SFU

ISP-Friendly Peer Matching

Cheng-Hsin Hsu, Nitin Chiluka, and Mohamed Hefeeda School of Computing Science, Simon Fraser University, Canada

1. Motivation

P2P costs ISPs more money

- Challenge: find senders to
 - reduce loads on inter-ISP links
 - > improve application performance
- Solution: ISP-friendly matching
 - > find senders to minimize AS
 distance

- 2. Big Picture

■ Infer AS distance offline → distance oracle

Match senders online using oracle

Faster distance lookup

> within AS, get closer senders by IP prefix

Ieverage public info

> efficient inference algorithm

> smaller data structure in memory

> exact/approximate distance

- 3. Our Approach

Compute shortest valley-free AS paths

> valley-free: customer AS does not transit data for its providers

• Current algorithms [e.g., Mao 05] • $O(|V|^3)$ time

runs in ~ 2 days (25,000+ ASes)

> needs ~ 625 MB memory

Our proposed algorithm

➢ preprocess AS graph → concise data structure: Core Matrix

> exclude stub ASes; they don't transit traffic
for any other ASes

■ *V*: all ASes; *L*: stub ASes ← Most ASes are in *L* (87%) Construct_Distance_Oracle For $s, t \in V \setminus L$, compute shortest up-hill distance For $s, t \in V \setminus L$, compute valley-free distance For $s \in V \setminus L$ and $t \in L$, compute valley-free distance For $s, t \in L$, compute valley-free distance |V|Core Matrix Step 2

Step 1

Step 2

Step 3

distance

Step 1

