Horus: Granular In-Network Task Scheduler for Cloud Datacenters

Parham Yassini*!, Khaled Diab*2, Saeced Zangeneh1 and Mohamed Hefeeda!

LSchool of Computing Science, Simon Fraser University, Burnaby, BC, Canada
2Hewlett Packard Labs, United States

Abstract

Short-lived tasks are prevalent in modern interactive data-
center applications. However, designing schedulers to assign
these tasks to workers distributed across the whole datacenter
is challenging, because such schedulers need to make deci-
sions at a microsecond scale, achieve high throughput, and
minimize the tail response time. Current task schedulers in the
literature are limited to individual racks. We present Horus, a
new in-network task scheduler for short tasks that operates at
the datacenter scale. Horus efficiently tracks and distributes
the worker state among switches, which enables it to schedule
tasks in parallel at line rate while optimizing the scheduling
quality. We propose a new distributed task scheduling policy
that minimizes the state and communication overheads, han-
dles dynamic loads, and does not buffer tasks in switches. We
compare Horus against the state-of-the-art in-network sched-
uler in a testbed with programmable switches as well as using
simulations of datacenters with more than 27K hosts and thou-
sands of switches handling diverse and dynamic workloads.
Our results show that Horus efficiently scales to large data-
centers, and it substantially outperforms the state-of-the-art
across all performance metrics, including tail response time
and throughput.

1 Introduction

The slowdown of Moore’s law and the end of Dennard scaling
have changed how cloud datacenters deploy and manage their
hardware resources and software services. Instead of continu-
ally increasing the frequency of CPU cores, microprocessor
vendors have been shipping more cores per processor with
only slight frequency increases. As a result, the available num-
ber of cores in datacenters has been steadily and substantially
increasing over the last several years [30]. From the software
perspective, numerous interactive and user-facing datacenter
applications have been deployed. Examples of such latency-
sensitive applications include key-value stores [11-13], mul-
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timedia applications [16, 34], distributed interactive analyt-
ics [49, 56], network function virtualization [56], and web
search [9,21]. To take advantage of the availability of many
cores and reduce deployment costs, designers of these large-
scale applications have recently started to embrace various
practices such as micro-services and function-as-a-service.

The emerging hardware trends and the requirements of
recent large-scale applications have increased the demands
for fine-grain management of the datacenter computing re-
sources. This is sometimes referred to as the granular com-
puting paradigm [52]. In this paradigm, many applications are
decomposed into large numbers of short-lived tasks, which
are executed in parallel on 100°s—1000’s of cores that poten-
tially span multiple server racks. Each task typically has a
tight response time, in the order of 10’s—100’s of microsec-
onds [20,52]. And since the performance of applications is
affected by their slowest tasks, granular computing platforms
strive to minimize the task tail response time [20]. Granu-
lar computing platforms are also expected to support high
scheduling throughput as the number of concurrent tenants
and their application demands are rapidly growing [69].

Granular computing can be viewed as the generalization
of recent initiatives from academia and industry for offering
more flexible, finer-grain, cost-effective, and shorter latency
computing infrastructures. For example, Amazon Lambda [2]
handles task execution times in the order of 100’s of millisec-
onds using the Firecracker microVMs [14]. Apache Open-
Whisk [1] offers a serverless framework to seamlessly execute
functions while handling the provisioning of the underlying
computing resources. Efforts from Microsoft [68] and oth-
ers [45,70] have introduced mechanisms to reduce the cost of
cold-starts in serverless frameworks to support low-latency ap-
plications. Furthermore, recent operating system schedulers,
e.g., [43,64], offer support for microsecond-scale tasks within
individual servers. Granular computing aims at pushing the
boundaries even further, by efficiently supporting microsec-
ond tasks at a datacenter scale. This paper contributes to the
realization of granular computing.

As illustrated in Figure 1, datacenter operators deploy mul-



tiple software components to manage applications and com-
puting resources [1,71, 73], including a resource manager,
worker pools, and task schedulers. The resource manager al-
locates a worker pool for each application according to its
required level of fault tolerance and performance using mech-
anisms such as [43, 68, 70]. Then, a task scheduler assigns
each submitted task of an application to a worker from its
worker pool. Resource managers, such as YARN [72] and
Mesos [39], decouple resource allocation from task schedul-
ing. This enables deploying multiple task schedulers targeting
different application needs. This paper presents a granular
task scheduler designed for latency-sensitive applications.

Designing a granular task scheduler is, however, challeng-
ing because such a scheduler needs to make decisions at a
microsecond scale, achieve high throughput, and minimize
the task tail response time. Minimizing the tail response time
requires balancing the load across workers, which is difficult
to achieve because of the substantial diversity in the task exe-
cution times and the scale of modern datacenter applications
that could have thousands of workers distributed across many
racks. Further, since tasks are short-lived, the load on workers
is highly dynamic. Thus, naively tracking the load on workers
could result in substantial communication, processing, and
memory overheads on the scheduler.

Current software schedulers, e.g., Borg [73], Twine [71],
and Atoll [70], introduce significant network and process-
ing delays. These delays are sometimes larger than the task
execution time itself, which makes software schedulers un-
suitable for short-lived tasks. In addition, scheduling granular
workloads requires a substantial amount of computing re-
sources [66, 73], which is difficult to realize using traditional
application-layer schedulers. For example, consider a system
with 20K tasks and a task mean execution time of 100 us. The
system would need to make 200M scheduling decisions per
second and handle around the same number of packets for pro-
cessing the state update messages. This scale of throughput is
not possible to achieve using software schedulers [66].

In-network schedulers, on the other hand, schedule tasks
in the data plane as packets carrying these tasks pass through
switches. Thus, they significantly reduce the scheduling la-
tency and, in turn, the response time of tasks. However, recent
in-network schedulers, e.g., [48, 50, 78], can only schedule
tasks within individual racks. Therefore, they cannot meet
the growing demand of large-scale applications that require
executing thousands of tasks across multiple racks.

To support current latency-sensitive applications and future
granular computing platforms, we propose Horus, the first
datacenter-wide in-network scheduling system in the litera-
ture, to the best of our knowledge. One of our key insights in
designing Horus is that scheduling operations should run at
different time scales for efficiency and scalability. For exam-
ple, assigning a task to a worker should be done at a microsec-
ond scale, whereas tracking the load on workers can occur
at a millisecond scale. Leveraging this insight, we divide the
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Fig. 1: Overview of resource management in datacenters.

operations of Horus into two components. The first assigns
tasks to workers, and the second tracks, aggregates, and main-
tains the load on workers. Horus offloads both components to
switches in the network and optimizes them independently,
which enables efficient scheduling of granular tasks.
The contributions of this paper are as follows.
* We propose an in-network task scheduling architecture for
latency-sensitive datacenter applications, in §3.

* We present a new scheduling policy that does not queue
tasks at switches and runs at line rate, in §3.3.

* We design multiple data structures to realize the proposed
policy in modern programmable switches, which have a re-
stricted programming model and limited memory resources.

* We propose efficient mechanisms to distribute the load in-
formation among schedulers, which maintain the freshness
of load values and minimize overheads on switches, in §3.4.

e We implement Horus in a testbed using a Tofino switch
and compare it against the state-of-art in-network scheduler,
which is RackSched [78], in §4. In single-rack settings, our
results show that Horus reduces the tail response time by
up to 75% and increases the throughput by up to 1.9X com-
pared to RackSched, for the considered realistic workloads.
Since RackSched does not support multiple racks, we show
that Horus substantially outperforms two natural extensions
of RackSched in multi-rack settings.

* We also conduct large-scale simulations for datacenters
with more than 27K hosts and thousands of switches han-
dling diverse and dynamic workloads, in §5. Our results
show that Horus outperforms RackSched and its extensions
across all performance metrics. We also show the robustness
of Horus against failures, packet losses, and link delays.

Due to space limitations, some details and evaluation results

are presented in the Appendix.

2 Background and Related Work

2.1 Task Scheduling in Datacenters

Granular applications, e.g., key-value stores and microser-
vices, create many short-lived tasks with diverse execution



times, ranging from tens of microseconds to hundreds of mil-
liseconds or even longer. These tasks need to be assigned to
workers for execution. Recent intra-server schedulers, e.g.,
Shinjuku [43] and ZygOS [64], support microsecond tasks.
These task schedulers are, however, limited to single servers.

A natural question is then: can we use load balancers with
server schedulers to scale beyond individual servers? Zhu et
al. [78] showed that this policy is ineffective and may yield
long tail response time. This is because most load balancers,
e.g., [19, 33, 57], typically make their decisions based on
hashing various fields in the packets. Zhu et al. [78] proposed
RackSched to extend task scheduling to the rack level, where
the top-of-rack (ToR) switch approximates the load on servers
within its rack and assigns tasks to them accordingly.

Scaling task scheduling beyond single racks is an important
and challenging research problem. There are many practical
scenarios where applications require and/or benefit from exe-
cution on cores across racks. For example, running applica-
tions across racks in different fault domains improves their
fault tolerance and availability [4,7,22]. This is especially crit-
ical for latency-sensitive applications since most of them are
user-facing. A recent study from Facebook [6] indicates that
the traffic of many latency-sensitive applications is mostly not
rack-local. In addition, in public datacenters, it is not uncom-
mon that tenants’ VMs are placed on different racks due to
unavailable resources at the time or for improved fault toler-
ance [40]. Therefore, there is a need to run tasks across racks
in the datacenter. However, simple extensions of rack-level
schedulers that use load balancers to distribute tasks to racks
and then to servers may lead to long tail response time for
the same reason mentioned above: load balancers are oblivi-
ous to the current queue lengths of workers, which could be
impacted by the diversity in the task execution times.

