
This paper is included in the Proceedings of the
19th USENIX Symposium on Networked Systems

Design and Implementation.
April 4–6, 2022 • Renton, WA, USA

978-1-939133-27-4

Open access to the Proceedings of the
19th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Yeti: Stateless and Generalized Multicast Forwarding
Khaled Diab and Mohamed Hefeeda, Simon Fraser University

https://www.usenix.org/conference/nsdi22/presentation/diab-yeti

https://www.usenix.org/conference/nsdi22/presentation/diab-yeti

Yeti: Stateless and Generalized Multicast Forwarding

Khaled Diab Mohamed Hefeeda
School of Computing Science

Simon Fraser University
Burnaby, BC, Canada

Abstract
Current multicast forwarding systems suffer from large state
requirements at routers and high communication overheads.
In addition, these systems do not support generalized multi-
cast forwarding, where traffic needs to pass through traffic-
engineered paths or requires service chaining. We propose a
new system, called Yeti, to efficiently implement generalized
multicast forwarding inside ISP networks and supports vari-
ous forwarding requirements. Yeti completely eliminates the
state at routers. Yeti consists of two components: centralized
controller and packet processing algorithm. We propose an
algorithm for the controller to create labels that represent gen-
eralized multicast graphs. The controller instructs an ingress
router to attach the created labels to packets in the multicast
session. We propose an efficient packet processing algorithm
at routers to process labels of incoming packets and forwards
them accordingly. We prove the correctness and efficiency
of Yeti. In addition, we assess the performance of Yeti in
a hardware testbed and using simulations. Our experimen-
tal results show that Yeti can efficiently support high speed
links. Furthermore, we compare Yeti using real ISP topolo-
gies in simulations against the closest systems in the literature:
a rule-based approach (built on top of OpenFlow) and two
label-based systems. Our simulation results show substantial
improvements compared to these systems. For example, Yeti
reduces the label overhead by 65.3%, on average, compared
to the closest label-based multicast approach in the literature.

1 Introduction

Recent large-scale Internet applications have introduced a
renewed interest in scalable multicast services. Examples of
such applications include live Internet broadcast (e.g., Face-
book Live), IPTV [27], webinars and video conferencing [22],
and massive multiplayer games [26]. The scale of these appli-
cations is unprecedented. For instance, due to the COVID-19
pandemic, a recent study [2] reported an increase by one or-
der of magnitude within two months in video conferencing

traffic passing though a major European ISP. Moreover, Face-
book Live aims to stream millions of live sessions to millions
of concurrent users [8, 41]. To reduce the network load of
such applications, ISPs can use multicast to efficiently carry
the traffic through their networks. Examples of commercial
systems using multicast include AT&T UVerse [40] and BT
YouView [37]. Beyond multimedia systems, multicast is also
useful for various applications such as real-time stock market
updates, cloud applications [33], and publish-subscribe sys-
tems [24,36,39]. For instance, the CIO of the Japan Exchange
Group highlighted the importance of multicast for their stock
trading operations [32].

Large ISPs need to support generalized multicast forward-
ing to handle various business requirements. Specifically,
providers of large-scale live applications require ISPs carry-
ing their traffic to meet target quality metrics or SLAs (service
level agreements), especially for popular/paid live multicast
sessions. To meet the SLAs for various customers, ISPs may
need to direct the traffic to network paths different from the
minimum-cost ones computed by the routing protocols de-
ployed in the ISP network. This is usually referred to as traffic
engineering. Prior works, e.g., [7, 11, 12, 16], have proposed
algorithms to support various traffic engineering objectives.

In addition, ISP customers may require their multicast traf-
fic to pass though an ordered sequence of network services
such as firewall, intrusion detection, and video transcoding
before reaching the destinations. This is referred to as service
chaining. Network services are usually deployed as virtual
functions running on servers attached to some of the core
routers in the ISP network. Previous works, e.g., [1, 5], pre-
sented algorithms for calculating optimal network paths to
satisfy service chaining requirements.

Given the service chaining and traffic engineering require-
ments of recent applications, multicast sessions can no longer
be represented as simple spanning trees. Rather, they need
to be represented as general graphs. Efficiently forwarding
traffic of multicast sessions represented as arbitrary graphs is,
however, a challenging problem. One of the main concerns is
the state that needs to be maintained at routers, which grows

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1093

linearly with the number of multicast sessions. This state also
needs to be frequently updated to handle session changes and
network dynamics, which imposes substantial communication
and processing overheads, especially on core routers that need
to support high-speed links carrying numerous sessions.

In this paper, we address the lack of scalable and gen-
eralized multicast forwarding systems for large-scale ISPs.
In particular, we propose a fully stateless approach, called
Yeti, to implement generalized multicast graphs. Yeti sup-
ports fast adaptation to network dynamics such as routers
joining/leaving sessions and link failures, and it does not im-
pose significant communication overheads. To the best our
knowledge, Yeti is the first multicast forwarding system that
supports multicast sessions with traffic engineering and ser-
vice chaining requirements. A high-level overview of Yeti is
illustrated in Figure 1.

The main idea of Yeti is to completely move the forward-
ing information for each graph to the packets themselves as
labels. Designing and processing such labels, however, pose
key challenges that need to be addressed. First, we need to
efficiently encode the graph forwarding information in as
few labels as possible. Second, the processing overheads and
hardware usage at routers need to be minimized. This is to
support many concurrent multicast sessions, and to ensure
the scalability of the data plane. Third, forwarding packets
should not introduce ambiguity at routers. That is, while min-
imizing label redundancy and overheads, we must guarantee
that routers will forward packets on and only on the links of
the multicast graph. Yeti addresses these challenges.

This paper makes the following contributions:
• We propose a generalized multicast forwarding system

that completely eliminates the state at routers; a long-
standing problem for multicast. The proposed system
supports service chaining and traffic engineering require-
ments.

• We design a control-plane algorithm to calculate an opti-
mized label for each generalized multicast graph.

• We design an efficient packet processing algorithm for
routers to handle labels attached to packets. The algo-
rithm forwards packets only on links of the multicast
graph. And it does not introduce any redundant traffic or
create loops in the network.

• We present proofs to show the correctness of Yeti.
• We implement Yeti in a hardware testbed using a pro-

grammable router (NetFPGA) to demonstrate its practi-
cality. Our results show that Yeti can support high-speed
links carrying thousands of multicast sessions.

• We compare Yeti against a rule-based approach imple-
mented using OpenFlow and the closest label-based ap-
proaches, LIPSIN [25] and BIER-TE [3], in simulations
using real ISP topologies with different sizes. Our simu-
lation results show that unlike Yeti which does not main-
tain state at any core router, the rule-based approach
requires maintaining state at every router in the session

Yeti Controller
Topology

Create Labels

Multicast Source

Core Ingress Egress

C
on

tr
ol

 P
la

n
e

D
at

a
P

la
n

e

...

a c b

1

2

3

4

6

5 11

12

7

9

10

8

Service

Congested Link

Router

Join/Leave

Update Label

Figure 1: High-level overview of Yeti.

and LIPSIN maintains state at about 20% of the routers.
In addition, Yeti reduces the label overhead by 65.3%,
on average, compared to BIER-TE.

2 Related Work

We divide the related multicast forwarding works in the liter-
ature into stateful, stateless, and hybrid approaches.
Stateful Multicast Approaches. These multicast approaches
require storing forwarding state about sessions at routers. The
traditional IP multicast [31] is an example of such approaches.
IP multicast is implemented in core routers produced by most
vendors. However, it suffers from scalability issues in real de-
ployments [29]. In particular, the group management and tree
construction protocols, e.g., IGMP [28] and PIM [13], require
maintaining state at routers for each session, and they gener-
ate control messages among routers to refresh and update this
state. Thus, in practice, router manufacturers tend to limit the
number of multicast sessions [38]. In addition, IP multicast
uses shortest paths and cannot implement generalized graphs.

Recent SDN-based protocols, e.g., OpenFlow [17], can im-
plement rule-based approaches, where a controller installs
header-matching rules and actions to forward/duplicate pack-
ets. Since OpenFlow stores state at every router along the
multicast trees, the total forwarding state at routers grows
with the number of sessions.
Stateless Multicast Approaches. There are a few recent pro-
posals for designing stateless multicast forwarding systems.
For example, BIER [10] encodes global router IDs of tree
receivers in the label as a bitmap. BIER supports only short-
est paths and cannot realize traffic-engineered ones. A recent
amendment to BIER, called BIER-TE [3], supports traffic-
engineered trees. BIER-TE maps each bit position in the
label to one of the links attached to routers in the network.
It encodes the links of a multicast tree as corresponding bit
positions in the calculated label. Upon receiving a packet,

1094 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

a BIER-TE router checks the bit positions in the label. If
the router matches one of its links in the label, it clears its
position in the label and forwards/duplicates the packet on
that link. The bitmap structure used in BIER-TE allows it to
only implement multicast sessions represented as trees, and
it cannot implement general multicast distribution graphs, as
such graphs could have cycles to allow the multicast traffic to
be processed by the specified set of network services. This is
illustrated in the example multicast distribution graph in Fig-
ure 1, where packets of the session traverse the link between
routers 4 and 7 three times to be processed by the services
a→b→c.
Hybrid Multicast Approaches. Yeti is not the first system
that moves forwarding information as labels attached to pack-
ets. However, prior systems did not support generalized for-
warding, and they needed to maintain state at some or all
routers belonging to the multicast tree. We refer to these sys-
tems as hybrid approaches. For example, the early work by
Chen et al. [30] proposed a label-based system that attaches
link IDs to every packet in a multicast session, and removes
unwanted portions of the label as the packet traverses the net-
work. The processing algorithm in [30] requires maintaining
state at every router belonging to a multicast session in order
to remove the labels, which is not scalable. Later works, e.g.,
mLDP [23], enable multicast in label-switched paths (LSPs).
mLDP forwards traffic on the shortest paths and thus cannot
support traffic-engineered trees. It also requires an additional
protocol to distribute labels among routers.

LIPSIN [25] uses a Bloom filter as label to encode global
link IDs of a tree. LIPSIN may result in redundant traffic
or forwarding loops, because of the probabilistic nature of
Bloom filters. Thus, LIPSIN requires an additional protocol
where downstream routers notify upstream ones if they falsely
receive a packet. This protocol imposes additional state and
communication overheads on routers.

Segment routing (SR) [4] is a recent proposal to support
traffic-engineered unicast flows. It was later extended to sup-
port multicast by considering every tree as a segment in the
network. It attaches one label containing the tree ID to pack-
ets of a session. Routers along the tree maintain a mapping
between that label and the output interfaces. That is, the SR
multicast extensions require maintaining state at routers for
every tree.

In §5, we compare Yeti versus a rule-based approach im-
plemented in OpenFlow, LIPSIN, and BIER-TE as they are
the closest stateful, hybrid, and stateless multicast systems,
respectively, that can support traffic engineering requirements.

