
ANALYSIS OF AUTHENTICATION SCHEMES FOR NONSCALABLE VIDEO STREAMS

Mohamed Hefeeda and Kianoosh Mokhtarian

School of Computing Science
Simon Fraser University

Surrey, BC, Canada

ABSTRACT

The problem of multimedia stream authentication has re-

ceived significant attention by previous works and various

solutions have been proposed. These solutions, however,

have not been rigorously analyzed and contrasted to each

other, and thus their relative suitability for different stream-

ing environments is not clear. In this paper, we conduct

comprehensive analysis and comparison among the main au-

thentication schemes proposed in the literature. To perform

this analysis, we propose five performance metrics: compu-

tation cost, communication overhead, receiver buffer size,

delay, and tolerance to packet losses. We derive analytic

formulas for these metrics for all schemes, and we numeri-

cally analyze these formulas. In addition, we implement all

schemes in a simulator to study their performance in differ-

ent environments. Our detailed analysis reveals the merits

and shortcomings of each scheme and provides guidelines on

choosing the most appropriate scheme for a given applica-

tion. Our analysis also helps in designing new authentication

schemes and/or improving existing ones.

Index Terms— Multimedia authentication, multimedia

security, secure streaming.

1. INTRODUCTION

Multimedia content and services have seen wide spread adop-

tion in recent years. Multimedia services such as Internet

streaming, video on demand, video conferencing, and Inter-

net Protocol Television (IPTV) are common place. This wide

spread adoption makes ensuring the authenticity of multime-

dia content transported over public networks, e.g., the Inter-

net, an important problem. Ensuring the authenticity of the

multimedia content means that any tampering with the data

by an attacker can be detected by the receiver of the data. At-

tackers may tamper with the multimedia data by removing,

inserting, or modifying portions of the data.

Because of its importance, the problem of multimedia

stream authentication has received significant attention from

academia and industry. Several schemes have been proposed

978-1-4244-4652-0/09/$25.00 c©2009 IEEE

to address this problem in different settings [1]. However,

no rigorous analysis and quantitative comparison of the dif-

ferent schemes have been done in the literature, to the best

of our knowledge. Detailed analysis of various authenti-

cation schemes is needed in order to discover the merits

and shortcomings of each scheme. Moreover, side-by-side

comparisons of authentication schemes along multiple per-

formance metrics provide guidelines on choosing the most

suitable scheme for a given multimedia streaming applica-

tion, and offer insights for further research on the stream

authentication problem.

In this paper, we rigorously analyze and compare the

main schemes proposed in the literature to authenticate mul-

timedia streams. We focus on the widely used nonscalable

video streams. A multimedia stream is nonscalable if it is

encoded as a single layer and only the complete layer is

decodable [2]. Nonscalable streams provide higher coding

efficiency than multi-layer scalable streams [3], which are

proposed in the literature to offer more flexibility, as partial

streams (substreams) can be decoded by receivers. Scalable

streams, however, have not yet been widely used in practice.

To conduct our analysis, we define five important perfor-

mance metrics, which are computation cost, communication

overhead, receiver buffer size, delay, and tolerance to packet

losses. Then, we derive analytic formulas for these metrics

for all considered authentication schemes. We numerically

analyze these formulas to explore the performance of the

authentication schemes for a wide range of parameters. In

addition, we implement all authentication schemes in a sim-

ulator to study and compare their performance in different

environments. The parameter values for the simulator are

carefully chosen to mimic realistic settings. For example,

we analyze the authentication schemes under two common

models for packet losses: bursty and random. The bursty

loss model is typical in wired networks where a sequence of

packets may get dropped because of a buffer overflow in one

of the routers on the network path from sender to receiver.

Whereas the random loss model is usually used to capture bit

errors in wireless environments.

The rest of this paper is organized as follows. In Section 2,

we start by defining the performance metrics and notations

used in our analysis. Then, we present and analyze authen-

1

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 15, 2009 at 14:33 from IEEE Xplore. Restrictions apply.

tication schemes for nonscalable streams. For each scheme,

we provide a brief overview followed by the analysis of the

different performance metrics. In Section 3, we conduct nu-

merical analysis of the equations derived in Section 2. We

also present our simulation analysis and summarize our find-

ings. We conclude the paper in Section 4.

2. QUANTITATIVE ANALYSIS OF

AUTHENTICATION SCHEMES

To rigorously evaluate various multimedia authentication

schemes, we propose (in Section 2.1) five performance met-

rics that cover all angles of the stream authentication problem.

Then, in each of Sections 2.2— 2.8, we briefly describe the

main idea of an authentication scheme and we analyze it

using these metrics.

We note that the authentication schemes considered in

this paper do not use or depend on the characteristics of the

video stream. Some schemes, on the other hand, depend on

these characteristics and extract a set of content-based fea-

tures from the video to authenticate, e.g., [4, 5]. Conducting a

quantitative analysis of these schemes is difficult, as the video

characteristics are quite diverse and varying. Hence, we do

not consider such schemes in this paper.

2.1. Performance Metrics

We propose the following performance metrics for analyzing

authentication schemes for multimedia streams.

• Computation Cost. It is the CPU time needed to ver-

ify the authentication information by the receiver —we

assume that the sender (content provider) is powerful

enough. Evaluating the computation cost is important

especially if the receiver has a limited processing ca-

pacity, e.g., a PDA or cell phone. Note that in stream-

ing applications, the verification process of an incom-

ing multimedia stream is invoked periodically and in

real-time. Thus, if its computation cost is high, some

receivers may not be able to afford it, and thus cannot

verify the stream at all.

• Communication Overhead. It is the additional number

of bytes that the authentication scheme needs to transfer

over the communication channel to the receiver in order

to enable it to verify the authenticity of the received

multimedia stream.

• Tolerance to Packet Losses. Multimedia streams are

typically transmitted over the Internet or lossy wireless

channels, where some packets may get lost. Due to

the dependency that the authentication scheme imposes

among packets, packet loss may affect verifiability of

some packets that are successfully received. Thus, ro-

bustness of the authentication scheme to packet losses

is important to analyze for different packet loss ratios.