To demonstrate the limitations of using the state-of-the-
art approach, which is RackSched [78], for scheduling tasks
across racks, we conduct simulations with representative
workloads and datacenter configurations similar to prior
works [43,54,67,78]; the details of our simulations are given
in §5.1. Briefly, we simulate a tree-based datacenter with
27,648 servers, each having 32 cores, and we consider large
workloads and diverse task distribution times and arrival pat-
terns. We implemented the scheduling policy of RackSched,
which we refer to as RS. We complemented RS with a dat-
acenter load balancer that uniformly (at random) distributes
tasks to racks. Tasks are then scheduled to servers within
racks using RS. We refer to this scheduling system as RS-LB.

In addition, to show the potential performance gains, we
simulate a global version of the Join Shortest Queue (JSQ)
policy. JSQ tracks queue lengths at individual servers, and it
schedules tasks to the server with the shortest queue. As ana-
lyzed in [79], JSQ produces optimal results across different
performance metrics, e.g., waiting time and throughput, and
for tasks with low- and high-dispersion execution times. We
simulate an ideal/theoretical version of JSQ that immediately

%10° *JSQ ®RS-LB ) x10° *JSQ' ®RS-LB

o
=3
o
=3

by
o
»
=)

1
1
1
é
/

.- _

g
(=]
[S8)
=
~
"

J :
F
Q-lﬁ.'g.*..*..*.*-*-'*

5 25 75 99 5 25

99% Resp. Time (pus)
S
99% Resp. Time (us)

=3
=
o
=

75 99

50 50
Load (%) Load (%)

(a) Exponential (b) Bimodal

Fig. 2: Limitations of current rack-level task scheduling sys-
tems when scaled to the whole datacenter.

updates queue lengths to show the performance bounds. The
results of our simulation are presented in Figure 2 for two
representative task execution time distributions: Exponential
and Bimodal. The figure plots the tail (99%) response time as
the normalized workload increases for different task schedul-
ing systems. The results reveal the substantial performance
gap between JSQ and RS-LB. For example, in Figure 2a, the
tail response time increases rapidly as the normalized load
exceeds 50% when RS-LB is used, whereas it stays low for
JSQ even for a load around 90%.

Although JSQ theoretically provides optimal results, it is
not possible to implement in practice for large-scale datacen-
ters, especially for microsecond tasks. This is because JSQ
requires knowing the queue lengths at all servers, which takes
time to either probe servers (one RTT) or wait for servers to
send their updates (which may arrive asynchronously and/or
delayed/aggregated). Thus, by the time the scheduler deter-
mines the server with the least load, the situation might have
already changed. In addition, JSQ and similar global policies
may cause task herding, which occurs because once a server
is reported to have the least load, the scheduler may keep send-
ing tasks to it until the server sends an update. Since updates
may take a relatively long time compared to task execution
times, a burst of too many tasks could have already been
sent to the server, which leads to severe load imbalance and
long response time. Finally, implementing JSQ would require
extensive computation resources at the scale of a datacenter.

2.2 Related Work

Software Schedulers. Traditional schedulers are designed as
software processes that run on one or multiple servers [37,
62,73]. These schedulers focus on service times in the range
of seconds to hours, and they can make complex decisions
and support a wide range of resource allocation policies. To
scale up and support higher throughput, distributed schedulers
have been proposed [28, 29, 31, 46, 60]. The shortest task
service time supported by distributed schedulers is still in
the order of hundreds of milliseconds [31, 52, 60]. This is
because of the relatively long time such schedulers take to



allocate tasks to servers. Sparrow [60] and Eagle [28], for
example, maintain queues of submitted tasks at schedulers.
Each scheduler then pushes reservation probes to randomly-
selected workers. When a worker becomes idle, it pulls the
next reserved task from that scheduler’s queue, introducing a
scheduling delay of at least two RTTs.

In contrast, Horus is designed for granular tasks with execu-
tion times in the order of tens of us, which can be smaller than
a single RTT [20]. Horus is also designed to support millions
of scheduling decisions per second. In addition, multiple prior
works, e.g., YARN [72] and Mesos [39], decouple resource
allocation from task scheduling. Horus can complement such
works by offering fine-grain task scheduling on the allocated
resources for large-scale datacenter applications.
In-network Computing. Emerging programmable switches
enable offloading of various operations and functions to
the network to achieve high throughput and low latency for
datacenter applications, such as caching [41], data aggrega-
tion [65], concurrency control [53], and lock management
[77].

Similarly, in-network task scheduling has been considered
before [48, 50, 78]. RackSched and prior in-network sched-
ulers, however, support only single racks. In contrast, Horus
scales to multiple racks across the whole datacenter network.
RackSched [78] was shown to outperform prior works, and
it is considered state-of-the-art. Thus, we compare a simple
version of Horus against RackSched in single racks. We also
extend RackSched to support scheduling across multiple racks
and compare Horus against these extensions.

3 Proposed In-Network Scheduling

In this section, we first summarize the principles that guided
the design of Horus. Then, we describe the proposed in-
network task scheduling approach. This is followed by de-
scribing our efficient methods for distributing state among
various components of Horus. Finally, we describe various
deployment options for Horus. Due to space limitations, we
present some details in the Appendix, including handling fail-
ures and packet losses (§A.3), supporting multi-packet tasks
(§A.4), overhead analysis (§A.5), and pseudo code (§A.6).

3.1 Design Principles

The design of Horus is based on the following principles:

* PI: Load-aware Scheduling. The load on workers in dat-
acenters is subject to spatial and temporal variations due
to resource allocation policies, application requirements,
and the seasonality of workloads [71,73]. And as shown
in prior works, e.g., [78], and by our simulations in §2.1,
not considering the actual worker load in the scheduling
decisions may lead to long tail response times. We propose
a zero-queue scheduling system that efficiently tracks the
load of workers, minimizes the task tail response time, and

avoids task herding. By not buffering tasks in switches, the
memory requirements become independent of the task rate,
which helps Horus to scale.

e P2: Lazy State Update. Horus makes scheduling decisions
based on the maintained state without queuing tasks. Thus,
updating this state is important to reflect the latest changes.
This, however, may increase the communication overhead
and limit scalability. Our idea is that a switch may not
need to immediately update its state if it can make accurate
decisions using its current state. Our approach identifies
when an update is needed by calculating a drift between
actual load values and the load information available at
schedulers, and it only updates the state of a scheduler when
the drift may negatively impact the scheduling quality.

* P3: Localized State. Horus avoids the complexity of repli-
cating state across all switches in the datacenter by logically
grouping the distributed schedulers and maintaining the
state within each group. This allows each scheduler to up-
date its view of a subset of workers without querying other
schedulers. Localization of state enables Horus to further
reduce the overheads on switches, achieve high throughput,
and handle failures efficiently.

3.2 Overview and Workflow

Overview. Horus is a distributed, in-network, granular task
scheduling architecture designed for datacenters. It can be
viewed as one of the components in the software suite man-
aging computing resources in datacenters, as illustrated in
Figure 1. For example, Horus can be integrated with existing
platforms such as OpenWhisk [1], and it can coexist with
schedulers of long-lived tasks such as Borg [73].

As shown in Figure 3, Horus consists of a set of schedulers,
a centralized controller, an agent per server, and APIs.

Schedulers in Horus are distributed to handle high task
rates and tolerate failures. Horus decomposes task scheduling
into two components. The first maintains and aggregates the
load information of workers, whereas the second executes the
scheduling policy to assign tasks to workers using this main-
tained information. Both components run in the data plane
of the switches. Schedulers do not require specific network
topology, and thus, Horus can easily be deployed on different
datacenter networks. For clarity of the presentation, however,
we focus on the widely-deployed leaf-spine topology [15,42],
which is shown in Figure 3. In this case, Horus schedulers
run as data plane programs on leaf and spine switches; no
schedulers run on core switches. Leaf schedulers track and
use the load information about workers in their racks (P1),
and they aggregate and efficiently distribute this information
to spine schedulers (P2).

The centralized controller realizes various functions, such
as addressing and handling failures. It assigns a fixed ID to
each scheduler, and it interacts with the resource manager to



retrieve the placement information for the workers of each ap-
plication. Using this information, the controller assigns a leaf
scheduler to each rack that has workers. It then divides leaf
schedulers into disjoint groups, where each group is assigned
a spine scheduler and forms a logical tree. Horus uses a sim-
ple approach that aligns groups with datacenter pods, where
a pod usually has 32-64 racks. In this case, the worker state
is localized and maintained by schedulers within each pod
(P3). This approach is efficient because packets exchanged
between the spine and leaf schedulers within a pod traverse
only one hop, which reduces packet latency and load on links,
compared to the case where the spine is in a different pod.

Horus agents are lightweight processes that run on servers
to track the load of workers. They also run a health check
mechanism with the control plane of the leaf schedulers,
which enables Horus to detect and react to worker failures.
Agents are not involved in the scheduling decisions.

Horus offers APIs to datacenter applications to seamlessly
submit tasks for execution and receive their results. To sub-
mit a task, Horus attaches a layer-4 header to packets, which
makes Horus compatible with various routing protocols. The
header includes a unique ID for each task, taskID. The
uniqueness of task IDs is ensured by concatenating the appli-
cation ID and a monotonically increasing sequence number.
The application ID is computed by hashing the application
pathname and adding a random number to ensure uniqueness.
A sequence number of 32 bits is sufficient for all practical
scenarios. Since tasks are expected to finish within micro or
milliseconds, by the time the sequence number wraps around,
if it ever does, earlier tasks would have been long completed.