3 Problem Definition and Solution

We start this section by specifying the considered problem
and its challenges. We next describe an overview of Yeti and
its main components. This is followed by the details of each

component. In the Appendix §C, we present an illustrative
example of Yeti to demonstrate its details.

3.1 Problem Definition and Challenges

The problem considered in this paper is how to efficiently
forward the traffic of a generalized multicast session that may
need to be processed by an ordered set of network services
and/or directed through a specific set of network paths within
the ISP network.

For illustration, consider the ISP network in the lower part
of Figure 1, which contains ingress, core, and egress routers
marked by different shapes and colors. Some of the core
routers are connected to servers offering various (virtual-
ized) network services such as intrusion detection and video
transcoding. There is a multicast source connected to the
ingress router and multiple receivers reachable through the
three egress routers. The creator of the multicast session re-
quires the traffic to be processed by the three network services
a→b→c in order. In addition, the ISP implements traffic engi-
neering mechanisms for various objectives, e.g., to minimize
the maximum link utilization (MLU), which requires the traf-
fic to avoid the link 3→ 5 in this example. The colored arrows
in the figure show the different paths taken by the traffic of
the multicast session to reach all receivers. These paths form
a graph (not tree), which we refer to as the multicast distri-
bution graph G. Note that nodes in the distribution graph
represent routers, not end users. The top right part of Figure 1
shows the graph for the multicast session marked in the lower
part of the figure.

Our problem then becomes how to get routers in the ISP
to forward the traffic of a multicast session represented by an
arbitrary multicast distribution graph G. Existing algorithms
in the literature, e.g., [1, 12], can be used to calculate G to
satisfy various service chaining and traffic engineering re-
quirements; our proposed (forwarding) solution is orthogonal
to the calculation of G and can work with any of them.

The arbitrary nature of the distribution graph makes de-
signing scalable multicast forwarding systems a challenging
problem. A possible approach to address this problem is to
maintain state (e.g., in the form of match-action rules) at
routers. However, as mentioned in §2, maintaining state at
routers is not scalable even for traditional multicast forward-
ing without service chaining and traffic engineering require-
ments. This is because the state, which grows linearly with the
number of multicast sessions, not only consumes the scarce
SRAM resources of routers, but it also needs to be frequently
updated to handle network failures and session dynamics (e.g.,
router joining/leaving). The cost of updating the state consists
of two factors. First, routers need to process many update
(control) messages while processing data packets, which may
result in slowing down the data plane operations. Second,
frequent state updates negatively impact the network agility
and consistency, because the control plane has to schedule the

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1095

updates to corresponding routers to ensure consistency [20],
since greedy state updates may result in violating the SLA
objectives [6].

To reduce state, a part or all of the forwarding information
can be moved to labels which are attached to the packets
of multicast sessions, where routers use these labels in the
forwarding decisions. However, efficiently representing multi-
cast graphs in compact labels is difficult, especially for multi-
cast sessions that have service chaining and traffic engineering
requirements. If not carefully designed, labels representing a
multicast graph can grow large in size and hence impose sig-
nificant communication overheads, and more critically they
could introduce ambiguity at routers, i.e., routers may not be
able to decide which interface(s) to forward the packets on.
This may introduce duplicate packets and forwarding loops,
which substantially increases the load on the ISP network and
wastes its bandwidth and processing resources.

In summary, forwarding generalized multicast graphs
presents multiple challenges that Yeti addresses. Specifically,
stateful approaches reduce scalability as they impose sub-
stantial memory and processing overheads on switches. On
the hand, current stateless approaches significantly increases
packet sizes and may introduce forwarding ambiguity. This
would defeat the main purpose of deploying multicast in the
first place. Yeti breaks this long-standing trade-off between
scalability, efficiency, and correctness by completely mov-
ing the forwarding state into compact labels, and carefully
processing them in the data plane.

3.2 Solution Overview

Yeti is a stateless multicast forwarding system that efficiently
implements general multicast graphs inside a single ISP net-
work; extending Yeti to support multiple ISPs is described
in §3.6. As shown in Figure 1, the ISP network has data and
control planes. The data plane is composed of routers. Every
router is assigned a unique ID, and it maintains two data struc-
tures: Forwarding Information Base (FIB) and interface list.
FIB provides reachability information between routers using
shortest paths. The interface list maintains the IDs of all local
interfaces. The control plane (or the controller) learns the ISP
topology, shortest paths between routers, and interface IDs
for every router, which is done using common intra-domain
routing and monitoring protocols.

Yeti consists of a centralized controller and a packet pro-
cessing algorithm. The controller calculates the distribution
graph for a multicast session using existing algorithms, e.g.,
[1, 12], and it creates, using our algorithm in §3.4, an opti-
mized set of labels L to realize this graph in the data plane.
As detailed in §3.3, Yeti defines four types of labels; each
serves a specific purpose in encoding the graph efficiently.
The controller sends the set of labels L to the ingress router
of the session, which in turn attaches them to all packets of
the session. When a graph G changes (due to link failure

Name Type Content Content Size (bits)

FSP 00 Global router ID 1+ dlog2 Ne
FTE 01 Local interface ID dlog2 Ie
MCT 10 Interface bitmap I
CPY 11 Label range (in bits) dlog2 (N× size(FTE))e

Table 1: Label types in Yeti. N is the number of routers, and I
is the maximum number of interfaces per router.

or egress router joining/leaving the session), the controller
creates a new set of labels and sends them only to the ingress
router, no other routers need to be updated.

The packet processing algorithm, described in §3.5, is de-
ployed at core routers. It processes the labels attached to
packets and forwards/duplicates packets based on these la-
bels. It also determines the subset of labels to attach to the
forwarded packets such that the subsequent routers can real-
ize the distribution graph without any ambiguity, forwarding
loops, or redundant traffic. We present a theorem proving the
correctness of Yeti in §3.6.

We present an illustrative example in the Appendix. This
example implements the distribution tree in Figure 1, and
it shows the details of creating labels at the controller and
processing packets at routers.

3.3 Label Types in Yeti

Yeti is a label-based system. Thus, one of the most important
issues is to define the types and structures of labels in order
to minimize the communication and processing overheads,
while still being able to represent generalized multicast graphs.
We propose the four label types shown in Table 1. The first
two label types are called Forward Shortest Path (FSP) and
Forward Traffic Engineered (FTE). They are used by routers
to forward packets on paths that have no branches. The other
two label types are Multicast (MCT) and Copy (CPY). The
MCT label instructs routers to duplicate a packet on multiple
interfaces, and the CPY label copies a subset of the labels.
Every label consists of two fields: type and content. The type
field is used by routers to distinguish between labels during
parsing, and the content field contains the information that
this label carries. The size of a label depends on the size of
the content field.

We use the example topology in Figure 2 to illustrate the
rationale used in defining Yeti labels. In the figure, solid lines
denote tree links and the dotted line denotes a link on the
shortest path to some destinations. The ISP avoids it because
it is congested in this example.

We divide a multicast graph into path segments and branch-
ing points. A path segment is a contiguous sequence of routers
without branches. If a path satisfies any sub-sequence of the
service chaining requirements of a session, the path segment

1096 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

1 2 4

7

3 6 8

10

11

12
5

a

b

TE Link

Path Segment

Branching Point

Shortest Path
bet. 6 & 8

c

a
a b

ca b

Processed by

Figure 2: Illustration of path segments and branching points
in Yeti. Segment 3→ 8 does not follow the shortest path.

ends when there is a router with at least one service. A branch-
ing point refers to a router that duplicates packets on mul-
tiple interfaces. For the example in Figure 2, there are five
path segments: {1→2}, {2→4→7}, {7→4}, {7→10}, and
{3→6→5→8}. Routers 4 and 8 are branching points.

The basic label in Yeti is FTE, where a router is instructed
to forward the packet carrying the label on a specific interface.
In many situations, however, packets follow a sequence of
routers on the shortest path. For these situations, we define
the FSP label, which replaces multiple FTE labels with just
one FSP label. An FSP label contains a global router ID,
which instructs routers to forward incoming packets on the
shortest path to that router. In addition, the first bit in an FSP
label indicates whether the packet will be processed at the
corresponding router. For example, in Figure 2, instead of
using two FTE labels for the links {6→ 5} and {5→ 8}, Yeti
uses one FSP label with destination ID set to node 8. In large
topologies, FSP labels significantly reduces label overheads.

FTE and FSP labels can represent path segments, but they
cannot handle branching points where packets need to be
duplicated on multiple interfaces. Notice that, after a branch-
ing point, each branch needs a different set of labels because
packets will traverse different routers. To handle branching
points, we introduce the MCT and CPY labels. The MCT
label instructs routers to duplicate packets on multiple inter-
faces using a bitmap of size I bits, where I is the maximum
interface count per router. The bitmap represents local inter-
face IDs, where the bit locations of the interfaces that the
packet should be forwarded on are set to one. The CPY label
does not represent a forwarding rule. Instead, it instructs a
router to copy a subset of labels when duplicating packets to
a branch without copying all labels. Specifically, consider a
router that duplicates packets to n branches. The MCT label
is followed by n sets of labels to steer traffic in these branches,
where every label set starts with a CPY label. The CPY label
of one branch contains an offset of label sizes (in bits) to be
duplicated to that branch. For example, in Figure 2, router
4 will process an MCT label followed by two CPY labels
for the traffic represented with a green arrow, one for each
of the two branches. The CPY label content size in Table 1

1 2 4 7

3 6

8

10

11 12

5

a b c

4

7
Services are ordered

a
a b

ca b

Processed by

Figure 3: The resulting tree T for the graph G in Figure 2.

uses the worst-case scenario. This happens when the graph
has the largest diameter, which is O(N) and every link is
traffic-engineered, where N is the number of core routers.

3.4 Creating Yeti Labels at the Controller
The ENCODEGRAPH algorithm, shown in Algorithm 1, runs
at the controller to create labels. We omit the pseudo code for
some functions that the algorithm calls due to space limita-
tions. When the distribution graph G changes, the algorithm
calls the BUILDTREE function to create a tree T that reflects
the order of network services needed before reaching the
destinations. Then, the ENCODEGRAPH algorithm calls the
CREATELABELS function with the created tree to calculate a
new set of labels L to encode the graph paths and sends them
to the ingress router, which attaches them to every packet in
the session. The details of our algorithms are as follow.
Building the Tree. The BUILDTREE function traverses the
multicast graph and creates a list of tuples for every path and
provided services on that path. For example, in Figure 2, the
tuple 〈{7→ 4},{a→ b}〉 represents packets traversing the
path {7→ 4} after processed by the services a and b.

