of our method (multipliers 1, 2 and 4) against the other vari-
ants (warm colors) and competitor methods (green colors). 50 % is
a chance level. A value above 50 % encodes participants’ preference
of the bottom label variant over the color-coded method. The error
bars are confidence intervals. A significance in a binomial test is
marked by a full star.
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Figure 9: The stimuli used in our validation experiment (see also Fig. 6). From left: Our CG rendering and 3 images from the Middlebury
dataset [Scharstein et al. 2014].

Results We have evaluated relative preference for each compared
pair and each question (Fig. 10). Our method achieves a significantly
stronger depth reproduction than a simple disparity shift (71.4%,
binomial test p < 0.01) with the threshold multiplier 1, and than
both a static mapping (75.0%, p < 0.01) and the method of Hanhart
and Ebrahimi (73.9%, p < 0.01) for the multiplier 2. There was no
significant difference between the depth reproduction of our method
with the multiplier 1 and 2. This shows that this comparison of
depth was a difficult task for users and required substantial disparity
differences to be accomplished above the chance levels. There
was significantly less depth reported for the multiplier 1 than for 4
(31.7%, p < 0.01); therefore, using a larger multiplier generally
results in greater perceived depth, as expected.

Our method is significantly more stable than an immediate shift to
the screen for the multipliers 1 (84.3%, p < 0.01), 2 (84.3%, p <
0.01) and even 4 (87.7%, p < 0.01). This illustrates that the latency
of current eye tracking systems make performing modifications
during the saccadic suppression difficult. This further supports our
choice of relying on seamless disparity processing at the fixation.
There was no significant difference in stability with respect to a
static mapping and the method of Hanhart and Ebrahimi except
for the highest multiplier 4 (35.8%, p < 0.05 and 35.0%, p <
0.05 respectively). The trend towards lower stability reports in a
comparison to the static mapping visible for the lower multipliers
is expected, as a presence of any visible difference between two
stimuli will likely lead to a statistically significant difference in
answers after a sufficient amount of trials. The discrepancy between
close-to-chance results for the comparison of our multipliers 1 and
2 and the method of Hanhart and Ebrahimi, and on the other hand
significant difference for the multiplier 4, suggests that the actual
stability for the two lower multipliers is good.

The results show that our method can deliver more depth without
sacrificing stability. The statistically higher stability of the mul-
tiplier 2 compared to 4 (66.7%, p < 0.01) and at the same time
insignificantly but consistently higher depth reproduction than the
multiplier 1, confirms that the multiplier 2 is a better choice for
a complex stereo content. This is in agreement with previous ob-
servations about thresholds measured on artificial stimuli and their
validity for realistic images, e.g., when measuring the perceivable
color differences in CIELAB and CIELUV [Reinhard et al. 2010] or
disparity differences [Didyk et al. 2011]. Further, our experiments
show that the choice of the stimuli for the model construction (Fig. 3)
generalizes for complex images, as the manipulations stay seamless
when multipliers 1 and 2 are used, but become quickly visible when
multiplier 4 is considered.

10 Limitations

Our perceptual model accounts only for disparity changes around
fixation location; it does not account for peripheral sensitivity to mo-
tion. Although in our experiments we did not observe any problems,
it might be interesting to investigate peripheral vision in the future,
especially for wide-angle VR systems.

The “pop-out” effect, which brings scene objects in front of the
screen, is often used as a storytelling tool. Our technique preserves
it for quick temporal disparity changes, but the effect may diminish
after the re-adaptation. This might only be a concern for standard
stereoscopic displays. In autostereoscopic displays a significant
“pop-out” effect is usually avoided as it leads to aliasing problems
[Zwicker et al. 2006]. In VR displays, the “pop-out” does not exist
as there is no notion of “in front of the screen”.

Our techniques rely on several methods that may introduce additional
artifacts. In particular, a poor estimation of visual saliency may lead
to suboptimal results in our preprocessing application (Sec. 8.2).
This is a general limitation of saliency-based manipulations, which
can be improved by a director’s supervision or a pre-screening. The
image warping technique used for generating our results can create
monocular artifacts in disoccluded areas, if the disparity scaling is
too large [Didyk et al. 2010]. This together with cross-talk or aliasing
during large shifts can potentially introduce artifacts perceived as
additional 2D cues which can further affect the visibility of our
disparity manipulations.