Horus is designed for granular tasks, which are mostly con-
tained within single packets as they typically carry parameters
and paths to data. For example, in key-value stores [11-13],
segments of the data are typically pre-distributed to workers,
and tasks carry the queries to be executed on the data. For the
common case of single-packet tasks, Horus does not maintain
any per-task state at schedulers. Horus does support multi-
packet tasks and maintains task-worker affinity using ideas
similar to prior works, e.g., [57], as discussed in §A 4.
Horus Workflow. Workers of latency-sensitive applications
are pre-deployed on CPU cores and initialized to be ready
to execute tasks. A worker runs in a virtualized environment
such as a container or microVM [14], and is allocated one or
more cores. Horus assigns tasks to worker queues and does not
dictate any intra-worker scheduling policy for distributing the
tasks across the worker’s cores. All workers of an application
are assigned an anycast IP address by the controller. Tasks use
the anycast address as the destination address in their packets.
Tasks are scheduled in a recursive manner. When a task is
submitted for execution, its packets are randomly forwarded to
one of the spine schedulers assigned to this application (Step
@ in Figure 3). Since the controller knows the distribution of
workers across racks, the random selection of spine schedulers
is weighted in proportion to the number of workers per pod.
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Fig. 3: The proposed Horus scheduling architecture.

This ensures load balancing across pods, which is important
in case workers are non-uniformly distributed. The spine
scheduler runs its policy to select a downstream leaf scheduler
to handle the task, which in turn assigns the task to one of the
workers in its rack (Step @).

After a worker completes a task, the agent running on that
worker includes the latest load information into the header of
the reply packet and sends it to the leaf scheduler in the rack
(Step @). Upon receiving a reply packet, the leaf scheduler
updates the load information in its memory and sends an
update message to upstream spine schedulers, if needed, using
our aggregated state update method in §3.4.

3.3 Scheduling Tasks in the Network

Switch Model. We consider the common switch model used
by several switch vendors [10, 24, 61], in which a packet
goes through a pipeline of multiple stages, where each stage
has processing and memory components. This switch model
supports line-rate packet processing by realizing two main
design choices: (i) atomic memory updates and (ii) bounded
packet latency. The first allows a packet to access up to one
memory location at each stage, and the second limits the
number of processing stages. As a result, the total available
processing and memory resources for the stages are limited.
To mitigate the impact of these design choices, a packet may
have to be recirculated from the egress to the ingress for
additional processing or to access the same memory block
again at the cost of increased delay [74]. While this restrictive
model enables line-rate packet processing, it makes it difficult
to implement in-network task scheduling.

Proposed Scheduling Policy. In Horus, all spine and leaf
schedulers employ the same scheduling policy and main-
tain the same data structures. Thus, we abstractly present
the scheduling policy as follows. A scheduler assigns an arriv-
ing task to a lower-layer node. A node for a spine scheduler



is a rack of servers, whereas it is a worker for a leaf scheduler.
Optimally scheduling a task requires knowing the load of all
downstream nodes and assigning the task to the least loaded
one, i.e., implementing a JSQ-like policy. As we discussed in
§2, JSQ is difficult to realize at the datacenter scale because it
imposes high communication and processing overheads, and
it may introduce task herding, where a burst of many tasks is
sent to a node leading to periods of significant load imbalance.

Horus strives to approximate the JSQ scheduling policy
at the datacenter scale while considering the dynamic nature
of workloads and the restrictions of programmable switches.
Specifically, Horus divides the scheduling decisions into two
cases: (i) when some idle nodes are available and (ii) when
all nodes are busy. In the first case, when a task arrives at a
scheduler and the scheduler is aware of some idle nodes, it
will send the task to one of them. For spine schedulers, an idle
node is a rack that has at least one idle worker. In this case, the
spine scheduler will send the task to the leaf scheduler of that
rack, which in turn will select an idle worker within the rack,
resulting in zero queuing time and minimizing the response
time under light load. The challenge here is to track idle
nodes at a large scale and in a way that can be implemented in
programmable switches. We present the details of our solution
later in this section.

In the second case, when a task arrives at a scheduler and

all nodes are busy, the scheduler takes 2 random samples from
the queue lengths of nodes and selects the least loaded node
among the sampled values. This is referred to as the power-
of-2 policy and is known to reduce the response time [58]. In
addition, the randomization in taking samples prevents task
herding, since it is unlikely that the same node will be repeat-
edly chosen for several consecutive tasks. Randomization is
critically important for scheduling granular tasks as they are
more susceptible to task herding. This is because granular
tasks have short execution times, and load updates from work-
ers may take relatively long times to reach various schedulers
distributed across the datacenter. Implementing the power-of-
2 policy at scale and in programmable switches with limited
resources and strict constraints is challenging. We present
new data structures to realize this policy later in this section
and efficient methods to distribute load information among
schedulers in §3.4.
Scheduling Tasks to Idle Nodes. We design a data struc-
ture, called idleNodes, for schedulers to track the IDs of idle
nodes. Our data structure supports fast addition, removal, and
retrieval of nodes with constant time in the switch data plane.
It also requires a small number of memory accesses and mini-
mal dependencies among memory blocks, which reduces the
number of allocated processing stages in switches.

An insight that we used is that a scheduler needs only to
know whether there exists an idle node in the list. It does not
need to identify the temporal order of when nodes became
idle. Building on this insight, we design a data structure that
guarantees the following invariant:

idleList P}
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Fig. 4: The proposed idleNodes data structure, which is de-
signed to support fast operations in programmable switches.

If there are idle nodes, they will be contiguously stored at
the top of the list.

Maintaining this invariant allows the scheduler to quickly
find idle nodes. Notice that the data structure has to satisfy
the invariant even when any arbitrary node is removed, i.e.,
becomes busy.

Figure 4a illustrates the main components of the proposed
data structure. It has an idleList array of N items of node IDs,
where N is the number of downstream nodes. It also has a
pointer p that points to the first non-idle item in the list. p
is initialized to zero. In addition, the data structure has an
idleIndex array, which stores the indices of idle nodes. In
Figure 4a, nodes 4, 3, 6, and 7 are idle, and idleIndex contains
their locations in idleList.

Adding a node to idleNodes occurs when a scheduler re-
ceives an idleAdd message about a node n becoming idle. The
scheduler writes the ID of n in idleList[p] and p in idleln-
dex[n]. It then increments p. Current programmable switches
support an atomic read-modify-write operation in a single
stage. This means that a scheduler can read the current p,
increment it, and write it back in one stage. Thus, adding an
idle node requires three processing stages only, one to update
each of p, idleList, and idlelndex.

To schedule an incoming task to an idle node, a scheduler
retrieves the node at idleList[p-1]. If this is a leaf scheduler,
the retrieved node is removed from idleList by decrementing p
and clearing the corresponding location of the retrieved node
in idleIndex. This is because a node in this case represents
a single worker, which will no longer be idle after sending
the task to it. On the other hand, a node in a spine scheduler
represents a whole rack, and sending a task to an idle leaf
does not necessarily mean that the rack no longer has idle
workers. Therefore, a spine scheduler does not remove the
retrieved node idleList[p-1]. An idle node is removed from a
spine scheduler only when it receives an explicit idleRemove
message from the leaf scheduler represented by this node.

For both the spine and leaf schedulers, an incoming task is
scheduled to an idle node without any delay or buffering and
at line rate, since all operations on idleNodes are performed in
a few consecutive processing stages in the switch. In addition,
it is straightforward to show that the operations of adding a
new idle node at idleList[p] and removing the idle node at
idleList[p-1] maintain the invariant mentioned above.

Finally, the idleNodes data structure should support remov-



ing any arbitrary node n, while still maintaining the invariant.
This is needed when a scheduler receives an id/eRemove mes-
sage for n. A scheduler removes node n by replacing it with
the last idle node in the list. This ensures maintaining the
invariant that all idle nodes are contiguously placed at the top
of the list. It also allows the scheduler to conserve memory
and use a constant number of processing stages. This oper-
ation needs to be performed in two passes because current
programmable switches do not allow a packet to access the
same memory location more than once in the same pass. In
the first pass, the scheduler examines idlelndex to get the in-
dex of n in idleList, which is referred to as removedlIdx. The
scheduler also decrements p to retrieve the ID of the last idle
node, which is called lastNode. In the second pass, the sched-
uler resubmits the packet with the additional data lastNode
and removedldx, where lastNode is then written into idleln-
dex[removedldx]. An example is shown in Figures 4b and 4c.

We note that current programmable switches do not pre-
serve the order of processing of resubmitted packets. For
example, before processing the second pass of an idleRemove
packet A, the first pass of another packet B could be processed
by the switch, which may result in incorrect values of the in-
dices. To prevent this potential race condition, we use a single
memory location as a logical lock. The lock is acquired in
the first pass and released in the second one. An idleRemove
packet is dropped if it fails to acquire the lock. The sending
node will resend a new idleRemove packet after receiving
another task from the scheduler.

Scheduling Tasks to Busy Nodes. When there are no idle
nodes (p = 0), a scheduler needs to realize the power-of-
2 policy, which is more challenging than the case of idle
nodes. This is because a scheduler needs to read two randomly
selected indices from the loadList, while the switch model
does not allow reading more than one item per packet from
the same memory block. To address this restriction, Horus
maintains two identical copies of the loadList in two different
stages, where each array stores the load of all downstream
nodes (one node per slot). Storing two copies allows the
scheduler to read one random index from each copy and then
compare them. When a new state update for a node arrives at
a scheduler, it writes the updated load value to both copies.

After making a decision, a scheduler should update its view
on the load information, which is stored in the loadList. This
requires the scheduler to write back the updated load value to
the corresponding loadList slot. As described earlier, the same
memory block cannot be accessed twice per packet. A straight-
forward solution is to resubmit each packet to the pipeline
and update the load state on the second pass. This, however,
results in additional processing overhead and increases the
scheduling latency. To address this issue, we propose a lazy
state update algorithm, which resubmits a packet only if it
will impact future scheduling decisions. That is, a scheduler
keeps processing tasks using the potentially stale view of the
loadList until it detects an update is needed.