The BUILDTREE function then traverses these tuples from
the tuple starting with the source node. The function keeps
track of the current parent and visited nodes in the tree, and
builds the tree T as follows. For every tuple, the function
creates nodes with every router ID and the provided services in
that tuple. For the tuple mentioned earlier, the function creates
the nodes: (7,{a→ b}) and (4,{a→ b}). The function adds
a node to T if it did not exist before. Then, the function adds
that node to the children of current parent, and sets the new
node as the current parent. If a node exists in the tree, the
function sets it as the current parent. Figure 3 depicts the
resulting tree of the graph in Figure 2.
Creating Labels. The CREATELABELS algorithm divides T
into segments and branching points. The algorithm calculates
FSP and FTE labels for every segment, and MCT and CPY la-
bels at branching points. The label order is important because
it reflects which routers process what labels. The algorithm
traverses the core routers of T in a depth-first search order
starting from the core router connected to the ingress router.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1097

Algorithm 1 Encode a multicast graph into labels.
Input: G: multicast graph
Input: S: ordered list of services in the session
Input: P: shortest path map
Output: L: labels to be sent to the ingress router

1: function ENCODEGRAPH(G, S, P)
2: T = BUILDTREE(G, S)
3: return CREATELABELS(G.src, T, S, P)
4: function CREATELABELS(source, T, S, P)
5: L = {}, pth_seg = {}, stack = {source}
6: while (stack.size() > 0) do
7: r = stack.pop() // a router in T
8: // Services provided by r for the session
9: srv = S.at(r)

10: core_children = T.core_children(r)//core routers
11: children = T.children(r) //core and egress routers
12: // Build a path segment pth_seg
13: if (core_children.size() == 1) then
14: pth_seg.append(r); stack.push(children[0])
15: // Handle a path segment (create FSP & FTE)
16: // S[0] is the next expected service
17: if (core_children.size() == 0 or S[0]∈ srv) then
18: pth_seg.append(r)
19: lbls = CALCSEGMENTLBL(T, pth_seg, P)
20: L.push(lbls); pth_seg = {}
21: S.remove(srv)
22: // Handle branching point (create MCT & CPY)
23: else if (children.size() > 1) then
24: if (pth_seg.size() > 0) then
25: pth_seg.append(r)
26: lbls=CALCSEGMENTLBL(T, pth_seg, P)
27: L.push(lbls); pth_seg = {}
28: 〈mct_lbl, cpy〉 = CREATEMCT(children)
29: L.push(mct_lbl)
30: if (cpy) then // Creating CPY labels
31: for (c ∈ children) do
32: // A recursive call for each branch
33: br_lbls = CREATELABELS(c, T, S, P)
34: o f f set = CALCLABELSIZE(br_lbls)
35: L.push(CPY(o f f set));L.push(br_lbls)
36: return L

It keeps track of the router r that is being visited, and one path
segment (pth_seg). Once a router r is visited, if r has only
one core child (Line 13 in Algorithm 1), this means that r
belongs to the current segment. The algorithm then appends
r to pth_seg, and pushes its child to the stack to be traversed
later. For example, the algorithm pushes routers 3, 6, 5 and
8 in Figure 3 to pth_seg because each of them has only one
child. If r has no core children or it provides some services
(has a path segment), or r has more than one child (has a
branching point), the algorithm calculates labels as follows.

Handling Path Segments. The CREATELABELS algorithm
creates a label for a path segment when pth_seg ends. This
happens in three cases. First, when r is connected to an egress
router (e.g., router 10 in Figure 3). Second, when r is a branch-
ing point and pth_seg is not empty (e.g., router 8 in Figure 3).
Third, when r provides at least on service (e.g., router 2 in
Figure 3). In all cases, the algorithm appends r to pth_seg and
calculates FSP and FTE labels using CALCSEGMENTLBL.

CALCSEGMENTLBL takes as inputs a tree T, a path seg-
ment pth_seg and the shortest path map P, and calculates the
FSP and FTE labels of the given pth_seg. It divides pth_seg
into two sub-paths: one that follows the shortest path, and one
that does not. It then recursively applies the same to the lat-
ter sub-path. Specifically, CALCSEGMENTLBL concurrently
traverses pth_seg and the shortest path between source and
destination. It stops when the traversal reaches a router in
pth_seg that does not exist in the shortest path. This means
that this router does not follow the shortest path, hence, it adds
an FSP label for the previous router. If pth_seg has routers
that do not follow the shortest path, CALCSEGMENTLBL
adds an FTE label and recursively calls itself using a subset
of pth_seg that is not traversed so far. CALCSEGMENTLBL
does not generate two consecutive FSP labels. When it cal-
culates an FSP label, it either terminates, or creates an FTE
label followed by a recursive call.

For the example in Figure 3, the CALCSEGMENTLBL algo-
rithm processes the segment {3→ 6→ 5→ 8} as follows. It
finds that the link (3, 6) is not on the shortest path from 3 to 8.
It calculates an FTE label for this link, and recursively calls
itself with the sub-path {6→ 5→ 8} as an input, for which
the algorithm creates an FSP label with router ID 8.
Handling Branching Points. The CREATELABELS algorithm
calculates MCT and CPY labels at branching points. The
algorithm calls CREATEMCT that returns MCT label and a
boolean value cpy indicating whether CPY labels are required.
To create an MCT label, CREATEMCT initializes an empty
bitmap of width I +1 (I is the maximum interface count per
router). For every child c of r, it sets the bit location in this
bitmap that represents the interface ID between r and c. It
checks if CPY labels are needed as follows. If any child c has
at least one core child, this means that this core child needs
labels to forward/duplicate packets. Otherwise, if all children
have no other core children, the router r is either directly
connected to an egress router, or its children are connected to
egress routers. Thus, these routers do not need more labels
and Yeti does not create CPY labels for these branches. For
example, at router 4 in Figure 3, core children 3 and 7 have
other core children which are 6 and 10, respectively. Hence,
two CPY labels are created for the two branches at 4. The
algorithm does not create CPY labels at router 8, because its
core children 11 and 12 have no other core children.

Recall that a CPY label copies a subset of labels at a spe-
cific branch. If CPY labels are needed at the branching point
and r has n children/branches, the MCT label is followed by

1098 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

n CPY labels, and every CPY label is followed by labels to
forward packets on the corresponding branch. Specifically,
the algorithm iterates over the children of r. For every child c,
the algorithm adds an FSP label if the child provides services.
Then, the algorithm recursively calls CREATELABELS to cre-
ate labels of the corresponding branch (Line 33). The created
CPY label for a branch contains the size of this branch labels
in bits to be copied. We calculate this size by accumulating
the size of every label type in br_lbls (Line 34).
Time and Space Complexities. In the worst-case scenario,
when every router is a branching point, the ENCODEGRAPH
algorithm needs to create labels for each branch. Thus,
the time complexity of the ENCODEGRAPH algorithm is
O(K2N2 +M), where N is the number of routers, M is the
number of links, and K is the maximum service chain length.
We note that the values of N, M and K are not large for re-
alistic ISP networks. The number of ISP routers N is in the
range of 10’s–100’s [9,18], most ISP networks are sparse with
number of links M ranging from 500 to around 2,000, and the
length of service chains K ranges from 2–10 [1]. Given these
practical values, the ENCODEGRAPH algorithm can easily run
on a commodity server. Notice that the CALCSEGMENTLBL
algorithm processes the segment after all routers of that seg-
ment is traversed. Thus, it only adds linear overhead to the
first term of the time complexity. The space complexity of
the ENCODEGRAPH algorithm is O(N2D), where D is the
diameter of the network.

3.5 Processing Yeti Packets

The proposed packet processing algorithm is to be deployed
at core routers, and it processes Yeti packets. This is done by
setting a different Ethernet type for Yeti packets at ingress
routers. A core router checks the Ethernet type of incoming
packets, and invokes the processing algorithm if they are Yeti
packets. The algorithm forwards/duplicates packets and it
removes labels that are not needed by next routers. It also
copies a subset of labels at branching points.

The packet processing algorithm works as follows. If the
packet has no labels, this means the packet reached a core
router that is attached to an egress router. So, the packet is
forwarded to that egress router. Otherwise, the algorithm pro-
cesses labels according to the following cases:
(1) FSP Label. If the FSP label content is not the receiving
router ID, it means that this router belongs to a path segment.
The algorithm then forwards the packet along the shortest
path based on the underlying intra-domain routing protocol
without removing the label. If the FSP content equals the
router ID, this means that the path segment ends at this router.
The algorithm first checks whether the packet needs to be
processed by services connected to that router. If the first bit is
set, then the packet is forwarded to the datacenter. Otherwise,
the algorithm removes the current label and calls the packet
processing algorithm again to process next labels. This is

because the packet may have other labels.
(2) FTE Label. The algorithm removes the label, extracts the
local interface ID, and forwards the packet on that interface.
(3) MCT Label. The algorithm first copies the original labels,
and removes the labels from the packet. It then extracts the
MCT content into mct. The MCT label contains the inter-
face ID bitmap (mct.intfs) and whether it is followed by CPY
labels (mct.has_cpy). The algorithm iterates over the router
interfaces in ascending order of their IDs. It locates the inter-
faces to duplicate the packet on. For every interface included
in the MCT label, the algorithm clones the packet. If the MCT
label is followed by CPY labels, the algorithm removes the
corresponding CPY label, extracts the following labels based
on the offset value, and forwards the cloned packet on the
corresponding interface.
Time and Space Complexities. The time complexity of the
algorithm is O(I), where I is the maximum interface count
per router. The algorithm does not require additional space at
routers.

3.6 Analysis and Practical Considerations
Analysis. The following theorem proves the correctness of
Yeti. That is, Yeti forwards packets on and only on links be-
longing to the multicast graph. This is a critical objective for
large-scale multicast sessions, as redundant traffic wastes net-
work resources and overloads routers. Due to space limitation,
we show the full proof in the Appendix §A.

Theorem 1 (Correctness). Yeti forwards packets on and only
on links that belong to the multicast graph.

Proof Sketch. Yeti guarantees correctness by creating an or-
dered set of labels to realize the given multicast distribution
graph. We analyze the order and type of the created labels
and prove that they do not result in forwarding loops or re-
dundant traffic while delivering the traffic to all receivers in
the multicast session.

Practical Considerations. The description of Yeti has fo-
cused on offering a scalable multicast service within a single
ISP using programmable routers. In the Appendix §B, we de-
scribe simple techniques to enable Yeti across multiple ISPs
and its incremental deployment.

4 Evaluation in a Testbed

We present a proof-of-concept implementation of the pro-
posed multicast forwarding system, and we conduct experi-
ments in a testbed with a NetFPGA programmable router.

In addition, since switches that support the P4 program-
ming language [21], e.g., Tofino, are getting popular in prac-
tice, we also implemented Yeti in P4. We obtained a license
for the Intel P4 software development environment (SDE)
version 9.5.0, which contains various tools, including a P4

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1099

A

Yeti
Router

C

B

Traffic
Generator

Traffic
Measurement28

Bytes12
Bytes

Ethernet
MCT

CPY

Payload

D

Figure 4: Setup of our testbed.

compiler (bf-p4c) and a switch model. The compiler pro-
duces code that runs on Tofino switches. We validated our
implementation using the switch model included in the SDE.
The details of the P4 implementation of Yeti are presented in
Appendix §D.