11 Conclusions and future work

Gaze-contingent displays are gaining in popularity in various appli-
cations. Since such displays rely on the saccadic suppression to hide
any required image changes from the user, their success strongly
depends on the overall latency of the rendering system. In this work,
we are interested in stereoscopic content authoring, which involves
disparity manipulation, where the tolerability for the latency issues
is very low. Our key insight is that near-threshold disparity changes
can be efficiently performed at the eye fixation without being noticed
by the user. This effectively makes the latency issues irrelevant. To
this end, we measured the HVS sensitivity to disparity changes and
formalize it as a metric. We employed the metric to guide the deriva-
tion of seamless transitions between frames in our gaze-contingent
disparity retargeting. In this way, we improved the perceived depth
significantly, while greatly reducing the requirements imposed on
the eye tracker accuracy and latency. We also presented other appli-
cations of our metric in saliency-based disparity manipulations and
scene cut optimization.



The benefits of our method extend beyond standard stereoscopic
displays. New glasses-free 3D displays such as parallax-barrier or
lightfield displays support only a relatively shallow depth range [Ma-
sia et al. 2013]. As a result, the visual quality quickly degrades for
objects that are further away from the screen plane. Head-mounted
displays have also recently gained a lot of attention and including
eye tracking in these devices is a natural next step. We believe
that our method can provide a substantial quality improvement in
all these cases. Gaze-driven techniques targeting specific display
devices that use our model are an exciting avenue for future work.
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Appendix

Here we show how an optimal transition between two disparity
mappings d, d′ : R→ R can be computed for an original disparity
mapDo. For this purpose, as mentioned in the main text, we assume
that the transition is defined as a sequence of intermediate disparity
mappings di : R→ R, one for each frame. We specify each di as
an interpolation between d and d′. Consequently, the transition is
defined as:

d0 ≡ d, dn ≡ d′,
di(x) = (1− wi) · d(x) + wi · d′(x) 0 ≤ i ≤ n

w0 = 0, wi−1 ≤ wi, wn = 1,

where wi is a sequence of the interpolation weights. This definition
is equivalent to a formulation where disparity mappings are replaced
with depth values from each stage of the transition:

D0 ≡ D, Dn ≡ D′,
Di(x) = (1− wi) ·D(x) + wi ·D′(x), 0 ≤ i ≤ n,

w0 = 0, wi−1 ≤ wi, wn = 1,

for Di(x) = di(Do(x)). In order to make the transition seamless,
we follow our visibility prediction described in Section 6 and obtain
the following constraints that restrict absolute and relative disparity



changes:

∀i∀x∈R2
|Di(x)−Di−1(x)|

t
≤ vb (10)

∀i∀x,y∈R2
|∆Di(x,y)−∆Di−1(x,y)|

t
≤ vg(∆Di−1(x,y)),

(11)

where t is the period of one frame and ∆Di(x,y) = Di(x) −
Di(y). Now let us consider the term Di(x)−Di−1(x). It can be
shown that:

Di(x)−Di−1(x) =

= (1−wi)·D(x)+wi ·D′(x)−(1−wi−1)·D(x)−wi−1 ·D′(x)

= (wi − wi−1) · (D′(x)−D(x)) (12)

By substituting this into Eq. 10, we can show that the constraint on
the absolute disparity changes is equivalent to:

∀i∀x∈R2 wi − wi−1 ≤
vb · t

|D′(x)−D(x)| (13)

Furthermore, using Eq. 12 we can also obtain:

∆Di(x,y)−∆Di−1(x,y) =

= (Di(x)−Di−1(x))− (Di(y)−Di−1(y))

= (wi−wi−1) ·(D′(x)−D(x))−(wi−wi−1) ·(D′(y)−D(y))

= (wi − wi−1) · ((D′(x)−D′(y))− (D(x)−D(y)))

= (wi − wi−1) · (∆D′(x,y)−∆D(x,y))

By substituting this into Eq. 11, we obtain a new form for the
constraint on relative disparity changes:

∀i∀x,y∈R2 wi − wi−1 ≤
vg(∆Di−1(x,y)) · t

|(∆D′(x,y)−∆D(x,y))| (14)

By combining Eq. 13 and Eq. 14, we can obtain the weights wi that
define the shortest transition between d and d′, such that it does not
violate the constraints in Eq. 1 and Eq. 2:

w0 = 0, wn = 1, wi = wi−1 + ∆wi,

∆wi = min
x,y∈R2

(
vb · t

|D′(x)−D(x)| ,
vg(∆Di−1(x,y)) · t

|∆D′(x,y)−∆D(x,y)|

)