Specifically, for a node m, we decompose its actual queue
length g,, into a load value [,, and a drift value d,,, where
qm = b +dy,. We define the drift value as the number of
tasks scheduled to a node that has not been reflected in its
load value, and we store the drift values of all nodes in a
data structure called driftList. Each scheduler maintains two
copies of the driftList placed in two stages. Next, we find
the necessary condition to resubmit a packet to update the
load values. Upon receiving the first packet of a new task, a
scheduler picks two random nodes m and n, and it reads their
load values /,, and /,, from loadList. Without loss of generality,
assume that [, < [,,. Then, the scheduler should resubmit the
packet iff g, > q,. Thatis, I, +d,, > I, +d,. We rearrange
the inequality to find the necessary condition to resubmit a
packet as:

d > (Iy—Ln) + d. (1)

The above condition means that as far as the drift in the
load of node m is less than or equal to the difference between
the load of n and the load of m plus the drift in the load of n,
the scheduler will make the correct decision by choosing the
node with the smaller load, which is m, by comparing their
I, and [, stored in the loadList.

The proposed lazy state update algorithm works as follows.
It first reads the load values of nodes m and n. It then identifies
the node with the smaller load, say m, and it computes the
difference (I, —I,,). Then, it reads d,, from the first copy of
driftList to check how many more tasks are actually queued
at m. If the drift value is lower than the difference between
load values, i.e., d,;, < (I, — ), the algorithm increments the
corresponding drift value in each copy of the driftList for
node m. Otherwise, when d,, > (I, — l,;), the algorithm re-
submits the packet to update [, and /,,. The algorithm does
not include d, in its calculations because it would violate
the atomicity requirement in current programmable switches.
The algorithm, however, does guarantee selecting the least
loaded node among m and n. This is because d,, > (I, — )
still satisfies the necessary condition d,,, > (I, — ;) + d,,. The
less restrictive condition used by our algorithm allows im-
plementing the power-of-2 policy in programmable switches
at the cost of possibly resubmitting some extra packets than
absolutely needed by the necessary condition.

An example illustrating this algorithm is given in §A.1.

3.4 Distributing State Among Schedulers

We design efficient mechanisms to distribute the necessary
information among leaf and spine schedulers to update their
states. This enables the execution of the proposed scheduling
policy using fresh information with minimal overheads.

Distributing Worker State to the Leaf Layer. Since schedul-
ing tasks to workers is only done by leaf schedulers, each leaf
scheduler updates its state when selecting a worker for a task
(§3.3). When a task is done executing on a worker, the agent
modifies the gLen field in the header (Figure 3) and uses the



reply packet to report the updated load to the leaf scheduler. If
the reply packet indicates the worker is idle, the leaf scheduler
adds the srcId to the idleList and updates the loadList for
the corresponding index.

Distributing Rack State to the Spine Layer. We consider
two types of information to be distributed to the spine layer:
(i) idleness of the rack and (ii) average load of the rack.

Idle State Update. When a leaf scheduler becomes aware
of an idle worker, it sends an idleAdd packet to the spine
scheduler it is linked with. This simple strategy balances and
localizes the information about idle racks among the upper-
layer spine schedulers. Once there are no more idle workers
in a rack, the leaf scheduler in that rack sends an idleRemove
packet to the linked spine to remove the leaf from its idleList.
Load State Update. Each spine scheduler tracks the load of
a subset of racks that contain workers. Each leaf scheduler
calculates the average load across workers in its racks and
sends it to the linked spine. Directly calculating averages in
programmable switches is, however, infeasible due to their
restrictive programming model. We describe how we approxi-
mate averages in §A.2.

Since Horus is designed for short-lived tasks, continually
sending every updated average load value to the spine would
result in large communication and processing overheads on
switches, without significantly modifying the average at the
spine. Instead, we make each leaf scheduler locally compute
the current average and maintain the previously sent average
to the spine. Then, a leaf scheduler sends the update message
only if the difference between the current and previous aver-
age load values is greater or equal to one, because this is the
smallest integer value of load changes that could impact the
scheduling decision. This aggregated update mechanism sub-
stantially reduces the number of update packets sent to spine
schedulers without sacrificing the scheduling performance. In
addition, we piggyback the state update information with the
response packets sent by workers after completing tasks to
minimize the communications overhead of Horus.

3.5 Horus Deployment Options

Horus does not rely on the structure of the datacenter net-
work in its operation, and thus, it can be deployed in various
networks. In addition, it does not dictate a specific routing
protocol since it utilizes layer-4 headers. Furthermore, Ho-
rus can be incrementally deployed in datacenters. Suppose
a fraction of the spine and leaf switches are upgraded to be
programmable to support latency-sensitive applications. In
this case, workers of these applications can be allocated in
the racks with programmable switches, and the centralized
controller in Horus can be configured to only use the pro-
grammable spine switches.

A more restrictive deployment scenario occurs when only
a fraction of the spine switches are upgraded and all leaf
switches are legacy. In this case, we can implement the leaf
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Fig. 5: Testbed setup.

scheduler on a server in each rack using efficient techniques
such as kernel bypassing, as in prior works, e.g., Maglev [33].
These techniques were shown to process packets in microsec-
onds. Workers and Horus agents in each rack would be con-
figured to first direct their messages through the software leaf
scheduler in the rack. This adds an additional delay, but it is
deterministic and limited by the small RTT within racks.

Finally, the ideas of Horus can be used without any pro-
grammable switches. For example, leaf schedulers can be
implemented in software as above, and the functionality of
the spine schedulers can be integrated with the datacenter
load balancers handling the submission of tasks.

4 Evaluation in a Testbed

4.1 Experimental Setup

Testbed. Our testbed, illustrated in Figure 5, has one 3.2 Tbps
Intel Tofino switch, which has two hardware pipelines. We
configure one of the hardware pipelines as a spine switch
and run the spine scheduler of Horus on it. We emulate four
leaf switches on the other hardware pipeline, where each
switch represents a rack of servers. Leaf switches run the
leaf schedulers of Horus. We connect the leaf switches to
the spine switch using logical 100 Gbps links. In addition,
the testbed has seven servers connected to the leaf switches
through 10 Gbps links, where each server is equipped with an
Intel 82599ES 10 GbE NIC. These servers are used as clients
to generate tasks and as workers to execute tasks.
Horus Implementation. We have implemented a proof-of-
concept of Horus consisting of leaf and spine schedulers,
switch and centralized controllers, agents, and client APIs. All
source code, testing scripts, and datasets are open source [3].
The leaf and spine schedulers are implemented in P4 [23]
and deployed to the switch ASIC; a brief description of our P4
implementation can be found in §A.6. We implemented the
switch and centralized controllers using Golang in about 6K
lines of code. The controllers handle failures and dynamics,
and they update the switch data structures accordingly. We
implemented a set of APIs in C using DPDK to submit tasks
and receive their results. We implemented the Horus agent in



about 100 lines of C code. The agent adds the worker load
information to the reply packet after task execution is done.

For workers, we need to dispatch and run microsecond
tasks. Recent intra-server OSes, e.g., ZygOs [64] and Shinjuku
[43], support microsecond tasks and offer various schedul-
ing policies. We modified the more recent Shinjuku [43] to
dispatch tasks to worker queues based on Horus headers. In
our experiments, we use one core per worker, bypassing Shin-
juku’s scheduling policy. We note that Horus does not dictate
the use of any specific intra-server scheduling policy or OS.
Systems Compared Against. To the best of our knowledge,
Horus is the first task scheduler that scales to the whole dat-
acenter. RackSched [78] is the state-of-the-art in-network
task scheduler, but it only scales to a single rack. We com-
pare a simple version of Horus versus RackSched (referred
to as RS) for single rack settings. We use the open-source P4
implementation of RackSched [8].

In addition, we consider two natural extensions of
RackSched to support multiple racks. The first one integrates
RackSched with a load balancer that uniformly distributes
tasks to top-of-rack switches, which in turn run RackSched to
assign tasks to workers within their racks. We refer to this sys-
tem as RS-LB. In the second extension, we use RackSched hi-
erarchically, meaning that we deploy it on both spine and leaf
switches, where spine switches assign tasks to leaf switches
using RackSched, which in turn assign tasks to workers also
using RackSched. We refer to this system as RS-H. To ensure
fair comparisons, we make each leaf scheduler send the load
state update from workers to the spine scheduler immediately
after each task is done.

Worker Placement. We consider two setups for worker dis-
tribution across racks: (1) Uniform: a total of 32 workers
are uniformly distributed across all racks, where each rack
has eight workers running on a physical server attached to
the leaf switch (1 worker/core). The 32 workers run on four
identical servers, each has Intel Xeon E-2186G CPU, 3.80
GHz, 12 cores, and 32 GB memory. (2) Skewed: a total of
48 workers are distributed as follows: two racks have four
workers each, one rack has eight workers, and one rack has 32
workers (running on three physical servers, where one of the
servers has Intel Xeon E5-2650 CPU, 2.3 GHz, 40 cores, 128
GB memory and runs 16 workers and the other two servers
have the same specifications as the ones used in the Uniform
setup and run 8 workers each).

Workloads. We evaluate Horus using two practical workload
scenarios. The first scenario runs real tasks on the RocksDB
engine [13], which is a high-performance key-value store
developed by Facebook and is widely deployed in produc-
tion [25]. The second scenario is synthetic and uses the TPC-
C benchmark [5], which is an online transaction processing
benchmark emulating e-commerce systems.