4.1 Testbed Setup
The testbed, shown in Figure 4, has a Yeti Router representing
a core router in an ISP topology that receives and processes
packets of concurrent multicast sessions. We implemented
the Yeti Router in a programmable processing pipeline using
NetFPGA SUME [19], which has four 10GbE ports. The
testbed also has a 40-core server with an Intel X520-DA2
2x10GbE NIC, which is used to generate traffic of multicast
sessions at high rate using MoonGen [14].

Our router implementation is based on the open source
project in [34]. This project contains three main Ver-
ilog modules: input_arbiter, output_port_lookup and
output_queues. Our implementation modifies the last two
modules in the router as follows. The output_port_lookup
module is modified to read the first label to decide which
ports to forward/duplicate the packet on. For each duplicated
packet, it decides the labels to be detached and maintains this
information in the packet metadata. We also modified the
output_queues module to runs at every output queue of the
router, and detach labels that are not needed in the outgoing
packets.

4.2 Experiments and Results
We transmit labelled packets of concurrent multicast sessions
at the maximum link speed in our testbed (10 Gbps) from
the traffic-generating server to the Yeti Router. We stress Yeti
by transmitting traffic that requires copying and rearranging
labels for each packet. In every experiment, we attach labels
with different sizes to each packet. These labels contain MCT
and CPY labels. The MCT label instructs the Yeti Router to
duplicate packets on two ports B and C in Figure 4. We report
the results for a sample label size of 28 bytes. This is because,
as we show in §5, most of the packets have this label size for

Latency (µsec) 50th% 95th% 99.9th%

Yeti 960.4 973 1,042
MAC forwarding 960.3 972.9 1,040

Difference 0.1 0.1 2

Table 2: Packet latency (in µsec) measured in our testbed.

traffic engineering and service chaining scenarios in different
ISP networks. The CPY labels instruct Yeti to copy 12 and 16
bytes to ports B and C, respectively. We measure the outgoing
traffic on port B. The main parameter that we control is the
packet size, which we vary from 64 to 1024 bytes. We report
three important metrics for the design of high-end routers:
packet latency, resource usage, and throughput.
Latency. We report the packet processing latency at port B
in Figure 4 when the Yeti Router processes CPY labels (i.e.,
the worst-case scenario in terms of processing). We measure
the latency by timestamping each packet at the traffic gener-
ator, and taking the difference between that timestamp and
the time the packet is received at port B. We use the Berkeley
Extensible Software Switch [15] to timestamp packets. Since
it may add overheads while timestamping and transmitting
packets, we compare the latency of Yeti processing against
the basic forwarding in the same testbed, which is done by
matching the fixed-length MAC address. Table 2 shows mul-
tiple statistics of the packet latency for both Yeti and unicast
forwarding when the packet size is 1,024 bytes. The table
shows that the latency of Yeti processing under stress is close
to the simple unicast forwarding. For example, the difference
of the 95th percentiles of packet latency is only 0.1 µsec when
the packet size is 1,024 bytes.
Resource Usage. We measure the resource usage of the
packet processing algorithm, in terms of the number of used
look-up tables (LUTs) and registers in the Yeti Router, which
are generated by the Xilinx Vivado tool after synthesizing and
implementing the project. Our implementation uses 12,677
slice LUTs and 1,701 slice registers per port. Relative to the
available resources, the used resources are only 3% and 0.2%
of the available LUTs and registers, respectively. Thus, Yeti
requires small amount of resources while it can forward traffic
of many concurrent multicast sessions.
Throughput. In Figure 5, we compare the rate of incoming
packets to the Yeti Router versus the rate of packets observed
at port B. The figure shows that the numbers of transmitted
and received packets per second are the same (i.e., no packet
losses). The figure also shows that our algorithm can sustain
the required 10 Gbps throughput for all packet sizes.

We realize that core routers have large port density and high
speeds. We believe that Yeti can achieve line-rate performance
in these routers, because Yeti processes each incoming packet
independently and adds small processing latency per packet
as shown in Table 2.

1100 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

64 128 256 512 1024
Packet Size (Bytes)

0
2
4
6
8

10
12
14
16

#
 P

k
ts

/s
ec

 (
M

il
li

o
n

s)

Tx

Rx

0

2

4

6

8

10

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Figure 5: Throughput of received traffic from our testbed.

5 Evaluation using Simulation

We analyze the performance of Yeti and compare it against
the closest multicast approaches using simulation.

5.1 Simulation Setup
Simulator. We implemented a Python-based simulator to
compare the performance of different multicast systems in
large setups using realistic ISP topologies. The simulator has
two components. The first acts as the Yeti controller in Fig-
ure 1. When this component receives an egress router event, it
updates the corresponding multicast graph, and then generates
labels using Algorithm 1. The second component simulates
the packet processing algorithm in §3.5. The simulator also
implements prior systems for comparisons.
ISP Topologies. We use 14 topologies in the Internet Topol-
ogy Zoo dataset [35]. This dataset represents a wide range of
actual ISPs, where the number of routers ranges from 36 to
197, and the number of links ranges from 152 to 486.
Multicast Sessions. We simulate dynamic and diverse multi-
cast sessions. The source of each session is randomly selected
from one of the ISP routers. The session bandwidth is ran-
domly chosen from the set {0.5, 1, 2, 5, 10} Mbps, which
represents the bandwidth values of different types of applica-
tions. The session duration is randomly assigned to a value
from {10, 20, 40, 60, 80, 100, 120} minutes. These values
reflect a wide range of short to long multicast sessions. In
addition, while the session is active, we make its receivers
join and leave according to random events generated from a
Poisson distribution, where 60% of these are join events and
40% are leave events. We make the receiver join rate 50%
higher than the leave rate to incrementally stress the system
with more multicast receivers as the time passes.

Each multicast session requires a set of network services,
or service chain. We vary the length of the service chain from
3 to 5 as these lengths represent common service usage pat-
terns [1, 42]. To represent practical deployment of services
in ISPs, we divide services to essential and supplementary
according to their popularity [42]. Essential services such as
firewalls are deployed at all ISP locations, whereas supple-
mentary services such as video encoders are only deployed
at some of the ISP locations. To stress our system, we set
the percentage of ISP locations that provide supplementary

services to only 25%. Each multicast session includes two
randomly chosen essential services and the rest of the services
are supplementary ones, also randomly chosen.

Since Yeti does not dictate how multicast graphs are com-
puted, we use the algorithms in [12] and [1] to calculate the
graphs based on the traffic engineering and service chaining
requirements, respectively.
Experiments and Statistics. We simulate the operation of an
ISP managing concurrent and dynamic multicast sessions over
an extended period of time (24 hours), where about 200,000
sessions are created over the simulation period. Specifically,
we first choose one of the 14 ISP topologies and generate the
multicast sessions using the characteristics described above.
Then, we repeat the experiment for the same ISP topology
five times, starting from different seeds for the random distri-
butions. Thus, for each ISP topology, we collect and analyze
statistics from about 1M randomly generated, diverse, and dy-
namic multicast sessions. Then, the whole process is repeated
for each of the 14 ISP topologies.

We report the 95-percentile of various performance metrics
in the following subsections, as it reflects the performance
over extended number of sessions. We present representa-
tive samples of our figures, using the ISP topologies with
the largest and median numbers of routers. We also present
averages and normalized averages (per router) across all ISP
topologies, to infer the performance in general settings. When
we present the (normalized) averages, we report the standard
deviation in each case preceded by ±.

Yeti is the first multicast forwarding system to support
service chaining and traffic engineering. Thus, we first com-
pare a simpler version of Yeti against the state-of-art systems
for multicast sessions with traffic engineering requirements
as these cannot support service chaining. Then, we analyze
the performance of Yeti for multicast sessions with traffic
engineering and service chaining requirements.

5.2 Yeti vs Stateful and Hybrid Approaches

We compare Yeti versus the closest stateful and hybrid mul-
ticast forwarding systems, which are OpenFlow [17] and
LIPSIN [25]. We implemented a rule-based multicast for-
warding system using OpenFlow [17] (referred to as RB-OF),
because rule-based is a general packet processing model that
is supported in many networks. The rule-based system is
stateful as it installs match-action rules in routers.

LIPSIN is a hybrid approach that encodes the tree link
IDs of a session using a Bloom filter. For every link, the
LIPSIN controller maintains D link ID tables with different
hash values. LIPSIN creates the final label by selecting the
table that results in the minimum false positive rate. Since
LIPSIN may result in false positives, each router maintains
state about incoming links and the label that may result in
loops for every session passing through this router. We set
the filter size of LIPSIN to the 99th-percentile of the label

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1101

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

15

30

45

60

75

90

S
ta

te
 (

#
ro

u
te

rs
)

Yeti

Yeti RB-OF LIPSIN

(a) #Routers=110

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

25

50

75

100

125

150

S
ta

te
 (

#
ro

u
te

rs
)

Yeti

Yeti RB-OF LIPSIN

(b) #Routers=197

Figure 6: State size.

size of Yeti. This enables LIPSIN to encode a large number
of links per tree in its labels. We use the same parameters
proposed for LIPSIN: we set D to 8 tables and use five hash
functions per link. We use Bloom filters and Murmurhash3
hashing functions.
State Size. Figure 6 shows the 95-percentile of the state size
per multicast session as the density of receivers varies, which
corresponds to the number of core routers needed to maintain
state. The results are shown for the median and largest topolo-
gies with sizes 110 and 197 routers, respectively. The results
for other topologies are similar (shown in Appendix §E).

First, notice that Yeti does not require any state at any core
router. In contrast, RB-OF needs to maintain state at each
router and that state increases with the topology size as well as
the density of receivers in each multicast session. For example,
the state size increases from 80 to 130 rules when the receiver
density increases from 10% to 30%. LIPSIN, on the other
hand, needs to maintain state at up to 20 routers when the
receiver density is 40%. In this case, multicast graphs span
50% of the routers. That is, LIPSIN needs to maintain state at
up to 20% of the routers in the multicast graph.
State Update Rate. Maintaining state at routers does not only
consume their limited SRAM, but also increases the overheads
of updating this state at routers when the distribution graph
changes [6, 20].

We assess the average number and percentage of routers to
be updated when a single multicast tree changes, and show
the results for sample ISP topologies with various sizes in
Table 3. Recall that the Yeti controller needs to update one
and only one (ingress) router when a session changes, which
is independent of the topology size. The state for RB-OF and
LIPSIN, on the other hand, grows with the topology size and
number of receivers in the multicast sessions. Thus, as Table 3
shows, RB-OF and LIPSIN controllers need to update up to
103.3 and 19.6 core routers per each distribution graph change,
respectively. That is, Yeti reduces the number of routers to
be updated by up to 103X and 20X compared to RB-OF and
LIPSIN, respectively.