We quantify this robustness as the percentage of the re-

ceived packets that can be verified in presence of packet

losses, and we call it the verification rate.

• Receiver Buffer Size. Some authentication schemes

require the receiver to buffer a certain amount of data

before it can start verifying the stream. Quantifying the

required buffer size specifies the minimum memory re-

quirements, which is especially important for limited-

capability receiver devices. Besides, the required re-

ceiver buffer affects the amount of delay at receiver

side, which is included in the Delay metric below.

• Delay Imposed by the Authentication Process. Since

most of the schemes designate one digital signature

for a block of packets, they require the sender/receiver

(or both) to wait for generation/reception of a certain

amount of data before being able to transmit/verify

it. This delay, which is the sum of sender side and

receiver side delays, specifies whether or not the au-

thentication information can be produced or verified

online. For example, a delay beyond a few seconds

is not suitable for live streaming. Note that we con-

sider the delay imposed by the authentication process

only; delays caused by the transmission through the

networks or by the media encoding/decoding process

are not accounted.

The above metrics are analyzed under different scenarios.

For example, we consider a wide range of packet loss rates

and using two common loss models: bursty and random. Sev-

eral other parameters are used in the analysis, such as packet

rate α, packet size l, and block size n. For quick reference,

we list all parameters used in this paper and their notations in

Table 1. We also mention the range of values used for each

parameter. In Section 3, we justify these values.

2.2. Hash Chaining

Hash chaining [6] is one of the simplest techniques to authen-

ticate multimedia streams. Packets of the stream are divided

into blocks, each of size n packets. Then, the hash of each

packet is attached to its previous packet, and the first packet

of each block is signed. Due to the one-way property of the

hash function, the signature authenticates the whole block.

Analysis of has chaining is straightforward. For a block

of n packets, hash chaining computes n hash values and veri-

fies one digital signature. Therefore, the computation cost to

verify a block is tsig + n⌈l/64⌉thash seconds. The communica-

tion overhead is ssig/n+ shash bytes per packet. Hash chaining

does not tolerate any packet losses. There is no receiver buffer

requirement for this scheme as packets can be verified as they

arrive after receiving the first packet with the signature. The

sender, however, needs to wait for n packets to be generated,

2

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 15, 2009 at 14:33 from IEEE Xplore. Restrictions apply.

Table 1. Parameters used in this paper and their values.

Parameter Value Description

α 30 pkt/sec Packet rate

l 1400 bytes Packet size

n 128 pkts or variable Block size

N 1,000 to 1,000,000 Number of blocks

ρ 0 to 0.5 Packet loss ratio

nenough 0.8n #packets for verification

tsig 500 ms Time to verify signature

thash 0.1 ms Time to compute hash

ssig 128 bytes Signature size

shash 20 bytes Hash size (SHA-1)

nrows 32 Number of rows

s 0, 0.25, 0.5 For eSAIDA

nsig 1/16 n or searched Number of signatures

p, a searched For augmented chain

because hash chaining starts at the last packet in the block.

Thus, with a packet generation rate of α packets per second,

the total delay is n/α seconds.

To enable the hash chaining scheme to tolerate packet

losses, the hash value of a packet is replicated and attached to

multiple packets. According to the way hashes are replicated

in packets, a block of packets can be modeled as a Directed

Acyclic Graph (DAG), whose nodes represent data packets

and each directed edge from node A to node B indicates that

the hash of packet A is attached to packet B, i.e., if packet B

is verified then packet A can also be verified. In this DAG,

a packet is verifiable if there is a path from its corresponding

node to the signature node. When loss occurs among pack-

ets of a block, some nodes of the DAG and their associated

edges are removed, which may threaten the verifiability of

some of the received packets. The simple hash chaining de-

scribed above can be viewed as a linear DAG with n nodes and

n−1 edges, where the first node carries the signature. The fol-

lowing two subsections present two authentication methods

that improve the robustness of a linear DAG to packet losses.

2.3. Augmented Hash Chaining

In the augmented hash chaining scheme [7], the authentica-

tion DAG is constructed as follows. First, the hash of packet

pi is attached to packets pi+1 and pi+a, where a is an integer

parameter that affects resistance against bursty losses as well

as receiver delay and buffer. The last packet is designated as

the signature packet. Then, p − 1 additional packets (p is an

input to the algorithm) as well as their relevant edges are in-

serted between each two packets of this chain to make it an

augmented chain. Two methods are proposed for this inser-

tion, which have equal resistance to bursty losses. The first

method attaches the hash of each new packet to the packet

preceding it and to the packet from the original chain succeed-

ing it. Thus, the number of hashes carried by packets of the

original chain grows linearly with p, while the average num-

ber of hashes per packet is two. The second method is more

complex and follows a recursive structure to keep the degree

of each node equal to two; we consider the second structure in

our analyses. Since the delivery of the signature packet is vi-

tal, the scheme sends it multiple (nsig) times within a block of

packets. The packet loss tolerance of this technique depends

on the loss model, i.e., it depends on the loss rate and loss

pattern (random or bursty). We analyze this tolerance using

simulation in Section 3.

Computations needed to verify a block in augmented hash

chaining take tsig + n⌈l/64⌉thash seconds, and the communi-

cation overhead is nsigssig/n + 2shash bytes per packet. The

receiver has to buffer a whole block, thus the receiver delay

and buffer size are n/α seconds and n packets, respectively.

Moreover, the sender needs to buffer p packets before trans-

mission, which makes the sender delay p/α seconds. Since p

is small compared to n, we consider the total delay to be n/α.