We create multiple RocksDB workloads with parame-
ters similar to prior works [32,43,44,78]. Specifically, our
RocksDB workloads contain SCAN and GET tasks, where

the first scans a range of objects (i.e., a relatively long task),
and the second retrieves a specified number of objects (i.e.,
a short task). We construct the SCAN and GET tasks such
that their dispersion is one order of magnitude: a SCAN re-
quest scans 5K objects with a median service time of 650 us,
whereas a GET request retrieves 60 objects where the median
time of each request is 40 us. We then employ two realistic
distributions to generate concurrent long and short tasks. The
first distribution is similar to workload A in the YCSB bench-
mark [26], and it consists of 50% GET and 50% SCAN tasks.
The second one consists of 90% GET and 10% SCAN tasks,
which is similar to Facebook’s USR workload [17].

The TPC-C benchmark [5] consists of five tasks (or trans-

actions) with different service times. We employ the profiled
model in [32] of the benchmark to build a synthetic workload
following the same task distribution and dispersion ratios. The
five tasks have service times of 21.6, 22.68, 71.28, 332.64,
and 378 us, distributions of 44%, 4%, 44%, 4%, and 4%, and
dispersion ratios of 1X, 1.05X, 3.3X, 15.4X, and 17.5X, re-
spectively. We scaled the service times, compared to the pro-
filed model in [32], so that clients in our testbed can smoothly
generate tasks at high rates.
Task Arrival Model. We stress the system by generating
tasks following a Poisson arrival process [78]. The Poisson
process results in non-uniform inter-arrival delays and gen-
erates bursts that can cause temporary queue imbalance and
impact the tail latency [32, 64].

Horus schedulers have no prior knowledge about the ser-
vice times, workloads, or arrival distributions.
Methodology and Performance Metrics. We vary the sys-
tem load by incrementally increasing the number of tasks
submitted for scheduling. The system load is measured in
kilo requests per second (KRPS). We keep increasing the
system load until we reach the capacity of the system, where
the response time becomes unacceptably high for latency-
sensitive applications (e.g., seconds or even minutes for tasks
that should complete in micro or milliseconds). The response
time 1is the period between submitting a task to a spine sched-
uler until it finishes execution on a worker.

An important metric for scheduling systems is the achiev-
able throughput, which we define as the maximum system
load that can be processed while meeting a given bound on
a target performance metric, e.g., the tail (99th percentile)
response time should not exceed 3ms.

4.2 Comparison against State-of-the-Art

Horus vs. RackSched: Single Rack. We report the tail
response time achieved by Horus and RackSched for the
RocksDB and TPC-C workloads in Figure 6. There is no
worker placement method used in this case, as all workers are
located within the same rack. The results show that Horus
consistently achieves much lower tail response times than
RackSched, especially at high system loads. For example,
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Fig. 6: Comparing Horus vs. RackSched in single-rack setups.

for the RocksDB workload with 50% GET and 50% SCAN
(Figure 6a) and at 80 KRPS system load, Horus reduces the
tail response time by up to 75% compared to RackSched.

Horus achieves these significant gains because it tracks the
loads on workers in a more accurate and efficient way than
RackSched. Specifically, Horus identifies and uses idle work-
ers within the rack, which results in low and constant response
times at moderate loads. In contrast, RackSched does not ex-
plicitly track idle workers and relies only on the power of 2
policy of its scheduler, which may not always assign tasks to
idle workers. In addition, RackSched relies on response mes-
sages from workers to update the load values. Since response
messages are generated only after the completion of tasks,
they may not capture the current state of workers by the time
they arrive at the scheduler. In contrast, Horus updates the
load values once it assigns a task to a worker, which enables
it to have a real-time view of the workers’ loads.
Horus vs. RackSched’s Extensions: Datacenter. We com-
pare Horus against RS-H and RS-LB for the different work-
loads and worker placements mentioned in §4.1. Representa-
tive samples of our results are shown in Figure 7 and Figure 8;
the plots for all other scenarios are similar and given in §B.
The results show that Horus consistently and substantially out-
performs RS-H and RS-LB across all workloads and worker
setups. For example, in the Uniform worker setup with 50%
GET and 50% SCAN RocksDB requests (Figure 7a), Ho-
rus reduces the tail response time by up to 50% compared
to RS-H when the system load is 80 KRPS; RS-LB could
not support this load. This also means that Horus can achieve
much higher throughputs than RS-H and RS-LB. For the same
example in Figure 7a, if the target tail response time is 2 ms,
Horus can achieve a throughput of up to 80 KRPS, whereas
RS-LB and RS-H can only achieve up to 25 and 40 KRPS,
respectively. That is, Horus can improve the throughput by up
to 3.2X and 2X compared to RS-LB and RS-H, respectively,
in this case. The results for the Skewed worker placement for
the RocksDB workloads exhibit even higher gains, as shown
in Figure 7b for the 90% GET and 10% SCAN workload. Sim-
ilar gains are observed for TPC-C workloads with Unifrom
and Skewed placements as shown in Figure 8.

Horus achieves these gains across various workloads be-
cause its scheduling policy uses idle information to schedule
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Fig. 7: Comparing Horus vs. RackSched extensions in multi-
rack settings: Sample results from the RocksDB workloads.
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Fig. 8: Comparing Horus vs. RackSched extensions in multi-
rack settings: Sample results from the TPC-C workloads.

tasks to any available idle workers, and it implements the
efficient power-of-two method whenever there are no idle
workers. In addition, Horus schedulers utilize the lazy update
method to maintain up-to-date information about the worker
loads, which significantly reduces the load imbalance across
workers, as we show using large-scale simulations in §5.

4.3 Responsiveness and Overheads of Horus

We assess the performance of Horus in response to various
dynamic events and analyze its overheads.

Dynamic Task Rate. We start with one client generating tasks
at a rate of 30 KRPS. Every 10 seconds, a new client joins
the system and sends additional tasks at a rate of 20 KRPS
till the total task rate reaches 90 KRPS after 30s. Starting at
40s, we remove one client at a time at the same 10-second
intervals. Figure 9a depicts the tail response time per second
for the considered scenario. The results show that Horus can
quickly react to the workload dynamics as the tail response
time quickly drops after the task rate is decreased.

Dynamic Resource Scaling. In this scenario, one client starts
sending tasks at a rate of 45 KRPS, where Horus schedules
them to two racks of 16 workers. After 10s, we add a new
server with 8 workers from another rack to the available
worker pools. As Figure 9b shows, the tail response time
drops to 1,416 us after adding the server. We increase the
task rate after 20s to 65 KRPS, which increases the response
time. After 30s, we add another server with 8 workers, which
reduces the response times to 1,644 us. It takes between 1-2
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seconds from when a resource allocation request is sent to the
Horus controller till the response time is reduced.
Handling Failures. Initially, we use four leaf switches, and
the client sends tasks at a rate of 65 KRPS. After 5s, we inject
one leaf switch failure while the other three leaf schedulers
remain active. We fail a switch by disabling its ports. Since
the testbed has only one spine switch, we could not fail it.
However, we analyze spine failures using simulations in §C.
As shown in Figure 9c, Horus can effectively use the re-
maining resources across other available racks to schedule
tasks without interruption. While the spine scheduler has not
been updated yet, a small fraction of the tasks sent to the
failed leaf switch will be lost. At the rate of 65 KRPS, a leaf
switch failure results in 1,444 failed tasks which are 2% of the
total submitted tasks per second. At time 15s, we add another
leaf scheduler with a rack of 8 workers. The response time is
reduced within two seconds of adding the leaf scheduler.
Latency Overheads. We measure the total scheduling latency
for a task at a switch by collecting the hardware timestamps
at the beginning and end of the switch pipeline. Figure 9d
shows the CDF of the measured scheduling latency at spine
and leaf switches. As shown in the figure, the total latency
is less than 1.6 us for all tasks. We note that the small step
increase observed in Figure 9d is due to the resubmitted tasks;
recall that Horus resubmits a small fraction of tasks through
the switch to update its state.
Other Results. We present more results in §B, including
analyzing the fraction of resubmitted tasks.

5 Evaluation using Simulation

5.1 Simulation Setup

Datacenter Topology. We simulate a large datacenter with
characteristics similar to the ones used in prior works, e.g., [54,
67]. Specifically, we simulate a network with a multi-rooted
Clos topology composed of common 48-port switches with
fully connected pods. The network has 1,152 leaf switches
interconnected with the same number of spine switches. Each
leaf switch manages a rack of 24 servers, leading to a network
with a total of 27,648 servers. Each server has 32 cores and
accommodates a maximum of 32 workers. The average per-
hop delay between switches is set to 5 us [35,55], and the

average packet loss rate is set to le—3% [38, 80].

Worker Placement. We simulate 1K concurrent worker pools,
where each worker pool processes tasks of a large-scale dat-
acenter application. Similar to [54,67], we allocate workers
to pools following an exponential distribution with min=50,
max=20K, and mean=685. The total number of workers is
685K. Each worker has a private task queue and runs an FCFS
policy to process tasks.

Workloads. To analyze the performance in realistic settings,
we generate three workloads with different distributions for
the task processing time: (1) Exp (100) is an exponential
distribution with mean=100 us, which represents the process-
ing time of a single type of tasks with its variability, such as
tasks that occur in in-memory key-value stores and caching
servers [43,78], (2) Bimodal (50%-50 us, 50%-500 us), and
(3) Trimodal (33.3%-50 us, 33.3%-500 us, 33.3%-5000 us),
which together simulate patterns observed in a mix of simple
and complex tasks such as get/put and scan operations [63].
These workloads are similar to the ones used to evaluate
RackSched, which ensures fair comparisons.