To demonstrate the generality of Yeti performance, we
calculate the average percentage of routers in the ISP topology
to be updated for each change in the multicast distribution
graph, which is taken over all 14 ISP topologies. We present

ISP Size RB-OF LIPSIN Yeti Saving (%)

49 18.9 4.9 1.0 94.7 / 79.7
84 55.9 12.3 1.0 98.2 / 92.0
125 76.8 19.6 1.0 98.7 / 95.0
158 91.2 11.8 1.0 98.9 / 91.5
197 103.3 18.7 1.0 99.0 / 94.7

Norm.
Avg. (%) 48±10 9±3 1±0.6 97.5 / 87.1

Table 3: Number of routers that need to be updated for each
change in the multicast distribution graph. The shown savings
in the right most column are relative to RB-OF and LIPSIN,
respectively. The averages in the bottom row are computed
across all 14 ISP topologies and normalized by the number
of routers in each topology, and they represent the average
percentage of routers to be updated for each change.

the results in the last row in Table 3, which show that Yeti
reduces the average state update rate by 97.5% and 87.1%
compared to RB-OF and LIPSIN, respectively.

In summary, compared to stateful and hybrid approaches,
Yeti scales well and can handle dynamic multicast sessions,
as it does not require maintaining state at any router, and it
significantly reduces the need for frequent state updates.

5.3 Yeti vs A Stateless Approach

We compare Yeti against BIER-TE [3], which is a recent
label-based multicast forwarding system. We implemented
the basic features of BIER-TE as described in [3], which are
the bit positions for the forward-connected, forward-routed
and local-decap actions. This means that we conservatively
report the minimum size of BIER-TE labels for every ISP
topology. Since Yeti and BIER-TE are stateless and both use
labels, we only analyze the label size and its imposed total
overhead.

We first asses the label size per packet for multiple receiver
densities. We present the CDF of the label size for the me-
dian and largest topologies in Figure 7; the results for other
topologies are given in Appendix §E. Figure 7 indicates that
the label size for Yeti is much smaller than that of BIER-TE
in practical scenarios. For example, for the topology with
the median number of routers (110 routers), Figure 7a, and
receiver density of 30%, Yeti reduces the label size for 50%
of the packets by 91.6% compared to BIER-TE. Moreover,
the label size in Yeti for 90% of the packets is less than 19
bytes, while the label size of BIER-TE is 64 bytes. For the
largest topology in our dataset (197 routers) and for receiver
density of 30%, Figure 7b shows that the label size in Yeti is
15X smaller than BIER-TE for 50% of the packets.

We further analyze the behavior of Yeti and the dynamics
of its label size as packets traverse the network. In Figure 8,

1102 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 25 50 75
Label Size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
P

ac
k

et
s

Yeti-10%

Yeti-20%

Yeti-30%

Yeti-40%

BIER-TE

(a) #Routers=110

0 50 100 150
Label Size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
P

ac
k

et
s

Yeti-10%

Yeti-20%

Yeti-30%

Yeti-40%

BIER-TE

(b) #Routers=197

Figure 7: Label size CDF for different receiver densities.

we plot the average label size for Yeti and BIER-TE versus
the number of hops from source, for the median and largest
topologies, more results for other topologies are given in
Appendix §E. The figure shows that the label size for BIER-
TE depends on the topology size, it is 64 and 110 bytes, for
the median and largest topologies, respectively. In contrast,
the label size in Yeti decreases quickly as the packet moves
away from the source. For example, in Figure 8a, the label
size of Yeti is reduced by 16.9% and 67.8% after traversing
1 and 5 hops, respectively. The label size of Yeti becomes
smaller than that of BIER-TE after traversing 2 hops only,
and Yeti reduces the label size by 87.5% after traversing the
first 50% of the hops.

Finally, we assess the total end-to-end label overhead of
Yeti and BIER-TE, which we define as the label size multi-
plied by the number of network hops the packet traverses; this
is the area under the curves in Figure 8. Table 4 summarizes
the label overhead in bytes for multiple sample topologies.
The results show that Yeti achieves substantial savings, up to
70.2%, compared to BIER-TE. In addition, we report the aver-
age label overhead per router across all 14 ISP topologies. On
average, Yeti needs only 4 bytes per router to forward packets
of multicast sessions, whereas BIER-TE requires 11.4 bytes
per router, that is Yeti achieves an average saving of 65.3% in
the label overhead.

In summary, the label size in Yeti quickly decreases as
packets move towards the multicast destinations, because
routers copy only a subset of labels for every branch. This
results in substantial savings in the label overheads compared
to the closest label-based multicast forwarding system, BIER-
TE. In addition, BIER-TE cannot satisfy the service chaining
requirements for multicast traffic, while Yeti can.

5.4 Analysis of Yeti

We analyze the performance of Yeti in terms of effectiveness
of FSP labels, label size, processing overheads and running
time to satisfy various forwarding requirements.
Effectiveness of FSP Labels. We study the importance of
the proposed FSP label type. Recall that a single FSP label
represents multiple routers in a path segment if that segment
is on the shortest path. To show the importance of FSP label

0 4 8 12 16 20
Hops (from source)

0

15

30

45

60

75

90

L
ab

el
 S

iz
e

(b
y

te
s)

Yeti BIER-TE

(a) #Routers=110

0 5 10 15 20 25 30
Hops (from source)

0

30

60

90

120

150

180

L
ab

el
 S

iz
e

(b
y

te
s)

Yeti BIER-TE

(b) #Routers=197

Figure 8: Label size as packets traverse the network.

ISP Size BIER-TE Yeti Saving (%)

49 299.3 89.3 70.2
84 1,283.3 508.5 60.4
125 1,761.5 588.5 66.6
158 3,123.0 1,176.2 62.3
197 3,190.0 1,062.6 66.7

Norm. Avg.
(bytes/router) 11.4±4.8 4.0±1.8 65.3

Table 4: Label overhead in bytes for Yeti and BIER-TE.

across different topologies, we plot the average FSP saving
for sample topologies in Figure 9a as well as the average over
all ISP topologies. We observe consistent savings across the
topologies which range from 4 to 9 routers per FSP label. That
is, one FSP label saves 4–9 other labels, reducing the label
overhead by up to 9X. The average FSP saving is 5.8±1.8
routers.

Next, we asses the FSP savings to satisfy service chaining
requirements with different chain lengths in Table 5. As the
results show, FSP labels efficiently encode path segments in
the distribution graphs. For instance, an FSP label can encode
about 6 routers on average for typical chain lengths.
Label Size. In Figure 9b, we plot the label size of Yeti ver-
sus the number of hops from source for service chaining
requirements. The figure shows the results for the median
topology of size 110. The results indicate that the label size
of Yeti quickly decreases for all considered chain lengths as
packets traverse towards the destinations. For instance, the
label size decreases by 23% after traversing the first 10 hops
when the chain length is 4. In addition, although the used
routing policy [1] increases the number of hops to satisfy all
service chaining requirements, Yeti is able to encode these
large graphs in relatively small labels.
Processing Overhead. In Figure 10a, we plot the number
of copy operations per packet versus the receiver density for
multiple topology sizes to realize traffic engineering. The
results for other ISP topologies are plotted in Appendix §E.
The figure shows that the additional work per packet is small.
The number of copy operations increases as the receiver den-
sity increases because the multicast distribution graphs have

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1103

49 84 110 125 158 197 Avg.
Topology Size (# Routers)

0

2

4

6

8

10

#
 R

o
u

te
rs

FSP Savings

(a) FSP savings

0 10 20 30 40 50 60
Hops (from source)

0

15

30

45

60

75

90

L
ab

el
 S

iz
e

(b
y

te
s)

3 4 5

(b) Label size per hop

Figure 9: Analysis of FSP savings and label size of Yeti to
satisfy traffic engineering and service chaining requirements.

ISP Service Chain Length

Size 3 4 5

49 4.2±0.4 4.0±0.0 4.0±0.0
84 11.2±1.7 11.0±1.4 11.0±1.4
125 9.2±1.2 9.0±1.3 9.2±1.2
158 8.0±1.1 8.0±1.1 8.0±1.1
197 7.2±1.2 7.2±1.2 7.2±1.2

Avg. 6.4±2.2 6.3±2.2 6.4±2.2

Table 5: Number of traversed routers per FSP label to satisfy
service chaining.

more branches in this case. However, the processing overhead
increases slowly. For instance, in the 84-router topology, the
average number of copy operations increases from 0.4 to 0.62
per packet when the receiver density increases from 5% to
38%. This pattern applies for other topologies as well. That
is, Yeti routers scale in terms of processing as the network
load increases.

We next present the distribution of FSP, FTE, MCT and
CPY labels per router for the five topologies in Figure 10b.
The figure shows that the fraction of processed CPY labels
(the most expensive) per Yeti router across all sessions is
small compared to other label types. For example, only 17%
of the labels being processed at a Yeti router are CPY labels
for the largest topology of 197 routers.

For service chaining, Yeti incurs a similar distribution of op-
erations to Figure 10b. For instance, the fraction of processed
CPY labels is 18.7% for the topology of size 110 when the
chain length is 3. For a longer chain of length 5, the fraction
of CPY labels increases slightly to 21% to satisfy all ser-
vice chains. On average, the fractions of CPY labels per ISP
topology are 19.2%±2.8%, 19.6%±2.8%, and 19.6%±2.3%
for chain lengths of 3, 4 and 5, respectively. We present the
average number of copy operations and distribution of all
operations in Appendix §E, where the averages are taken over
chain lengths.
Running Time of Yeti Controller. We ran the proposed CRE-
ATELABELS algorithm on a workstation with four 3.3 GHz

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

0.2

0.4

0.6

0.8

1.0

#
 C

o
p

y
 O

p
er

at
io

n
s 84 110 125 158 197

(a) # copy operations

84 110 125 158 197
Topology Size (# Routers)

0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
O

p
er

at
io

n
s

FSP FTE MCT CPY

(b) Distribution of operations

Figure 10: Analysis of processing overheads of Yeti.

cores and 32 GB of memory, and we measured the running
time of creating labels per graph update at the controller. The
running time varied from 4 msec to 10 msec based on the
topology size. For the largest topology of size 197, the con-
troller spends only about 10 msec per graph update to create
the labels for the largest session. Thus, the proposed label
creation algorithm is practical, can run on commodity servers,
and it supports frequent graph updates and network dynamics.

In summary, Yeti imposes small label and processing over-
heads while satisfying service chaining and traffic engineering
requirements.

6 Conclusions

We proposed an efficient, stateless, multicast forwarding sys-
tem called Yeti that implements generalized multicast graphs
in ISP networks. Unlike current rule-based multicast systems,
Yeti does not require maintaining any state at routers. And
unlike other label-based multicast systems, Yeti can direct
traffic on arbitrary network paths to meet traffic engineer-
ing and service chaining requirements while reducing the
label size significantly. The novel aspects of Yeti include
(1) supporting general traffic forwarding requirements, (2)
guaranteeing correctness, (3) composing small labels, and
(4) processing labels efficiently at routers. We implemented
Yeti in a programmable router and evaluated its performance.
Our experiments show that Yeti can achieve line-rate perfor-
mance while using a small amount of hardware resources. In
addition, we conducted extensive simulations using real ISP
topologies, and compared it versus the state-of-art approaches.
Our results show that Yeti outperforms the other approaches
by wide margins for all considered metrics.