2.4. Butterfly Hash Chaining

Zhang et al. [8] proposed to use Butterfly graphs to construct

the authentication DAG. Assuming the number of packets of

a block is n = nrows(log2 nrows + 1), the nodes of the authen-

tication DAG are arranged into log2 nrows + 1 columns of the

same length nrows. Each node in a column is linked to two

other nodes of the previous column, according to the col-

umn it belongs to. Nodes of the first column are all linked

to the signature packet. These butterfly graphs, however, do

not work for arbitrary number of packets, and make the size

of the signature packet grow almost in proportion to the block

size. To mitigate these limitations, the authors later extended

their work to utilize a generalized Butterfly graph [9]. This

graph is made more flexibly such that the number of rows

nrows is set independently of n and is taken as an input. Then,

nodes are arranged into ⌈n/nrows⌉ columns, where the last col-

umn does not necessarily consist of nrows nodes. The way the

nodes are linked to each other is similar to the previous But-

terfly graph. We consider the generalized version of Butterfly

graph scheme in our analyses.

The computation cost of the butterfly authentication is the

same as the augmented hash chaining: tsig + n⌈l/64⌉thash sec-

onds to verify a block of n packets. Denoting the number

of rows in the butterfly graph by nrows, the communication

overhead of this scheme is equal to nsig(ssig + nrowsshash)/n +

shash(2n − nrows)/n bytes per packet. According to losses, re-

ceivers need to buffer packets till a copy of the signature ar-

rives. In the worst case they may need to have a buffer of up to

n packets, though it is unlikely. Thus, for the total delay, we

neglect the receiver delay when summing it with the sender of

n/α seconds, which makes a total delay of n/α seconds. How-

ever, the receiver buffer required cannot be neglected even it

fills infrequently. Similar to the augmented hash chaining,

the loss tolerance of this schemes depends on the packet loss

3

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 15, 2009 at 14:33 from IEEE Xplore. Restrictions apply.

model, which we evaluate in the simulation section.

2.5. Tree chaining

Wong and Lam [10] proposed the use of Merkle hash trees

[11] for stream authentication. In their scheme, one signa-

ture is designated for each block of packets. At the sender

side, a balanced binary Merkle hash tree is built over packets

of each block. Leaves of this tree are hashes of packets, and

each interior node represents the digest of concatenation of

its children. The root of this tree is then signed. Due to the

collision-free property of the hash function, the whole set of

leaf packets is authenticated if authenticity of the root of the

tree is successfully verified. Each packet is individually veri-

fiable by traversing and partially reconstructing the tree from

the bottom (the leaf node corresponding to the given packet)

to the top (the root) and verifying the root digest using the

given signature. For this procedure, only siblings of the nodes

on the path are needed. Therefore, in this scheme, each packet

carries the block signature, its location in the block, and the

set of siblings on the path from itself to the root. This makes

each packet individually verifiable.

The computations needed for verifying a block consist

of one signature verification, n⌈l/64⌉ hash computations over

packets, and (⌈n log2 n⌉−n)⌈2shash/64⌉ hash computations in-

terior to the tree, which in total takes tsig + thash(n⌈l/64⌉ +

(⌈n log2 n⌉ − n)⌈2shash/64⌉) seconds for a block. The commu-

nication overhead of this scheme is equal to ssig+⌈log2 n⌉shash

bytes per packet. In tree chaining, there is no need to buffer

any packet, thus a packet can be verified once it arrives. The

total delay imposed by tree chaining, which consists of the

sender delay only, is that of generating a block: n/α seconds.

Moreover, loss resilience is always 100% given that a packet

is either arrived or lost atomically.

2.6. SAIDA and eSAIDA

Park et al. [12] presented SAIDA (Signature Amortization

using Information Dispersal Algorithm) for stream authenti-

cation. SAIDA divides the stream into blocks of n packets.

Then, it hashes each packet and concatenates the hash val-

ues. Let us denote the result of this concatenation by H =

h(p1)||h(p2)|| · · · ||h(pn), and the number of packets that are ex-

pected to be received out of a block of n packets by nenough,

i.e., nenough = (1 − ρ)n. H along with a signature on h(H)

is divided into nenough (nenough ≤ n) pieces, IDA-coded into n

pieces and split over all the n packets of the block. Any nenough

pieces suffice to re-construct the hashes and the signature to

verify authenticity of the entire block. Note that the signa-

ture alone is sufficient for authenticating the whole block if

no loss occurs, but the concatenation of packet hashes is also

IDA-coded and carried by packets so that the block is still

verifiable if some packets are lost.

Computations needed by SAIDA to verify a block are

n hash computations over packets, one hash over the con-

catenation of packet hashes, one signature verification, and

one IDA-decoding. We ignore the cost of one IDA-decoding

per n packets, because there are efficient algorithms for era-

sure correction, such as Tornado codes [13] that use only

XOR operations and operate in linear time of the block size,

which can replace IDA-coding [14] in SAIDA. Hence, the

time it takes for a receiver to verify a block is tsig + (n⌈l/64⌉+

⌈shashn/64⌉)thash. The communication overhead of SAIDA

depends on the parameters of the IDA algorithm (or any other

FEC technique used instead), which we consider by nenough,

and is equal to (ssig + nshash)/nenough bytes per packet. The re-

ceiver needs to buffer at least nenough packets, which typically

is a significant fraction of n. Thus the receiver delay can be

considered n/α, which results in a total delay of 2n/α seconds

when summed to the sender delay of n/α.

As an enhancement on SAIDA, Park and Cho presented

eSAIDA [15]. In eSAIDA, one hash is designated for each

pair of adjacent packets, rather than one for each packet as in

SAIDA. This reduces the overhead, but will cause a packet to

be unverifiable if its couple is not received. Thus, a packet

in a block may also contain the hash value of its couple. The

fraction of packets containing their couple’s hash is parame-

terized by s (0 ≤ s < 1) as an input, which governs a tradeoff

between successful verification rate and communication over-

head. Computations needed by eSAIDA per each block are

(1+ s)n/2 hash computations over packets, one hash over the

concatenation of hashes of packet pairs, one signature veri-

fication, and one IDA-decoding that we neglect. Thus, the

time it takes for eSAIDA to verify a block is tsig + (⌈l/64⌉(1+

s)n/2 + ⌈shashn/128⌉)thash. The communication overhead of

eSAIDA is (ssig + shashn/2)/nenough + shashs bytes per block.

The receiver buffer size and the total delay in eSAIDA are

similar to those in SAIDA.