Task Arrival Model. We generate tasks following a Poisson
process to stress the system under bursty arrival and non-
uniform patterns. We keep increasing the system load until
we reach the maximum for each worker pool, which is given
by A = n/s, where n is the number of workers in the pool and
s is the mean task execution time. In the figures, we report the
system load as a percentage of the maximum load.

5.2 Comparison against the State-of-Art

Horus vs. RackSched: Single Rack. We compare the per-
formance of Horus versus RackSched in single rack settings.
Additionally, we compare against JSQ to show how far Horus
is from the theoretical performance bounds; as we discussed
in §2, JSQ is not implementable in real environments. We
simulate a hypothetical switch that executes JSQ with zero-
delay state updates. To be able to compute the optimal results
by JSQ, we consider only 10 concurrent applications with
workers deployed within the same rack. Figure 10 shows the
tail response times for different workloads. Horus substan-
tially outperforms RackSched, and its performance is close to
JSQ. This is because Horus tracks the loads on workers more
accurately than RackSched, as discussed before in §4.2.
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Fig. 11: Comparing Horus against RackSched’s extensions in
multi-rack settings using simulation.

Horus vs. RackSched’s Extension: Datacenter. We com-
pare Horus versus the extensions of RackSched described
in 4. To ensure fair comparisons with RS-H, we make each
leaf scheduler send the load state of the rack to every avail-
able spine scheduler. Figure 11 depicts the tail response time
observed by the worker pool with the median size for Ho-
rus, RS-LB, and RS-H. The figure shows that Horus reduces
the tail response time by up to 3X at moderate loads, and it
achieves higher throughput for any target tail response time.
The gains are more significant when the dispersion in the
task execution times is high, as shown for the Bimodal (Fig-
ure 11b) and Trimodal distributions (Figure 11c) compared
to the exponential distribution (Figure 11a). This is because
the high diversity in the task execution time, coupled with the
variability introduced by the Poisson inter-arrivals of tasks,
may introduce imbalance in the queues at workers, which are
better addressed by Horus.

To analyze the reasons behind the achieved gains, we mea-
sure the imbalance in the queues at workers. We define the
imbalance as the ratio between the maximum queue length
and the average queue length within each worker pool. We
measure the imbalance every 50 us and plot the results in Fig-
ure |2a, as an interquartile range (1st and 99th percentiles).
The results show that Horus spreads the load more uniformly
across workers because it tracks their loads more accurately.

5.3 Analysis of Horus

Impact of Network Delay. We analyze the impact of network
delays on the scheduling performance of Horus. We increase
the average per-hop delay between switches from 0 to 100
us and measure the tail response time. Figure 12b shows the
interquartile range of the tail response time of different appli-
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Fig. 12: Analysis of Horus.

cations. As the figure shows, even when the per-hop delay is
10 us, which is twice the average in real environments [35,55],
Horus maintains a low tail response time with small variation.
As the per-hop delay increases further to unrealistically high
values (50 and 100 us), the delayed updates from the leaf to
spine layer start to impact the scheduling quality of Horus,
because such updates may deliver stale information about the
worker status in different racks, as shown in Figure 12b.
Impact of Packet Losses. Datacenter networks have very
low loss rates, up to 0.01% [38, 80]. We vary the average
packet loss rate from O to 1%, which is 100X the loss rate in
real datacenters. Figure 12c shows the tail response time of
different applications versus the packet loss rate. Even when
the average loss rate is 10X (i.e., 0.1%) the normal rate, Horus
is not significantly impacted by packet losses. This is because
Horus re-transmits the important information such as idleAdd
and idleRemove messages. However, with extreme loss rates,
states maintained at switches can be stale for short periods,
which causes an increase in response times.

Other Results. We present more results in §C, including
analyzing the impact of worker placement, scheduler failures,
and the contributions of Horus components to its performance.

6 Conclusions

We presented the design, implementation, and evaluation of
Horus, a granular task scheduler for multi-tenant datacen-
ters. In contrast to traditional schedulers, Horus offloads the
scheduling of latency-sensitive tasks to network switches,
which enables scheduling them at high rates in real time.
Horus distributes the load information of workers among net-
work switches, and it introduces a new scheduling policy that
minimizes the task response time and does not buffer tasks
in switches. We presented multiple ideas and data structures
to efficiently realize the scheduling policy in programmable
switches. We also designed methods to propagate updated
load values among schedulers. We implemented Horus in a
testbed with a modern programmable switch and compared
its performance against RackSched [78], the state-of-art in-
network task scheduler. We also evaluated the performance of
Horus in large-scale simulations. Our experimental and simu-
lation results showed that Horus is scalable and robust, and it
substantially outperforms RackSched across all performance
metrics in both single- and multi-rack settings.
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Appendix A More Details of Horus

This appendix describes additional details that we could not
fit into the main paper.

A.1 Example: Lazy State Update

We illustrate the implementation of the lazy state update al-
gorithm in programmable switches in Figure 13. The figure
shows the processing of a resubmitted packet. The two copies
of loadList are maintained in stages 1 and 2, and the two
copies of driftList are in stages 4 and 5. Each of stages 1 and
2 randomly selects a node and passes the ID of this node and
its load to the subsequent stages as metadata (shown at the
bottom of the figure). The selected nodes in this example are
m = 0 from stage 1 and n = 2 from stage 2. Stage 3 chooses
the node with the smaller load, m, and computes the difference
in the load between m and n, [, — [, = 1.

In stage 4, the drift, d,,, = 3, is found to be greater than the
load difference between m and n, i.e., d, > (I, — I,,). This
means that the initial scheduling decision (assuming g,, < g,,)
may not be accurate, since it could be underestimating the
actual load of m. Thus, a flag is set to resubmit this packet to
update all lists and select the correct node. The drift for the
second node, d,,, is read in stage 5 from the second copy of
driftList and passed to stage 6, which calculates the actual
load of both nodes ¢,, and g, as the sum of drift and load
values and resubmits the packet with this data.

In the resubmission pass, the scheduler becomes aware of
the actual load values of the two nodes, i.e., g, =3+3=06
and g, =4+ 1 =35, and it selects the least loaded node, which
is now n = 2. The scheduler then increments the loadList
of the least loaded node. The loadList is updated with the
new values, and the corresponding entries in the driftList are
reset to 0. Notice that in the resubmission pass, we do not
read items from the loadList or driftList as these values are
injected in the resubmitted packet. This allows us to increment
the load list values while respecting the strict memory access
requirement of programmable switches.

Finally, we note that memory updates in programmable
switches are done atomically: a packet may update memory
locations at different stages of the pipeline, but the follow-
ing packet will not observe such updates until they re fully
completed. loadList and driftList values are only updated
upon receiving Load Update packets from downstream nodes.
driftList is only incremented  in the first pass for task packets,
and loadList is only incremented in the resubmission pass.
Therefore, even with re-ordering of resubmitted packets and
other state updates, Horus does not introduce any race condi-
tions.

* An atomic read-modify-write operation that prevents race conditions in
the pipeline.

Stage 1 || Stage2 || Stage 3 || Stage4 || Stage5 | Stage 6

Load Load Compare }iDrift Drift Sum Load
val > diff !iresub == 1
R :

Node ID _}Node ID Node ID _!iNode ID ZSubmit

012 Nii 012 N sellD 012 Ni 012 NiFoia
Metadata nodeID1[<€

nodeID1=0 nodeID2=2 selID=0 resub=1 driftother=1 [nodeID2

load1=3 load2=4 diff=1 driftSel=3

Fig. 13: Example of resubmitting a packet while scheduling
tasks to busy workers.

A.2 Realizing Average Queue Length

Calculating an average value in the switch data plane is infea-
sible due to the lack of support for floating-point arithmetic
in programmable switches. To mitigate this issue, we approx-
imate the calculation of the average by using a fixed-point
representation. We use a 32-bit number to represent an aver-
age load value, which is communicated among switches using
the gLen field in Figure 3. The 32 bits are divided equally
among the integer and fraction parts, which can support an
accuracy of 2710 that is sufficient for most practical cases.
We note that Horus can support existing approximations of
floating-point operations, e.g., [27], at the cost of additional
switch resources.

When the resource manager allocates w workers in a rack
for a worker pool, the Horus controller calculates an additive
factor with a value of 1/w using the fixed-point represen-
tation, and updates the corresponding leaf switch with this
value, which is maintained in a table. For example, when a
worker pool has 8 workers in a rack, then the additive factor
is 0x00002000, which is interpreted as 1/8. Notice that this
value can be maintained in switches as a 32-bit number.

The calculation of an average value is a sequence of incre-
ments/decrements of the corresponding additive factor. The
leaf scheduler uses the poolID as a key to access the table, and
uses add/subtract of the additive factor to increase/decrease
the average value for every started/finished task. As an exam-
ple, when the 8 workers have 11 tasks in their queues, then
the average queue length is 11/8 = 1 4 3/8, which can be
represented as 0x00016000.

A.3 Handling Failures and Packet Losses

Horus employs simple mechanisms to notify the impacted
schedulers about various failures to reduce disrupting ongo-
ing tasks. These mechanisms are deployed at the centralized
controller and switches’ controllers. We rely on existing pro-
tocols [47,59,75] to detect failures and notify the fabric man-
ager. We assume that the centralized controller is replicated
on multiple servers using algorithms such as Paxos [51], and
it receives failure events from the fabric manager.

Switch Failures. Upon receiving a leaf or spine switch fail-
ure event, the centralized controller instructs all impacted



switches’ controllers to remove the failed switch from their
memories and reset any state linkage information. Thus, the
failed switch will not be used for scheduling incoming tasks.
We note that leaf switch failures usually result in network
partitioning. Therefore, no new tasks could be assigned to
workers inside the rack during leaf switch failures, and Horus
does not attempt to retrieve the workers’ soft state stored at
the failed leaf switch.