Acknowledgments

We thank our shepherd, Behnaz Arzani, and the anonymous
reviewers for their comments. This work was partially sup-
ported by the Natural Sciences and Engineering Research
Council of Canada (NSERC).

1104 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] K. Diab, C. Lee, and M. Hefeeda. Oktopus: Service
chaining for multicast traffic. In Proc. of IEEE ICNP’20,
pages 1–11, Madrid, Spain, October 2020.

[2] Anja Feldmann, Oliver Gasser, Franziska Lichtblau,
Enric Pujol, Ingmar Poese, Christoph Dietzel, Daniel
Wagner, Matthias Wichtlhuber, Juan Tapiador, Narseo
Vallina-Rodriguez, Oliver Hohlfeld, and Georgios
Smaragdakis. The lockdown effect: Implications of
the covid-19 pandemic on internet traffic. In Proc. of
ACM IMC’20, page 1–18, Virtual Event, October 2020.

[3] Toerless Eckert, Gregory Cauchie, and Michael Menth.
Tree Engineering for Bit Index Explicit Replication
(BIER-TE). Internet-Draft draft-ietf-bier-te-arch-08,
Internet Engineering Task Force, July 2020. Work in
Progress.

[4] Clarence Filsfils, Stefano Previdi, Les Ginsberg, Bruno
Decraene, Stephane Litkowski, and Rob Shakir. Seg-
ment Routing Architecture. RFC 8402.

[5] B. Ren, D. Guo, G. Tang, X. Lin, and Y. Qin. Opti-
mal service function tree embedding for nfv enabled
multicast. In Proc. of IEEE ICDCS’18, pages 132–142,
Vienna, Austria, July 2018.

[6] Jiaqi Zheng, Bo Li, Chen Tian, Klaus-Tycho Foerster,
Stefan Schmid, Guihai Chen, and Jie Wu. Scheduling
congestion-free updates of multiple flows with chronicle
in timed sdns. In Proc. of IEEE ICDCS’18, pages 12–21,
Vienna, Austria, July 2018.

[7] S. H. Chiang, J. J. Kuo, S. H. Shen, D. N. Yang, and W. T.
Chen. Online multicast traffic engineering for software-
defined networks. In Proc. of IEEE INFOCOM’18,
pages 414–422, Honolulu, HI, April 2018.

[8] Aravindh Raman, Gareth Tyson, and Nishanth Sastry.
Facebook (A)Live?: Are Live Social Broadcasts Really
Broadcasts? In Proc. of WWW’18, page 1491–1500,
Lyon, France, April 2018.

[9] Victor Heorhiadi, Sanjay Chandrasekaran, Michael K.
Reiter, and Vyas Sekar. Intent-driven composition of
resource-management sdn applications. In Proc. of ACM
CoNEXT’18, pages 86–97, Heraklion, Greece, 2018.

[10] IJsbrand Wijnands, Eric C. Rosen, Andrew Dolganow,
Tony Przygienda, and Sam Aldrin. Multicast Using Bit
Index Explicit Replication (BIER). RFC 8279.

[11] L. H. Huang, H. C. Hsu, S. H. Shen, D. N. Yang, and
W. T. Chen. Multicast traffic engineering for software-
defined networks. In Proc. of IEEE INFOCOM’16,
pages 1–9, San Francisco, CA, April 2016.

[12] M. Huang, W. Liang, Z. Xu, W. Xu, S. Guo, and Y. Xu.
Dynamic routing for network throughput maximization
in software-defined networks. In Proc. of IEEE INFO-
COM’16, pages 1–9, San Francisco, CA, April 2016.

[13] Bill Fenner, Mark J. Handley, Hugh Holbrook, Isidor
Kouvelas, Rishabh Parekh, Zhaohui (Jeffrey) Zhang, and
Lianshu Zheng. Protocol Independent Multicast - Sparse
Mode: Protocol Specification. RFC 7761.

[14] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer,
Florian Wohlfart, and Georg Carle. Moongen: A script-
able high-speed packet generator. In Proc. of ACM
IMC’15, pages 275–287, Tokyo, Japan, October 2015.

[15] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar,
Dongsu Han, and Sylvia Ratnasamy. Softnic: A software
nic to augment hardware. Technical Report UCB/EECS-
2015-155, EECS Department, University of California,
Berkeley, May 2015.

[16] S. H. Shen, L. H. Huang, D. N. Yang, and W. T.
Chen. Reliable multicast routing for software-defined
networks. In Proc. of IEEE INFOCOM’15, pages 181–
189, Hong Kong, China, April 2015.

[17] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E.
Rothenberg, S. Azodolmolky, and S. Uhlig. Software-
defined networking: A comprehensive survey. Proc. of
the IEEE, 103(1):14–76, Jan 2015.

[18] Renaud Hartert, Stefano Vissicchio, Pierre Schaus,
Olivier Bonaventure, Clarence Filsfils, Thomas Telkamp,
and Pierre Francois. A declarative and expressive ap-
proach to control forwarding paths in carrier-grade net-
works. In Proc. of ACM SIGCOMM’15, pages 15–28,
London, United Kingdom, 2015.

[19] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W.
Moore. Netfpga sume: Toward 100 gbps as research
commodity. IEEE Micro, 34(5):32–41, September 2014.

[20] Xin Jin, Hongqiang Harry Liu, Rohan Gandhi, Srikanth
Kandula, Ratul Mahajan, Ming Zhang, Jennifer Rexford,
and Roger Wattenhofer. Dynamic scheduling of network
updates. In Proc. of ACM SIGCOMM’14, pages 539–
550, Chicago, IL, August 2014.

[21] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan
Talayco, Amin Vahdat, George Varghese, and David
Walker. P4: Programming protocol-independent packet
processors. ACM SIGCOMM Computer Communica-
tion Review, 44(3):87–95, July 2014.

[22] X. Chen, M. Chen, B. Li, Y. Zhao, Y. Wu, and J. Li.
Celerity: A low-delay multi-party conferencing solution.
IEEE Journal on Selected Areas in Communications,
31(9):155–164, September 2013.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1105

[23] Bob Thomas, IJsbrand Wijnands, Ina Minei, and Kireeti
Kompella. LDP Extensions for Point-to-Multipoint and
Multipoint-to-Multipoint Label Switched Paths. RFC
6388.

[24] Jay Kreps, Neha Narkhede, and Jun Rao. Kafka: a dis-
tributed messaging system for log processing. In Proc.
of ACM Workshop on Networking Meets Databases
(NetDB’11), Athens, Greece, June 2011.

[25] Petri Jokela, András Zahemszky, Christian Es-
teve Rothenberg, Somaya Arianfar, and Pekka Nikander.
Lipsin: Line speed publish/subscribe inter-networking.
In Proc. of ACM SIGCOMM’09, pages 195–206,
Barcelona, Spain, August 2009.

[26] T. W. Cho, M. Rabinovich, K. K. Ramakrishnan, D. Sri-
vastava, and Y. Zhang. Enabling content dissemination
using efficient and scalable multicast. In Proc. of IEEE
INFOCOM’09, pages 1980–1988, Rio de Janeiro, Brazil,
April 2009.

[27] V. Gopalakrishnan, B. Bhattacharjee, K. K. Ramakrish-
nan, R. Jana, and D. Srivastava. Cpm: Adaptive video-
on-demand with cooperative peer assists and multicast.
In Proc. of IEEE INFOCOM’09, pages 91–99, Rio de
Janeiro, Brazil, April 2009.

[28] Bradley Cain, Dr. Steve E. Deering, Bill Fenner, Isidor
Kouvelas, and Ajit Thyagarajan. Internet Group Man-
agement Protocol, Version 3. RFC 3376.

[29] C. Diot, B. N. Levine, B. Lyles, H. Kassem, and
D. Balensiefen. Deployment issues for the ip multicast
service and architecture. IEEE Network, 14(1):78–88,
January 2000.

[30] Wen-Tsuen Chen, Pi-Rong Sheu, and Yaw-Ren Chang.
Efficient multicast source routing scheme. Computer
Communications, 16(10):662–666, 1993.

[31] Stephen E. Deering and David R. Cheriton. Multicast
routing in datagram internetworks and extended lans.
ACM Transactions on Computer Systems, 8(2):85–110,
May 1990.

[32] AWS Announces Nine New Compute and Networking
Innovations for Amazon EC2. https://bloom.bg/
2t1N9py. [Online; accessed February 2022].

[33] Run IP Multicast Workloads in the Cloud Using AWS
Transit Gateway. https://go.aws/2RT6stz. [Online;
accessed February 2022].

[34] NetFPGA SUME Reference Learning Switch Lite.
https://bit.ly/2UrUFlx. [Online; accessed Febru-
ary 2022].

[35] The Internet Topology Zoo. http://www.
topology-zoo.org/dataset.html. [Online;
accessed February 2022].

[36] Apache ActiveMQ. http://activemq.apache.org.
[Online; accessed February 2022].

[37] Bt iptv (youview). https://bit.ly/3ssCvTz. [On-
line; accessed February 2022].

[38] Multicast Command Reference for Cisco ASR 9000
Series Routers. https://bit.ly/3AaVGDQ. [Online;
accessed February 2022].

[39] RabbitMQ. http://www.rabbitmq.com. [Online; ac-
cessed February 2022].

[40] U-verse tv. https://bit.ly/3HLhfyL. [Online; ac-
cessed February 2022].

[41] Zuckerberg really wants you to stream live video on
Facebook. https://bit.ly/2v6uHqF. [Online; ac-
cessed February 2022].

[42] Benoit Donnet, Korian Edeline, Iain R. Learmonth, and
Andra Lutu. Middlebox classification and initial model.
https://bit.ly/3dZelXV. [Online; accessed Febru-
ary 2022].

Appendix A Correctness of Yeti

Theorem 1 (Correctness). Yeti forwards packets on and only
on links that belong to the multicast graph.

Proof. Yeti guarantees correctness by creating an ordered set
of Yeti labels for the given graph at the controller using the
ENCODEGRAPH algorithm. Recall that the algorithm first
creates a tree to represent the services needed before reach-
ing the destinations. A node in that calculated tree consists
of router ID v and sub-sequence of services S. Every node
appears only once in the tree (by construction). This means
that the tree has no cycles.