2.7. cSAIDA

Pannetrat et al. in [16] developed another improvement of

SAIDA, which we call cSAIDA because it significantly re-

duces the communication overhead of SAIDA. Recall that

in SAIDA, the concatenation of the packet hashes (H) along

with a signature on h(H) are FEC-coded (using the IDA al-

gorithm [14]) and distributed among the n packets of the

block. However, a considerable fraction of these packet

hashes can be computed from the received packets. Thus,

there is no need for the whole H to be transmitted. To achieve

this, cSAIDA uses FEC coding twice as follows. First, a

systematic erasure code is employed to encode H. A sys-

tematic erasure code encodes data pieces D1,D2, . . . ,Dn into

m (m ≥ n) pieces D′
1
,D′

2
, . . . ,D′m such that any subset of n

pieces are sufficient for reconstructing the original data and

the first n pieces of the encoded result are equal to the orig-

inal data. That is, Di = D′
i

(1 ≤ i ≤ n). In this case, the

extra redundancy pieces D′
n+1, . . . ,D

′
m are called parity check

pieces. Denoting the expected loss rate by ρ (0 ≤ ρ < 1),

4

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 15, 2009 at 14:33 from IEEE Xplore. Restrictions apply.

in cSAIDA, the n pieces of H are systematically FEC-coded

into ⌈n + ρn⌉ pieces H′1,H
′
2, . . . ,H

′
⌈n+ρn⌉

. Then, only parity

pieces H′
n+1
, . . . ,H′

⌈n+ρn⌉
and a signature on h(H) are concate-

nated, divided into ⌊n(1 − ρ)⌋ pieces, and FEC-coded again

into n pieces to be attached to all the n packets of the block.

At the receiver side, if ⌊n(1 − ρ)⌋ (i.e., nenough) packets are

successfully received, then ⌊n(1 − ρ)⌋ of the hash values, the

signature on h(H), and the parity pieces H′
n+1
, . . . ,H′

⌈n+ρn⌉
can

all be successfully retrieved. Thus, H can be reconstructed in

order to verify the whole block using the signature.

Computations needed by cSAIDA to verify a block are

equal to those of SAIDA, plus one extra FEC-decoding. Since

we ignore the cost of FEC-decoding, the time it takes cSAIDA

to verify a block is tsig + (n⌈l/64⌉ + ⌈shashn/64⌉)thash sec-

onds. The communication overhead of cSAIDA is (ssig + (n−

nenough)shash)/nenough bytes per packet. The total delay and re-

ceiver buffer size of cSAIDA are similar to those of SIADA

and eSAIDA.

2.8. TFDP

Habib et al. [17] presented TFDP (Tree-based Forward Di-

gest Protocol) for offline P2P streaming, i.e., distribution of

already-recorded media files. Similar to SAIDA, packets are

hashed, and packet hashes are concatenated and hashed again

to form the digest of the block. Unlike SAIDA, only one sig-

nature is generated for the whole stream, because the entire

file being streamed is given initially. Similar to tree chain-

ing [10], a Merkle hash tree [11] is built over blocks of the

stream, whose leaves are block digests. The root of this tree

is then signed. At the beginning of the streaming session,

the client receives the signed root of the tree along with a list

of senders. The client asks one of the senders for informa-

tion needed to verify a number (x) of blocks, which includes

hashes of packets of these blocks (FEC-coded), digests of the

x blocks, and auxiliary digests in the tree needed for recon-

structing and verifying the root digest. Having received the

digests, the client checks their genuineness by re-calculating

the root hash. Once verified, they can be used for verifying

authenticity of the x data blocks, one by one once they ar-

rive. The client repeats the same procedure for the next sets

of blocks. Therefore, the communication overhead is amor-

tized over a number of blocks.

Computations needed by TFDP for each block (assum-

ing x = 1 for simplicity) are n hash computations over pack-

ets, one hash over the concatenation of packet hashes, and

⌈log2 N⌉ hashes corresponding to nodes interior to the tree,

which takes (n⌈l/64⌉+ ⌈shashn/64⌉+ ⌈log2 N⌉⌈2shash/64⌉)thash

seconds. Thus, compared to computations of other schemes,

which all include one signature per block, TFDP’s compu-

tations are much cheaper. The communication overhead of

TFDP is at most equal to shash(n/nenough+(1+log2 N)/n) bytes

per packet, where N denotes the total number of blocks in the

file. This worst case communication overhead occurs when

0 50 100 150
0

300

600

900

1200

Block size in number of packets (n)

T
im

e
fo

r
a

b
lo

ck
(m

s)

Hash chaining,
augmented chain,
Butterfly graph

Tree chaining

SAIDA and cSAIDA

eSAIDA

TFDP

Block arrival duration

Fig. 1. Computation cost (time to verify a block of packets)

versus block size.

a client requests one block, i.e., x = 1. In TFDP, a receiver

needs to buffer at most n packets. In addition, since TFDP

works for offline streams only, the delay is not relevant.

3. EVALUATION OF AUTHENTICATION SCHEMES

In this section, we compare the stream authentication tech-

niques summarized in Section 2. We first conduct a numeri-

cal analysis of the computation cost and communication over-

head of the schemes. Then, we analyze their tolerance to

packet losses using simulation under different loss models.

3.1. Numerical Analysis

We present in Table 2 a summary of the analysis of all au-

thentication schemes presented in the previous section. Each

row corresponds to one authentication scheme, and the four

columns represent four of the five performance metrics de-

fined in Section 2.1. To shed some light on the performance

of the different authentication schemes, we numerically ana-

lyze their computation cost and communication overhead as

the number of packets in the group n varies. n is the most

important parameter that impacts the performance of the au-

thentication schemes. To conduct this analysis, we choose re-

alistic values for other parameters as summarized in Table 1

and discussed below.

Choosing Values of the Parameters for Simulation. We

first choose the values of packet size and packet sending rate.