Server Failures. The leaf switch controller locally detects the
failures of servers in the rack based on heartbeat packets and
a fixed timeout value. This localizes the state maintenance
at the rack level. After detecting a failure, the leaf controller
decreases the number of available workers and instructs its
data plane to remove the failed worker from its data structures.
Packet Losses. Packets carrying the submitted tasks as well as
packets sent to update the state at different schedulers can be
lost. Horus delegates handling the first case to the submitting
applications. Since Horus is designed for short-lived (u or
millisecond sec) tasks, applications typically submit multiple
tasks in parallel and ignore the failed ones, as the latency of
resubmitting a failed task can be larger than the execution
time of the task itself.

Horus only retransmits the lost Idle Add/Remove messages
that are sent from a leaf to a spine. To detect a lost update
packet, the leaf and spine schedulers use a simple protocol:
Spine schedulers set the gLen field of the scheduled task to
idleSelected when it selects a rack from the idleList. When the
task arrives at the leaf, it checks the header field to determine
the state of the rack in the spine’s memory. If it mismatches the
current state, it will resend an Idle Add/Remove packet to the
spine based on the correct state. Horus frequently sends Load
Update packets to maintain the state at different schedulers.
Horus does not retransmit lost Load update packets, since
this would be costly and ineffective for the target application
environment. Rather, it relies on subsequent update packets
carrying fresh information to bring the state up to date. Recall
that Horus strives to approximate the current load on workers;
it is nearly impossible to make schedulers track the exact load
on every single worker, given the very short execution time
of tasks and the high dynamics nature of the workload.

A.4 Handling Multi-packet Tasks

When a task is composed of multiple packets, Horus sched-
ulers need to send these packets to the same worker. This
is known as task affinity. Applications expecting to submit
multi-packet tasks, set the isLastPacket flag to O for all packets
of the task except the last one. Also, for the non-first packets
of the task they should set the fype in the Horus header to
taskContinuation (Figure 3).

Similar to prior approaches, e.g., [57,78], Horus maintains
a connection table at switches. When the first packet of a
task arrives at a spine or leaf scheduler, the scheduler assigns
it to a node using its normal operation. Let us denote the

ID of this node by nodelD, which can be an ID of a rack
(in the case of a spine scheduler) or an ID of a worker (in
the case of a leaf scheduler). If the isLastPacket field is not
set for the first packet of task, the scheduler adds the entry
(hash(poolID,taskID), nodelD) to its connection table. For
subsequent packets with the same taskID, the scheduler for-
wards them to the same node using the connection table. We
note that the leaf scheduler adds another field to each entry of
the connection table: spinelD, which specifies the ID of the
spine switch from which the packet came.

Entries in the connection table are removed in one of two
ways. First, when a task submission by client completes, the
final packet with type of taskContinuation comes and the is-
LastPacket flag is set to 1, then the scheduler removes the
corresponding connection table entry. The second way to re-
move an entry from the connection table is through timeout.
Each entry automatically disappears after a pre-specified pe-
riod of time (in the order of 10s of milliseconds). This takes
care of failed tasks and lost final packets.

We note that the connection table is only maintained for
multi-packet tasks, not for short-lived granular tasks that are
composed of single packets.

A.5 Horus Overheads

Horus imposes multiple types of overheads. First, it attaches
a small header of size 11 bytes to include information such
as task ID and queue length as shown in Figure 3. Second, it
maintains state at switches to enable realizing a load-aware
scheduling policy. This consumes part of the memory of the
programmable switches. For granular tasks, which is the main
target of Horus, the maintained state at switches is indepen-
dent of task rates, which is an important property that makes
Horus scalable.”

The state, however, grows with the number of applications
submitting tasks and the number of workers assigned to each
of them. Let us consider one datacenter application with a
total of W workers allocated across R racks, where typically
R < W. Spine schedulers do not maintain state about individ-
ual workers. Rather, they maintain the average worker load
in different racks. Thus, the memory requirements on spine
schedulers are in the order of O(R). Specifically, each spine
scheduler maintains one copy of the idleList and two copies
of each of the loadList and driftList data structures. It also
maintains a table mapping each rack to the fractional fixed-
point additive factor for updating the load values. The number
of entries in each list is R, each is 16 bits.

Leaf schedulers maintain a state about workers in their
racks, which is on average O(W /R) when workers are uni-
formly allocated across racks, and O(W) in the worst case

*For multi-packet tasks, Horus maintains a connection table to ensure task
affinity. As discussed in §A.4, applications expected to submit multi-packet
tasks set the isLastPacket field to O in the Horus header (Figure 3), and
only state about such tasks are maintained in the connection table.



Algorithm 1 Scheduling and state updates for idle nodes

- p: reg. pointing to the next available slot in idleList

- idleList: reg. array that holds the IDs of idle nodes

- idleIndex: reg. array holding indices of the nodes in
idleList.

/I On an idleAdd pkt received

function ADD(pkt)

readlnc(p)

idleList[p) < pkt.srcID /| pkt.srcID is idle node ID
idleIndex|pkt.srcID] < p

function SCHEDULETASKIDLE(pkt)

readDec(p) // Only a leaf scheduler decrements p
selectedNode < idleList[p — 1]

Update pkt with IP of selectedNode and Forward

10: @) On an idleRemove pkt received: First Path
11: function REMOVE(pkt)

12: readDec(p)

13: lastNodel D «+ idleList|p]

14: removedNodeldx + idleIndex|pkt.srcID]
15: resubmit (lastNodeID, removedNodeldx)

16: @ On an idleRemove pkt received: Resubmit Path
17: function REMOVE(lastNodelD, removedNodeldx)
18: idleList[removedNodeldx] < lastNodelD

19: idleIndex[lastNodelD) < removedNodeldx
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when all workers are in the same rack. Leaf schedulers main-
tain the same idleList, loadList, and driftList data structures
as spine schedulers.

For illustration, consider an application with W = 10,000
workers uniformly distributed across R = 10 racks. A spine
scheduler would need up to 120 bytes of memory, whereas
a leaf scheduler would need approximately 1000 bytes. The
recent Tofino switch has a few hundred Megabytes of memory.

In addition, Horus exchanges messages to update the state
at schedulers. However, following our design principles, we
keep the worker state localized within individual racks, and we
only send aggregated updates to spine schedulers. In addition,
Horus piggybacks the update messages with response packets
of tasks.

A.6 Pseudo Code and P4 Implementation

Algorithm 1 and Algorithm 2 show the high-level pseudo
code of Horus for handling idle nodes and busy nodes. Our
implementation only uses the stages in the ingress pipeline
of the switch. Upon receiving a task, Horus schedulers will
access and read the number of available idle noads and only
use the procedure in Algorithm 2 (line 15) if there are no
available idle nodes.

Recall that removing an idle node after being selected by
SCHEDULETASKIDLE depends on the scheduler type. A leaf
scheduler removes the selected idle worker immediately after
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Fig. 14: Testbed results for the RocksDB workload. Compar-
ing Horus vs RackSched extensions in multi-rack settings: (a)
90%-GET, 10%-SCAN, (b) 50%-GET, 50%-SCAN distribu-
tions.

sending a task to it because the worker is no longer idle. A
spine scheduler, however, only reads p and does not decre-
ment it, since removing an idle node in a spine scheduler is
triggered by an idleRemove packet sent by a leaf scheduler.

The UPDATE procedure (Algorithm 2, line 2) is triggered
by receiving a reply packet from the worker at leaf sched-
ulers. At the spine layer, updates are explicitly triggered by
loadUpdate packets sent by leaf schedulers. Note that leaf
schedulers increment the load or drift values after selecting
the target worker by one, which reflects the selected worker
queue length after the assignment. At the spine layer, the val-
ues are incremented by the additive factor for the selected
rack (1/#workers), based on the value stored in the tables as
described in §A.2, which is not shown in the pseudo codes
for simplicity.

Generating state update messages in the data plane can
be challenging since packet generation is triggered based on
the real-time state of the workers. Limiting the processing to
the ingress pipeline of the switch enables us to realize this
efficiently, without recirculating the packets. The leaf switch
checks the trigger conditions when processing each arriving
packet. If the condition to send an update is met, it dupli-
cates the original packet via the traffic manager and sends the
original copy to its destination. The switch then modifies the
header fields of the other copy and sends it as an update mes-
sage to the upper layer. As an example, idleRemove packet
is generated when the switch receives a task and becomes
aware that no more idle workers are available. The switch du-
plicates the packet, forwards the original packet to the worker,
changes the type field to idleRemove, sets the srcld to the ID
of the leaf switch, and sends the copied packet header to the
spine.

Appendix B More Results from Testbed

This appendix provides more evaluation results obtained from
the testbed.

Response Time. We present additional results for comparing
Horus against RackSched’s extensions in the multi-rack set-
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Fig. 16: Rate of state update messages for the Uniform work placement in (a)-(c) and for the Skewed worker placement in (d)-(f).

tings in Figure 14. As shown in Figure 14a, for the workload
with 90%-GET and 10%-SCAN requests, even using uniform
worker placement across the racks, Horus achieves signifi-
cantly lower tail latency at moderate and high loads. Similarly,
Figure 14b shows that for the workload with 50%-GET and
50%-SCAN requests, under a skewed worker placement, the
system maintains a lower latency and sustains up to 125 KRPS
throughput, which is 60% higher than RS-H and 400% higher
than RS-LB.