The label creation algorithm traverses the tree to calculate
the final labels. Within every path with provided services S,
the order and type of created labels represent how packets
should be forwarded in the data plane. This is detailed as fol-
lows. FSP labels do not result in incorrect forwarding because:
(1) an FSP label with ID v is only added when a tree node
v is traversed by the CREATELABELS algorithm, (2) since
every node with router ID v and services S is traversed once
and only once by the algorithm, only a single FSP v can be
added to the labels representing that node with services S,
(3) in the data plane, the router with ID v removes the FSP
v label. Thus, no subsequent routers in along the path with
same services can process that label and transmit the packet
back to v, and (4) since the traversal starts from the source, if

1106 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://bloom.bg/2t1N9py
https://bloom.bg/2t1N9py
https://go.aws/2RT6stz
https://bit.ly/2UrUFlx
http://www.topology-zoo.org/dataset.html
http://www.topology-zoo.org/dataset.html
http://activemq.apache.org
https://bit.ly/3ssCvTz
https://bit.ly/3AaVGDQ
http://www.rabbitmq.com
https://bit.ly/3HLhfyL
https://bit.ly/2v6uHqF
https://bit.ly/3dZelXV

a node u precedes node v in the tree, the algorithm guarantees
that u is traversed before v. Thus, there is no label to forward
packets back to u.Similar properties are guaranteed for FTE
labels in terms of links. Moreover, attaching multiple FTE
labels does not result in incorrect forwarding. Otherwise, the
given tree has loops, or routers do not remove FTE labels.

For MCT and CPY labels, since the CREATELABELS algo-
rithm recursively creates the labels for each branch, the same
guarantees apply within a single branch for branching points.
In addition, routers in one branch do not forward packets to
routers in other branches. This is because (1) the given tree
is a proper one (i.e., has no cycles), and (2) every router in
a given branch processes the subset of labels duplicated for
that branch using the CPY labels.

Appendix B Practical Considerations of Yeti

Multicast across ISPs. The description of Yeti thus far has fo-
cused on offering a scalable multicast service within a single
ISP. Extending Yeti to multiple ISPs can be done in multiple
ways. For example, a content provider could have separate
agreements with different ISPs to serve clients within these
ISPs, where each ISP runs its multicast service independently
from the others. In this case, a separate feed of the multicast
session traffic is provided from the content provider to each
ISP. Agreements between major content providers, e.g., Face-
book and Netflix, and large ISPs are not uncommon. Another
way of extending Yeti to multiple ISPs is through tunneling,
where a tunnel is established between an egress router of an
ISP to an ingress router of another ISP. The ingress router of
the second ISP would attach labels created by the controller
of that ISP. While the tunneling approach does not reveal the
internal network details of ISPs to each other, which is impor-
tant in practice, it does require collaboration among ISPs to
establish tunnels among some routers.
Incremental Deployment. An ISP may have some legacy
routers that are not programmable and thus cannot run the
packet processing algorithm of Yeti. There are multiple op-
tions that Yeti can still function in this situation, albeit with
some workaround and minor overheads. First, Yeti is general
and can support arbitrary multicast graphs. Thus, a possi-
ble solution is to modify the multicast graphs to avoid going
through legacy routers. The multicast graphs is an input to our
label creation algorithm, and thus the computed labels will not
direct traffic through legacy routers. If a legacy router cannot
be avoided, a tunnel can be created between the router imme-
diately before the legacy router and each router following it
has multicast destinations.

Appendix C Illustrative Example

We present a simple example to illustrate all steps of the
proposed approach. Figure 11 shows the multicast tree of the

session in Figure 1, where solid arrows indicate the graph
links. The dotted line is the shortest path that the ISP avoids
because it is over-utilized. Router IDs and used interface
IDs are shown in the figure. The number of core routers and
maximum interface count are 12 and 5, respectively. Thus,
the label sizes (in bits) are 8, 8, 7 and 5 for MCT, CPY, FSP
and FTE, respectively (Table 1).

The controller generates the shown labels using the EN-
CODEGRAPH algorithm as follows. First, the algorithm cre-
ates three FSP labels to encode path segments to routers 2,
7 and 4. Notice that the most significant bit in each of these
labels is set to one as these nodes provide services a, b and c.

The algorithm then generates MCT 1-00110 to duplicate
packets on interfaces 2 and 3 at router 4. Since the children
3 and 7 have core children, the algorithm sets the most sig-
nificant bit in the MCT label to one, and creates two CPY
labels for branches A and B. In branch B, the recursive call
of Algorithm 1 creates labels for the path segment {3, 6, 5,
8} as follows. First, the algorithm appends routers 3, 6 and
5 to pth_seg because each has one core child (Line 13, Al-
gorithm 1). When the algorithm reaches 8 (which has two
core children), the algorithm appends it to pth_seg (Line 25,
Algorithm 1) and creates labels for the path segment and the
branching point at router 8. For the path segment, since link
(3, 6) is not on the shortest path from 3 to 8, the algorithm
creates FTE 011 to forward packet on interface 3 at router
3. In addition, the algorithm creates FSP 0-1000 to forward
packets from 6 to 8, because the links (6, 5) and (5, 8) are on
the shortest path between 3 and 8.

We describe the packet processing algorithm at represen-
tative routers. The dark labels in Figure 11 are the ones that
are processed at given routers. When router 2 receives FSP
1-0010, it decides that the packet needs to be processed by
service a. So, it removes the label and forwards the packet to
the corresponding datacenter. When the processing is done,
router 2 receives a packet which its first label is FSP 1-0111.
Thus, it forwards the packet on the shortest path to router 7.
Notice that router 4 does not remove FSP 1-0111 as it is not
destined for it. Then, routers 7 and 4 receives packets where
the contents of the FSP labels are their router IDs. After ser-
vice c processes the packet, router 4 processes MCT 1-00110
by duplicating the packet on interfaces 2 and 3, and copying
specific byte ranges using the CPY labels. Router 3 forwards
the packet on interface 3. Router 8 removes FSP and MCT
labels and duplicates the packet to routers 11 and 12. Since
the packet has no labels at router 11 and 12, they transmit it
to egress routers.

Appendix D Implementation of Yeti using P4

P4 is a data plane programming language that is getting popu-
lar due to its flexibility. Thus, we show that Yeti can be imple-
mented in P4 switches. We implemented Yeti using the Intel
P4 software development environment (SDE) version 9.5.0.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1107

Payload= =

Payload= =

Payload= =

Payload= =

Payload= =

Payload= =

Payload= =

FSP 1-0010

FSP 1-0100
MCT 1-00110

FSP 1-0111

FSP 0-1010
CPY 001110

FTE 011
FSP 0-1000

CPY 010100

MCT 0-00110

Payload= =

FSP 1-0100
MCT 1-00110

FSP 1-0111

FSP 0-1010
CPY 001110

FTE 011
FSP 0-1000

CPY 010100

MCT 0-00110

FTE 011
FSP 0-1000
MCT 0-00110

FSP 0-1000
MCT 0-00110

MCT 0-00110

FSP 0-1010

Payload= =

FSP 1-0100
MCT 1-00110

FSP 1-0111

FSP 0-1010
CPY 001110

FTE 011
FSP 0-1000

CPY 010100

MCT 0-00110

FSP 1-0010

Payload= =

FSP 1-0100
MCT 1-00110

FSP 1-0111

FSP 0-1010
CPY 001110

FTE 011
FSP 0-1000

CPY 010100

MCT 0-00110
Payload= =

MCT 1-00110

FSP 0-1010
CPY 001110

FTE 011
FSP 0-1000

CPY 010100

MCT 0-00110

FSP 1-0100

FSP 0-1010

FSP 0-1000

At 1

A

B

1 2 4 7

3

6

8

10

11 12

5

a b c

4

7

At 2
At 4

At 4

At 7

At 10
At 6

At 8

At 11 & 12

At 3

3
4

32

32

At 7

AB

Figure 11: Illustrative example of how labels in Yeti represent the multicast tree in Figure 1.

Link #i
Accept if:

Out Port == i &&
is_mct &&

CPY #i is valid

Else:
Drop #i = true

Link #i
Accept if:

Out Port == i &&
is_mct &&

CPY #i is valid

Else:
Drop #i = true

FSP_1 FTE MCT

Start

FSP_2 End

Ingress Parser

Node ID tbl

FSP label

Egress Parser

MCT label

Broadcast

Intf. ID tbl

FTE label

Ingress Pipeline

Set
Set

MCT

Start

CPY

End

CPY

CPY CPY

Metadata Bus

remove_fsp
is_mct

FSP or FTE

Out Port(s) Out Port

ID IDPort Port

remove_fsp is_mct
Out Port
is_mct

Egress Pipeline

Drop #i

Link I

Link 1

Link #i
If

Out Port == i &&
(is_mct &&

CPY #i is valid):

Else:
Drop #i = true

invalidate_others()

Control Plane

1 K

1 K

Figure 12: Design of Yeti in P4 switches.

1108 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

We used the provided tools such as the P4 compiler (called
bf-p4c) and switch model integrated with the SDE to realize
our ideas and validate our implementation. We note that P4
programs implemented in open-source software switches, e.g.,
bmv2, may not necessarily work on actual hardware switches,
because of the potential mismatch between the available phys-
ical resources in actual switches and the assumed resources
in software switches. This is not the case for the Intel SDE,
since its P4 compiler produces code for actual Tofino switches
(which are also manufactured by Intel).

There are two main challenges in implementing Yeti us-
ing P4. First, current Tofino switches do not provide pro-
grammable primitives to implement new multicast systems.
This is because the packet replication engine is implemented
as a fixed-function block. Second, the current bf-p4c com-
piler does not support variable-length fields (i.e., varbit)
needed to parse and process CPY labels. We made three de-
sign choices to address these challenges. We first divided the
packet processing between ingress and egress pipelines to re-
alize a programmable multicast primitive. Second, we relied
on the available resources and programmable capabilities of
the parsers to reduce the processing in ingress/egress stages.
Finally, we explicitly unrolled the parsing and processing of
a CPY label as an array of items.

Figure 12 illustrates the high-level design of our P4 imple-
mentation. Upon a packet arrival, the ingress parser processes
FSP, FTE and MCT labels as follows. For an FSP label, the
parser reads the included node ID, and parses the labels again
if the parsed node ID is the same as the router ID. In this case,
the parser sets a metadata field remove_fsp to be used by the
ingress pipeline. Recall that the Yeti controller never creates
two consecutive FSP labels (§3.4 and §3.6). Therefore, the
parser always terminates. In the case of FTE and MCT labels,
the parser reads their contents. In addition, it sets a metadata
field is_mct when it parses an MCT label.

The ingress pipeline contains two tables to maintain node
and interface IDs, and spans two stages. In the first stage,
the algorithm processes an FSP label by reading an entry
from the node ID table that matches the label content, and
setting the outgoing port accordingly. The algorithm also
removes the FSP label if the metadata field remove_fsp is
set. The algorithm processes MCT labels, in the same stage,

by duplicating the packet to all outgoing ports. The FTE label
processing is done in the second stage, and it is similar to that
of FSP. However, the algorithm always removes FTE labels.