To improve the performance of video streaming applications

over Internet, it is usually preferred to fit each application

data unit in an IP packet, which should be smaller than the

maximum transmission unit (MTU) [18]. Assuming a video

encoding rate of 320 kbps and an MTU of 1,500 bytes, the

data in a packet should be roughly 1,400 bytes. This takes

into account the RTP/UDP/IP headers and authentication in-

formation attached to each packet. Thus, the packet rate (α)

is equal to α =
320 kbps

1400 bytes
≃ 30 packets per second.

Next, we estimate the computation costs of the digital sig-

nature and hashing operations. Digital signature operations

5

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 15, 2009 at 14:33 from IEEE Xplore. Restrictions apply.

Table 2. Summary of the analysis of authentication schemes for nonscalable multimedia streams.

Scheme Computation cost (sec/block) Communication overhead

(byte/pkt)

Total delay

(sec)

Buffer size

(pkt)

Hash chain-

ing

tsig + thashn⌈l/64⌉
ssig

n
+ shash n/α 1

Augmented

chain

tsig + thashn⌈l/64⌉
nsigssig

n
+ 2shash n/α n

Butterfly

chaining

tsig + thashn⌈l/64⌉
nsig(ssig + nrowsshash)

n
+

shash(2n − nrows)

n

n/α n

Tree chain-

ing

tsig + thash

(

n⌈l/64⌉ + (⌈n log2 n⌉ −

n)⌈2shash/64⌉
)

ssig + ⌈log2 n⌉shash n/α 1

SAIDA tsig + thash

(

n⌈l/64⌉ + ⌈shashn/64⌉
) ssig + nshash

nenough

2n/α n

eSAIDA tsig + thash

(

⌈l/64⌉(1 + s)n/2 +

⌈shashn/128⌉
)

ssig + shashn/2

nenough

+ shashs 2n/α n

cSAIDA tsig + thash

(

n⌈l/64⌉ + ⌈shashn/64⌉
) ssig + (n − nenough)shash

nenough

2n/α n

TFDP thash

(

n⌈l/64⌉ + ⌈shashn/64⌉ +

⌈log2 N⌉⌈2shash/64⌉
)

shash(
n

nenough

+
1

n
+

log2(N/x)

nx
) — n

are often very costly, because they involve modular multi-

plication of very large numbers. Since we assume that the

signer is powerful enough, RSA [19] is an appropriate choice

as the digital signature scheme, because its verification can

be done efficiently when the public key is chosen properly,

e.g., a value of 65537 (216 + 1) for the public exponent. The

size of a 1024-bit RSA signature is ssig = 128 bytes. tsig in

Table 1 denotes the time it takes to verify a 1024-bit RSA

signature with such exponent. That is estimated for a typical

limited-capability device, by using a small fraction (5-10%)

of its CPU time. It is experimented in [20] that 1024-bit RSA

verification when the public exponent is 65537 takes about 5

milliseconds on an iPAQ H3630 with a 206 MHz StrongARM

processor, 32 MB of RAM, and running Windows CE Pocket

PC 2002. A similar experiment [21] measures 1024-bit RSA

verification time on a number of J2ME-enabled mobile de-

vices and reports that the time taken ranges from a few to

more than a hundred milliseconds. Since the authentication

scheme should not take more than a small fraction of CPU

time, e.g., 5-10%, and considering a safety margin, we took

the value tsig = 500 millisecond in Table 1. For the hash-

ing algorithm, SHA-1 [22] and MD5 [23] are two popular

one-way hash functions, both of which operate on blocks of

512 bits. MD5 has higher performance and smaller digest

size, but some successful cryptanalysis have been done on

MD5 and algorithms have been proposed for finding colli-

sions [24, 25]. Although these cryptanalysis on MD5 are far

from being practical for breaking a system in real-time, we

30 60 90 120 150
0

40

80

120

160

Block size in number of packets (n)

O
ve

rh
ea

d
p
er

p
a
ck

et
(b

y
te

s)

Hash chaining

Augmented chain

Butterfly graph

Tree chaining

SAIDA

eSAIDA

cSAIDA

TFDP

Fig. 2. Communication overhead (bytes per packet) versus

block size.

chose SHA-1 as the hash algorithm for our evaluations. The

digest size shash for SHA-1 equals to 20 bytes.

Results of the Analysis. We plot in Figure 1 the com-

putation costs for all considered authentication schemes as n

varies from 0 to 150 packets. The figure shows that the TFDP

scheme is more efficient than the others. This is because it

does not verify a digital signature per each block. Recall,

however, that to build the hash tree used in TFDP, the whole

stream needs to be available. This makes TFDP only suitable

for on-demand streaming of pre-encoded video streams.

In Figure 1, we also plot the time it takes for a block of

packets of size n to arrive at the receiver, which is computed

from the packet generation rate α. Clearly, the block arrival

time should be larger than the block verification time. Oth-

6

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 15, 2009 at 14:33 from IEEE Xplore. Restrictions apply.

0 0.1 0.2 0.3 0.4 0.5
0.6

0.7

0.8

0.9

1

Loss ratio

V
er

ifi
ca

ti
o
n

ra
te

Augmented chain
Butterfly graph
SAIDA
eSAIDA (s = 0)
eSAIDA (s = 0.5)
cSAIDA
TFDP

Fig. 3. Verification rate versus packet loss ratio under the

bursty loss model.

erwise, the receiver will not have enough processing capacity

to verify the authenticity of packets in real time. Therefore,

by looking at Figure 1, we notice that small block sizes may

not be suitable for all authentication schemes except TFDP.

This implies that a minimum block size is required to support

devices with limited processing capacity. For example, for

the data used in producing Figure 1, a block size of approxi-

mately 100 packets would be needed to safely use any of the

authentication schemes. This also indicates that the receiver

needs to allocate a buffer of size at least 100 packets for most

of the schemes (see buffering requirements in Table 2).

Next, we plot the per-packet communication overhead

against the block size n for all authentication schemes in

Figure 2. The communication overhead is the number of ad-

ditional bytes added to each packet to implement the authen-

tication scheme. The figure shows that the cSAIDA authen-

tication scheme imposes the least amount of communication

overhead. Moreover, the per-packet overhead stabilizes for

block sizes greater than 50 packets for all schemes, except for

the simple tree chaining scheme in which the overhead keeps

increasing as the block size increases.