More Overhead Results. A Horus scheduler may selectively
resubmit a fraction of task packets to the switch pipeline to
update the scheduler view after making a scheduling decision.
We measure the fraction of task packets that are processed
twice by a spine or leaf switch in our experiments. Figure 15
shows that the maximum fractions of resubmitted tasks are
38% and 13% for the Uniform and Skewed placement setups,
respectively. When the load is low, the scheduler does not
need to resubmit tasks as most of the tasks are scheduled
based on idle nodes, and the rate of reply packets is high
enough to automatically update the scheduler state. We note
that simple solutions to update the state would result in a
100% resubmission rate because they resubmit every packet
after scheduling a task.

Further, we note that the rate of resubmitted packets is cor-
related with the placement of workers and the size of worker
pool. Recall that resubmissions are triggered when the drift
value is greater than the difference between the two sampled
load values while scheduling a task. Therefore, the rate of
resubmissions at the spine is impacted by the closeness of
the average load values of the racks in the spine memory.
In addition, the number of available racks impacts the rate
of resubmissions at the spine layer. That is, having a small
number of racks increases the probability of triggered resub-
missions as this increases the likelihood of drawing the same
two random samples for multiple arriving tasks before the

state update arrives, which results in a resubmission.

Next, we analyze the different types of state update mes-
sages processed by the spine scheduler in our testbed. Since
leaf schedulers passively track the load by processing tasks
and reply packets passing through them, there are no extra
overheads for state updates inside the racks. We measure and
plot the rate of messages normalized by the task rate across
different workloads and worker settings in Figure 16. There
are two types of messages sent to the spine layer. Selective
Load Updates are sent to update the average load of the rack,
and Idle Add/Remove messages are sent when the state of the
rack changes from busy to idle and vice versa.

As shown in Figure 16, the rate of the Load Update mes-
sages at the highest workload is less than 0.15. Horus signif-
icantly reduces the overheads compared to previous works
(e.g., [48,60,78]), which require at least processing one mes-
sage per task. The figure also shows a small rate for the Idle
Add/Remove messages. Similar to the fraction of resubmitted
packets, the rate of messages is impacted by the placement
of workers and the size of the worker pool. The number of
workers in each rack impacts the rate of oscillation between
the idle states as well as the rate of required average load
updates.

Appendix C More Results from Simulation

This appendix includes additional results from our simulation.
Analysis of Horus Components. We analyze the contribu-
tions of the two components of the proposed scheduling pol-
icy: (i) scheduling tasks to idle nodes using idleness informa-
tion and (ii) scheduling tasks to busy nodes using the power-
of-two policy. In this experiment, we focus on five sample
worker pools with sizes ranging from 50 to 20,000 workers
each, and we use the Bimodal task distribution.



Algorithm 2 Scheduling and state updates for busy nodes

- loadList: reg. array that holds the queue length of nodes
(two identical copies maintained).

- driftList: reg. array holding the difference between val-
ues in loadList and actual load (two identical copies main-
tained).

/I On a taskReply or loadUpdate pkt received

function UPDATE(pkt)

loadList1[pkt.srcID] < pkt.glen
loadList2[pkt.srcID] < pkt.glen
driftList1[pkt.srcID] <— 0

driftList2[pkt.srcID] < 0

/I Atomic, read-modify-write operation on the reg.
function CHECKDRIFT(selectedldx,dif fSamples)
if driftList1[selectedldx] < dif fSamples then
Increment driftList1[selectedldx]
return NORESUB
12: else
13: | return driftList1[selectedldx]
14: @ On an task pkt received: First Path
15: function SCHEDULETASKBUSY(pkt)
16: randldx1,randldx2 < genRandomSamples()
17: samplel < loadList1[randldx]]
18: sample2 < loadList2[randldx2)
19: selectedldx,dif fSamples < CompareSamples()
20: driftSelected <— CheckDrift()
21: if driftSelected == NORESUB then

Do A A ol e
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22 Increment driftList2[selectedldx]

23: Update pkt headers and Forward

24: else

25: loadl < driftSelected + loadSelected

26: load2 + driftList2[otherldx] + loadOther

27 resubmit(selectedldx,load],otherldx,load?)

28: @) On an rask pkt received: Resubmit Path
29: function SCHEDULETASKBUSY(selectedldx, loadl,
otherldx, load?2)

30: selectedldx < CompareSamples()
31 Increment loadList1[selectedldx]
32: Increment loadList2[selectedldx]

33: Update pkt headers and Forward

We simulate two variants of the power-of-two policy. The
first relies only on reply packets from workers to update the
state, as done in RackSched [78]. This is referred to as Pow-
of-2 Delayed Updated (DU). The second variant, which is
used in Horus, updates the state while scheduling tasks, and it
may require resubmitting packets through the switch. We also
simulate a scheduler that uses the idle node selection only: it
schedules tasks to idle nodes, and if there are no idle nodes, it
will assign tasks to nodes randomly.

The results are presented in §C, where we present the aver-
age response time versus the system load. The results show
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Fig. 17: Analysis of Horus components.

the impact and importance of the two components of Horus.
That is, Horus achieves its performance by effectively tracking
the load on nodes and assigning tasks to idle nodes whenever
they are available. And when there are no idle nodes, Horus
uses the power-of-2 policy with accurate load information to
assign tasks to nodes with lower loads. Further, the random-
ness in the power-of-2 policy makes Horus robust against the
task herding problem.
Impact of Scheduler Failures. We analyze the impact of
spine scheduler failures while all of the 1K worker pools are
running. Upon detecting a failure, the centralized controller
notifies the leaf schedulers impacted by the failed spine sched-
uler. Similar to [38], we add latency to the control messages
carrying the failure notices based on the number of hops be-
tween the failed spine and each impacted leaf. The experiment
is repeated 30 times; each time, we fail a random spine sched-
uler. Notice that burst failures of spine switches are rare; the
median time between failures of such switches is multiple
hours [36]. Therefore, we only consider single spine failures.

We define r as the ratio of leaf to spine schedulers to control
the number of spine schedulers per worker pool. For exam-
ple, r = 40 indicates using four times fewer spine schedulers
compared to r = 10, for the same number of leaf schedulers.

Figures 18a and 18b show the impact of spine scheduler
failures and the trade-off for using different numbers of spine
schedulers for worker pools. Figure 18a shows the number
of messages sent from the centralized controller to the leaf
switches as a result of the failure. When the state is distributed
among more spine schedulers (i.e., small r), a failure results
in more control messages sent. This is because the Horus
controller sends a message to each leaf switch that needs to
update its state. In the worst case (r = 10), an average of
306 (maximum 624) messages need to be sent for each spine
failure event, which is a small message rate; centralized con-
trollers in today’s datacenters can send thousands of updates
per second [59,76].

Figure 18b shows the fraction of aborted scheduling tasks
during spine switch failures. For all r values, less than 0.1%
of the total submitted tasks are aborted on average during a



L 1.00 _
= S
2075 0.10
e <
“6 0.50 Ratio (r) ﬁ
5 40 E 0.05
£025 —2| 5
5] — () <
™ 0.00
70 200 400 600 00050 20 10

# Control Msgs to Leaves Leaf/Spine Scheduler Ratio

(a) Overhead during failure (b) Aborted tasks during failure

Fig. 18: Impact of spine scheduler failures.

spine failure. This is because of the distributed scheduling in
Horus, which enables multiple spine schedulers to handle the
tasks submitted to a worker pool. Horus equally distributes
the tasks belonging to a worker pool among spine schedulers.
Therefore, before the failed switch is removed from the list of
schedulers, only a small fraction of tasks that were sent to that
switch may be affected. The aborted tasks can be re-launched
by the application, which will be routed to the other active
spine schedulers. Using more spine schedulers per worker
pool provides better availability for the worker pools that
were using the failed spine scheduler, because the scheduling
requests of each worker pool are distributed uniformly among
a larger number of spine schedulers.

Impact of Worker Placement. Datacenter operators may use
different policies, e.g., [18], to allocate workers to worker
pools, which can result in various worker distributions across
racks. We analyze the impact of worker distribution on the
performance of the task scheduler. Recall that we simulate 1K
worker pools that have different numbers of workers (accord-
ing to exponential distribution) randomly distributed across
racks. We quantify the diversity in worker distribution by com-
puting the variance in the number of workers per worker pool.
A high variance indicates more scattered workers. We group
worker pools that observed similar variance in the worker
distributions together.

We plot, in Figure 19a, the average of the tail response time
(at 90% load) observed by various worker pools. We also plot
in the same figure, as error bars, the average plus/minus one
standard deviation. The figure shows that as the variance in the
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Fig. 19: Impact of worker placement and packet losses.

worker distribution increases, RS-H and RS-R result in higher
and more variable tail response times, whereas the response
time of Horus remains stable across all worker distributions.
For example, when the workers are highly scattered across
racks (i.e., variance is 140), Horus reduces the tail response
times by up to 94% and 99% compared to RS-R and RS-H,
respectively.

The results in Figure 19a imply that the performance

of Horus is robust against different worker distributions,
which offers flexibility to datacenter operators to employ var-
ious worker allocation policies. The robustness of Horus is
achieved by more accurately tracking the load on workers
compared to RS-R and RS-H.
Impact of Packet Losses on Update Messages. Figure 19b
shows the impact of packet loss on the rate of different types
of update messages. Since Horus sends average load updates
periodically based on the number of tasks that enter and exit
the rack, the rate of load updates is not sensitive to packet
losses. The idleAdd and idleRemove messages are, however,
re-transmitted in case of loss. For example, when an idleRe-
move packet from a leaf to a spine is lost, it re-transmits the
message until the leaf is removed from the idle list. This adds
extra overhead on switches. As the figure shows, the rate of
idleAdd and idleRemove messages increased by only 15%
when the loss rate is 0.1%. Even with the much higher loss
rates of 0.5 and 1%, Horus still functions properly, albeit at
increased rates of idleAdd and idleRemove messages.
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