3.2. Simulation

Simulation Setup. We have implemented all authentication

schemes described in Section 2 in a simulator to study the

impact of packet losses on their performance. The main per-

formance metric used is the packet verification rate, which is

the fraction of packets successfully verified over all received

packets when packets carrying the authentication information

could be lost. Notice that we are analyzing the loss tolerance

for each authentication scheme, not the loss tolerance of the

video decoder which may employ various error concealment

methods.

We consider two common models for packet losses:

bursty and random. The bursty loss model is typical in wired

0 0.1 0.2 0.3 0.4 0.5
0.2

0.4

0.6

0.8

1

Loss ratio

V
er

ifi
ca

ti
o
n

ra
te

Augmented chain
Butterfly graph
SAIDA
eSAIDA (s = 0)
eSAIDA (s = 0.5)
cSAIDA
TFDP

Fig. 4. Verification rate versus packet loss ratio under the

random loss model.

networks where a sequence of packets may get dropped

because of a buffer overflow in one of the routers on the

network path from sender to receiver. Whereas the random

loss model is usually used to capture bit errors in wireless

environments. Notice that some multimedia streaming tech-

niques over wired networks use interleaved packetization of

data, which can change the observed loss pattern at the re-

ceiver from bursty to random. Thus, it is important to analyze

the performance of the authentication schemes under both

models of packet losses.

For simulating bursty packet losses, we implemented a

two-state Markov chain, as it has been shown to accurately

model bursty losses [26]. In the two-state Markov chain, one

state indicates that a packet is received and the other indicates

the packet is lost. Transition probabilities between these two

states are computed based on the target average loss ratio and

the expected burst length using the method in [12].

Values of the other parameters used in the simulation are

listed in Table 1.

Simulation Results. The results for the packet verification

rates versus average packet losses are given in Figure 3 for the

bursty loss model, and in Figure 4 for the random loss model.

The hash chaining and tree chaining schemes are not included

in these figures, since the former one does not tolerate any

packet loss and the latter always has a loss resilience of 100%;

each packet in tree chaining carries all information needed for

its verification and does not depend of arrival of the others. In

Figures 3 and 4, we fixed the communication overhead to 40

bytes per packet –except for the Augmented chain which has

42 bytes since it cannot work with 40 bytes– as we shortly see

how, and n = 128 packets.

A few observations can be made on these two figures.

First, cSAIDA clearly exhibits the best resilience to the loss

under both bursty and random loss models. For example, for

bursty losses with an average loss rate of 40% in the authen-

7

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 15, 2009 at 14:33 from IEEE Xplore. Restrictions apply.

tication information, about 99% of the received packets can

be verified. Second, the loss tolerance of the authentication

schemes does indeed depend on the loss model, not only on

the average loss rate. For example, with an average loss rate

of 40%, the SAIDA scheme can verify up to 79% of the re-

ceived packets under bursty losses, while this ratio is 96%

under random losses. We now briefly discuss the reasons un-

derlying these behaviors in the figures.

Recall that loss is counteracted either by FEC-coding or

by replicating some authentication information, i.e., digests

and block signature. Let us call the fraction n/nenough the FEC

factor. Depending on the scheme, the overhead of 40 bytes per

packet results in different FEC factors for FEC-based schemes

(SAIDA variants and TFDP) or different number of replica-

tions for replication-based ones (Augmented chain and But-

terfly graph). For SAIDA, the 40 bytes per packet leads to

a FEC factor of 1.9, which means resistance to loss of up to

47% of a block. Calculation of FEC factors for cSAIDA and

TFDP with 40 bytes per packet follow the same procedure.

eSAIDA couples every pair of packets together, and also at-

taches the hash value of a packet to its couple packet with a

probability parameter s. The 40 bytes per packet for eSAIDA

with s = 0 and s = 0.5 leads to the high FEC factors of 3.6

and 2.7, respectively. Thus, with losses up to 72% and 63%,

the block signature and hash values of packet couples can be

retrieved. However, since loss of a packet threatens verifi-

ability of its couple, verification ratio of eSAIDA is not as

high as cSAIDA even though its FEC factor is almost equal

or higher. Augmented chain has a fixed number of edges and

allows customization of loss resilience versus communication

overhead only by varying the number of replications of the

signature packet. The 42 bytes per packet allows it to repli-

cate the signature twice within the block. The Butterfly graph

allows customizing the communication overhead by replicat-

ing signature as well as varying the number of edges of the

graph. These two parameters are in tradeoff with each other.

We perform a local search to find the best balance for that

in our simulations, given a fixed amount of communication

overhead.

With 40 bytes per packet, the FEC factor of cSAIDA

would be 2.8 and up to 65% loss is tolerated. This can be

observed in Figure 4, which depicts that with random loss

up to 50%, cSAIDA keeps the verification rate almost 1.

However, the effect of bursty losses is different and more

serious, as expected. Intuitively, if a loss of ratio 50% has a

random pattern, for each block almost half of the packets are

lost, which is easily resisted by the FEC factor of 2.8. On

the other hand, with bursty loss of the same average ratio, a

significant fraction of packets of a block could be lost during

bursts, while some other blocks observe much less losses.

This results in unverifiability of a few blocks, since the au-

thentication information for those blocks cannot be retrieved

from the received packets at all. This unverifiability can be

seen in Figure 3, even though the loss ratio 50% is less than

the ratio 65% we prepared the stream for. That is why the

FEC-based schemes perform better under random loss model

compared to bursty loss.

We can also notice the different decreasing behavior of

FEC-based schemes (SAIDA variants and TFDP) with the

two different loss patterns. With random losses, the verifi-

cation rate sharply falls if the loss ratio exceeds the ratio sup-

ported by the FEC factor. This is clear in the plot for SAIDA

and TFDP; same phenomenon happens to cSAIDA at 65%

loss that is not shown in the figure. With bursty loss, on the

other hand, the decreasing behavior is more smooth, because

according to the above implication, there is no explicit loss

ratio value, below which is easily tolerated and beyond which

it suddenly gets too hard to resist.

The third point that can be noticed is the linear decreas-

ing behavior of eSAIDA with random loss. The 40 bytes per

packet allows eSAIDA with s = 0 (no packet hash value is

attached to its couple) and with s = 0.5 (hash of half of pack-

ets is attached to their couples) to have FEC factors of 3.6

and 2.7, which resist 72% and 63% loss, respectively. That

means, a random loss of up to 50% (Figure 4) is easily toler-

ated by them. Hence, the decrease in verification ratio is not

because of being unable to retrieve the FEC-coded authenti-

cation information of a block. Rather, the unverifiability of

some packets, say px, is only because their couple, say px+1,

is lost, and the hash of px+1 is not attached to px, so the hash

value h(px||px+1) cannot be reconstructed to be verified. The

more the loss ratio, the more the number of packets that are

missing the hash of their couples. Also, it can be observed

that with s = 0.5, this increase in unverified packets ratio is

less, as can be expected. With bursty loss, on the other hand,

both packets of a pair are more likely to be lost together. That

is, with each burst of loss, at most two packets can be left

unverifiable: the ones right before and right after the burst be-

gins and ends. Thus, unverifiability can be both due to not

being able to retrieve authentication information of a block

(which was very unlikely with random loss below the loss ra-

tio supported by the FEC factor) and not being able to verify

a packet because its couple is missing. Therefore, this phe-

nomenon, i.e., linear decrease of verification rate, does not

take place.

We can also notice that, unlike most of the schemes, the

Augmented chain performs worse under random loss model

compared to the bursty one. That can be attributed to the

structure of the augmented chain, which is designed to have

least unverifiability effect with bursty losses. With each burst

of loss, up to a few packets can be left unverifiable in the aug-

mented chain. Thus, when each burst consists of one packet,

i.e., random loss, the ratio of unverifiable packets increases.

Also, the decreasing behavior of Augmented chain in Fig-

ures 3 and 4 is not so straight, which is most probably be-

cause we obtain the parameters p and a for the Augmented

chain scheme (see Section 2.3) by a local search for best ver-

ification rate, given a fixed amount of overhead.

8

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 15, 2009 at 14:33 from IEEE Xplore. Restrictions apply.

0 10 20 30 40 50 60
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Communication overhead per packet (bytes)

V
er

ifi
ca

ti
o
n

ra
te

Augmented chain
Butterfly graph
SAIDA
eSAIDA (s = 0)
eSAIDA (s = 0.5)
cSAIDA
TFDP

Fig. 5. Verification rate versus communication overhead.

Finally, we fix the average loss rate at 20% with bursty

losses, and we vary the communication overhead per packet.

That is done either by varying the FEC factor (for FEC-based

schemes) or by changing the number of replication of the sig-

nature (for replication-based schemes). Then, we analyze the

verification rates for different values of the per-packet over-

head. The results for all authentication schemes are given in

Figure 5. The figure confirms the efficiency of the cSAIDA

scheme in carefully minimizing the number of bytes needed

to encode the authentication information. With less than 30

additional bytes per packet, cSAIDA can achieve 100% ver-

ification rate under bursty losses with an average loss rate of

20%. Whereas other schemes need almost double this number

of overhead bytes to achieve comparable loss resilience.

3.3. Summary and Discussion

Our analysis and simulation with realistic parameters and in

different environments indicate that cSAIDA—the improved

version of the SAIDA authentication scheme proposed in

[16]—imposes the least amount of communication overhead

and achieves the best tolerance to the loss of the authenti-

cation information. cSAIDA capitalizes on the fact that not

all hash values of packets in a block need to be transmitted,

since a large portion of these hashes can be reconstructed

from the received packets. cSAIDA, however, requires a

digital signature verification per block, which is costly. The

TFDP [17] scheme, on the other hand, is very efficient in

terms of computation cost, but only for offline streams. That

is because TFDP performs one digital signature verification

for the whole stream, which requires the whole stream to be

available. Therefore, TFDP is not suitable for live streaming

applications where packets are generated online in real time.

In addition, as shown in Table 2, most of the authen-

tication schemes for nonscalable video streams require the

receiver to buffer a block of packets, which needs memory

space. In case that the receiver has a limited memory space,

the simple hash chaining [6] or tree chaining [10] authentica-

tion schemes can be used.

Furthermore, we mention that some streaming applica-

tions employ TCP to reliably transport data from the sender

to receivers. TCP could be a possible option for streaming if

there are infrequent packet losses and the round trip time is

small. In this case, the simple hash chaining scheme would

suffice, since loss resiliency and its associated complex oper-

ations as in other authentication schemes are not needed.

4. CONCLUSIONS

We have analyzed and compared the most important solu-

tions proposed in the literature for the problem of verifying

the authenticity of multimedia streams. We carried out nu-

meric analyses and simulations for all authentication schemes

to study their performance in terms of computation cost, com-

munication overhead, delay, receiver buffer size, and toler-

ance to packet losses. The results from our study can be used

to understand the merits and shortcomings of each authenti-

cation scheme. Therefore, our results provide guidelines in

choosing the appropriate authentication scheme for various

multimedia streaming applications. In addition, by scrutiniz-

ing the details of each authentication scheme and contrast-

ing them to each other in different environments, our results

could stimulate more research to improve the performance of

these authentication schemes. We considered authentication

schemes for nonscalable multimedia streams. We found that

the scheme proposed in [16] (denoted by cSAIDA) imposes

the least amount of communication overhead and achieves

the best tolerance to the loss of authentication information.

cSAIDA, however, requires one digital signature verification

per block, which is costly. The TFDP [17] scheme, on the

other hand, is efficient in terms of computation cost, but only

for offline streams. That is because TFDP performs one digi-

tal signature verification for the whole stream, which requires

the whole stream to be available. Therefore, TFDP is not suit-

able for live streaming applications where packets are gener-

ated online in real time.

5. REFERENCES

[1] Y. Challal, H. Bettahar, and A. Bouabdallah, “A taxon-

omy of multicast data origin authentication: Issues and

solutions,” IEEE Communications Surveys and Tutori-

als, vol. 6, no. 3, pp. 34–57, July 2004.

[2] G. Sullivan and T. Wiegand, “Video compression—

from concepts to the H.264/AVC standard,” Proceed-

ings of the IEEE, vol. 93, no. 1, pp. 18–31, January

2005.

[3] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of

the scalable video coding extension of the H.264/AVC

standard,” IEEE Transactions on Circuits and Systems

for Video Technology, vol. 17, no. 9, pp. 1103–1120,

September 2007.

9

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 15, 2009 at 14:33 from IEEE Xplore. Restrictions apply.

[4] P. Atrey, W. Yan, and M. Kankanhalli, “A scalable sig-

nature scheme for video authentication,” Multimedia

Tools and Applications, vol. 34, pp. 107–135, July 2007.

[5] A. Sun, D. He, Z. Zhang, and Q. Tian, “A secure and

robust approach to scalable video authentication,” in

Proc. of IEEE International Conference on Multimedia

and Expo (ICME’03), Baltimore, MD, July 2003, vol. 2,

pp. 209–212.

[6] R. Gennaro and P. Rohatgi, “How to sign digi-

tal streams,” in Proc. of Advances in Cryptology

(CRYPTO’97), Santa Barbara, CA, August 1997, vol.

1294 of LNCS, pp. 180–197, Springer-Verlag.

[7] P. Golle and N. Modadugu, “Authenticating streamed

data in the presence of random packet loss,” in Proc. of

Network and Distributed Systems Security Symposium

(NDSS’01), San Diego, CA, February 2001, pp. 13–22.

[8] Z. Zhang, Q. Sun, and W. Wong, “A proposal of

butterfly-graph based stream authentication over lossy

networks,” in Proc. of IEEE International Conference

on Multimedia and Expo (ICME’05), Amsterdam, The

Netherlands, July 2005, pp. 784–787.

[9] Z. Zhishou, Q. Apostolopoulos, J.and Sun, S. Wee, and

W. Wong, “Stream authentication based on generalized

butterfly graph,” in Proc. of IEEE International Confer-

ence on Image Processing (ICIP’07), San Antonio, TX,

September 2007, vol. 6, pp. 121–124.

[10] C. Wong and S. Lam, “Digital signatures for flows and

multicasts,” IEEE/ACM Transactions on Networking,

vol. 7, no. 4, pp. 502–513, August 1999.

[11] R. Merkle, “A certified digital signature,” in Proc.

of Advances in Cryptology (CRYPTO’89), Santa Bar-

bara, CA, August 1989, vol. 435 of LNCS, pp. 218–238,

Springer-Verlag.

[12] J. Park, E. Chong, and H. Siegel, “Efficient multicast

stream authentication using erasure codes,” ACM Trans-

actions on Information and System Security, vol. 6, no.

2, pp. 258–285, May 2003.

[13] M. Luby, M. Mitzenmacher, M. Shokrollahi, D. Spiel-

man, and V. Stemann, “Practical loss-resilient codes,”

in Proc. of ACM Symposium on Theory of Computing

(STOC’97), El Paso, TX, May 1997, pp. 150–159.

[14] M. Rabin, “Efficient dispersal of information for secu-

rity, load balancing, and fault tolerance,” Journal of the

ACM, vol. 36, no. 2, pp. 335–348, April 1989.

[15] Y. Park and Yookun Cho, “The eSAIDA stream au-

thentication scheme,” in Proc. of International Con-

ference on Computational Science and Its Applications

(ICCSA’04), Assisi, Italy, May 2004, vol. 3046 of

LNCS, pp. 799–807.

[16] A. Pannetrat and R. Molva, “Efficient multicast packet

authentication,” in Proc. of Network and Distributed

Systems Security Symposium (NDSS’03), San Diego,

CA, February 2003.

[17] A. Habib, D. Xu, M. Atallah, B. Bhargava, and

J. Chuang, “A tree-based forward digest protocol to ver-

ify data integrity in distributed media streaming,” IEEE

Transactions on Knowledge and Data Engineering, vol.

17, no. 7, pp. 1010–1014, July 2005.

[18] S. Wenger, M. Hannuksela, T. Stockhammer, M. West-

erlund, and D. Singer, “RFC 3984; RTP payload format

for H.264 video,” IETF, February 2005.

[19] R. Rivest, A. Shamir, and L. Adleman, “A method for

obtaining digital signatures and public-key cryptosys-

tems,” Communications of the ACM, vol. 21, no. 2, pp.

120–126, Februrary 1978.

[20] P. Argyroudis, R. Verma, H. Tewari, and D. O’Mahony,

“Performance analysis of cryptographic protocols on

handheld devices,” in Proc. of IEEE International

Symposium on Network Computing and Applications

(NCA’04), Cambridge, MA, September 2004, pp. 169–

174.

[21] S. Tillich and J. Groschdl, “A survey of public-key cryp-

tography on J2ME-enabled mobile devices,” in Proc. of

International Symposium on Computer and Information

Sciences (ISCIS’04), Antalya, Turkey, October 2004,

vol. 3280 of LNCS, pp. 935–944.

[22] NIST, “Federal information processing standards (FIPS)

publication 180: Secure hash standard,” National Insti-

tute of Standards and Technology (NIST), May 1993.

[23] R. Rivest, “RFC1321; the MD5 message-digest algo-

rithm,” IETF, April 1992.

[24] V. Klima, “Finding MD5 collisions a toy for a note-

book,” Cryptology ePrint Archive: Report 2005/075,

March 2005.

[25] V. Klima, “Tunnels in hash functions: MD5 collisions

within a minute,” Cryptology ePrint Archive: Report

2006/105, April 2006.

[26] M. Yajnik, S. Moon, J. Kurose, and D. Towsley, “Mea-

surement and modeling of the temporal dependence in

packet loss,” in Proc. of IEEE INFOCOM’99, New

York, NY, March 1999, vol. 1, pp. 345–352.

10

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 15, 2009 at 14:33 from IEEE Xplore. Restrictions apply.