The egress parser and pipeline are used only to handle MCT
and CPY labels. For each duplicated packet, the egress parser
extracts the contents of MCT label when the metadata field
is_mct is set. The parser then reads CPY labels sequentially
based on the content of MCT label and offsets in CPY labels.
Specifically, for each CPY label, the parser extracts its offset
and content. The content is read based on the offset value,
and represented as an array of up to K multiples of B bits to
emulate varbit<K×B>. When the parser is done, the egress
pipeline identifies which outgoing port should transmit what
CPY label based on the egress port number and validity of the
CPY label. The MCT and remaining CPY labels are removed.

We did not have a physical Tofino switch in our lab to con-
duct measurement experiments at the time of conducting this
research. We thus validated our implementation by writing
and running multiple test cases, and sending and receiving
packets to and from the Tofino switch model process. When
we run a test case, we insert the required entries into node and
link IDs tables. We send labeled packets using scapy, and
verify the reception of outgoing packets based on the attached
Yeti labels. A test case succeeds if all packets were received
on and only on expected ports with expected headers.

Appendix E Additional Simulation Results

This appendix includes more figures and results from our
simulation.

Figure 13 shows the state size for all 12 ISP topologies.
The figure indicates that Yeti provides a scalable multicast
service as it does not require any state at any router.

Figures 14–15 show the label size of Yeti versus BIER-TE.
Compared to BIER-TE, the figures show that Yeti reduces
the label size significantly across receiver densities and as
packets traverse the network.

Figures 16–19 indicate that Yeti impose small label and
processing overheads when supporting service chaining and
traffic engineering requirements.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1109

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

5

10

15

20

25

S
ta

te
 (

#
ro

u
te

rs
)

Yeti

Yeti RB-OF LIPSIN

(a) #Routers=36

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

5

10

15

20

25

30

S
ta

te
 (

#
ro

u
te

rs
)

Yeti

Yeti RB-OF LIPSIN

(b) #Routers=49

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

10

20

30

40

S
ta

te
 (

#
ro

u
te

rs
)

Yeti

Yeti RB-OF LIPSIN

(c) #Routers=53

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

10

20

30

40

S
ta

te
 (

#
ro

u
te

rs
)

Yeti

Yeti RB-OF LIPSIN

(d) #Routers=58

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

10

20

30

40

50

S
ta

te
 (

#
ro

u
te

rs
)

Yeti

Yeti RB-OF LIPSIN

(e) #Routers=69

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

15

30

45

60

75

S
ta

te
 (

#
ro

u
te

rs
)

Yeti

Yeti RB-OF LIPSIN

(f) #Routers=84

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

15

30

45

60

75

90

S
ta

te
 (

#
ro

u
te

rs
)

Yeti

Yeti RB-OF LIPSIN

(g) #Routers=113

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

20

40

60

80

100

S
ta

te
 (

#
ro

u
te

rs
)

Yeti

Yeti RB-OF LIPSIN

(h) #Routers=125

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

20

40

60

80

100

120

S
ta

te
 (

#
ro

u
te

rs
)

Yeti

Yeti RB-OF LIPSIN

(i) #Routers=145

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

20

40

60

80

100

120

S
ta

te
 (

#
ro

u
te

rs
)

Yeti

Yeti RB-OF LIPSIN

(j) #Routers=149

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

20

40

60

80

100

S
ta

te
 (

#
ro

u
te

rs
)

Yeti

Yeti RB-OF LIPSIN

(k) #Routers=153

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

20

40

60

80

100

120

S
ta

te
 (

#
ro

u
te

rs
)

Yeti

Yeti RB-OF LIPSIN

(l) #Routers=158

Figure 13: State size for the considered ISP topologies.

1110 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 10 20
Label Size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
P

ac
k

et
s

Yeti-10%

Yeti-20%

Yeti-30%

Yeti-40%

BIER-TE

(a) #Routers=36

0 20 40
Label Size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
P

ac
k

et
s

Yeti-10%

Yeti-20%

Yeti-30%

Yeti-40%

BIER-TE

(b) #Routers=49

0 20 40
Label Size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
P

ac
k

et
s

Yeti-10%

Yeti-20%

Yeti-30%

Yeti-40%

BIER-TE

(c) #Routers=53

0 20 40
Label Size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
P

ac
k

et
s

Yeti-10%

Yeti-20%

Yeti-30%

Yeti-40%

BIER-TE

(d) #Routers=58

0 20 40 60
Label Size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
P

ac
k

et
s

Yeti-10%

Yeti-20%

Yeti-30%

Yeti-40%

BIER-TE

(e) #Routers=69

0 20 40 60
Label Size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
P

ac
k

et
s

Yeti-10%

Yeti-20%

Yeti-30%

Yeti-40%

BIER-TE

(f) #Routers=84

0 25 50 75
Label Size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
P

ac
k

et
s

Yeti-10%

Yeti-20%

Yeti-30%

Yeti-40%

BIER-TE

(g) #Routers=113

0 50 100
Label Size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
P

ac
k

et
s

Yeti-10%

Yeti-20%

Yeti-30%

Yeti-40%

BIER-TE

(h) #Routers=125

0 50 100
Label Size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
P

ac
k

et
s

Yeti-10%

Yeti-20%

Yeti-30%

Yeti-40%

BIER-TE

(i) #Routers=145

0 50 100
Label Size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
P

ac
k

et
s

Yeti-10%

Yeti-20%

Yeti-30%

Yeti-40%

BIER-TE

(j) #Routers=149

0 50 100
Label Size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
P

ac
k

et
s

Yeti-10%

Yeti-20%

Yeti-30%

Yeti-40%

BIER-TE

(k) #Routers=153

0 50 100
Label Size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0
F

ra
ct

io
n

 o
f

P
ac

k
et

s

Yeti-10%

Yeti-20%

Yeti-30%

Yeti-40%

BIER-TE

(l) #Routers=158

Figure 14: Label size CDF for different ISP topologies.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1111

0 2 4 6 8 10
Hops (from source)

0

5

10

15

20

25

30

L
ab

el
 S

iz
e

(b
y

te
s)

Yeti BIER-TE

(a) #Routers=36

0 2 4 6 8 10
Hops (from source)

0

10

20

30

40

50

60

L
ab

el
 S

iz
e

(b
y

te
s)

Yeti BIER-TE

(b) #Routers=49

0 2 4 6 8 10
Hops (from source)

0

10

20

30

40

50

60

L
ab

el
 S

iz
e

(b
y

te
s)

Yeti BIER-TE

(c) #Routers=53

0 2 4 6 8 10
Hops (from source)

0

10

20

30

40

50

60

L
ab

el
 S

iz
e

(b
y

te
s)

Yeti BIER-TE

(d) #Routers=58

0 2 4 6 8 10
Hops (from source)

0

10

20

30

40

50

60

L
ab

el
 S

iz
e

(b
y

te
s)

Yeti BIER-TE

(e) #Routers=69

0 5 10 15 20 25 30
Hops (from source)

0

10

20

30

40

50

60

L
ab

el
 S

iz
e

(b
y

te
s)

Yeti BIER-TE

(f) #Routers=84

0 5 10 15 20 25
Hops (from source)

0

15

30

45

60

75

90

L
ab

el
 S

iz
e

(b
y

te
s)

Yeti BIER-TE

(g) #Routers=113

0 5 10 15 20 25
Hops (from source)

0

15

30

45

60

75

90

L
ab

el
 S

iz
e

(b
y

te
s)

Yeti BIER-TE

(h) #Routers=125

0 5 10 15 20 25 30
Hops (from source)

0

20

40

60

80

100

120

L
ab

el
 S

iz
e

(b
y

te
s)

Yeti BIER-TE

(i) #Routers=145

0 5 10 15 20 25
Hops (from source)

0

20

40

60

80

100

120

L
ab

el
 S

iz
e

(b
y

te
s)

Yeti BIER-TE

(j) #Routers=149

0 4 8 12 16 20
Hops (from source)

0

25

50

75

100

125

150

L
ab

el
 S

iz
e

(b
y

te
s)

Yeti BIER-TE

(k) #Routers=153

0 5 10 15 20 25 30
Hops (from source)

0

20

40

60

80

100

120

L
ab

el
 S

iz
e

(b
y

te
s)

Yeti BIER-TE

(l) #Routers=158

Figure 15: Label size of Yeti versus BIER-TE as packets traverse the network.

1112 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0 5 10 15 20 25
Hops (from source)

0

5

10

15

20

25

30

L
ab

el
 S

iz
e

(b
y

te
s)

3 4 5

(a) #Routers=36

0 5 10 15 20 25
Hops (from source)

0

10

20

30

40

50

60

L
ab

el
 S

iz
e

(b
y

te
s)

3 4 5

(b) #Routers=49

0 10 20 30 40 50
Hops (from source)

0

10

20

30

40

50

60

L
ab

el
 S

iz
e

(b
y

te
s)

3 4 5

(c) #Routers=53

0 5 10 15 20 25 30
Hops (from source)

0

10

20

30

40

50

60

L
ab

el
 S

iz
e

(b
y

te
s)

3 4 5

(d) #Routers=58

0 10 20 30 40 50
Hops (from source)

0

10

20

30

40

50

60

L
ab

el
 S

iz
e

(b
y

te
s)

3 4 5

(e) #Routers=69

0 10 20 30 40 50 60
Hops (from source)

0

10

20

30

40

50

60

L
ab

el
 S

iz
e

(b
y

te
s)

3 4 5

(f) #Routers=84

0 10 20 30 40 50
Hops (from source)

0

15

30

45

60

75

90

L
ab

el
 S

iz
e

(b
y

te
s)

3 4 5

(g) #Routers=113

0 15 30 45 60 75
Hops (from source)

0

15

30

45

60

75

90

L
ab

el
 S

iz
e

(b
y

te
s)

3 4 5

(h) #Routers=125

0 15 30 45 60 75
Hops (from source)

0

15

30

45

60

75

90

L
ab

el
 S

iz
e

(b
y

te
s)

3 4 5

(i) #Routers=145

0 15 30 45 60 75
Hops (from source)

0

20

40

60

80

100

120

L
ab

el
 S

iz
e

(b
y

te
s)

3 4 5

(j) #Routers=149

0 10 20 30 40 50 60
Hops (from source)

0

25

50

75

100

125

150
L

ab
el

 S
iz

e
(b

y
te

s)
3 4 5

(k) #Routers=153

0 20 40 60 80
Hops (from source)

0

20

40

60

80

100

120

L
ab

el
 S

iz
e

(b
y

te
s)

3 4 5

(l) #Routers=158

0 15 30 45 60 75
Hops (from source)

0

25

50

75

100

125

150

L
ab

el
 S

iz
e

(b
y

te
s)

3 4 5

(m) #Routers=197

Figure 16: Analysis of label size of Yeti to satisfy service chaining requirements.

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

0.2

0.4

0.6

0.8

1.0

#
 C

o
p

y
 O

p
er

at
io

n
s 113 145 149 153

(a) # copy operations

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

0.2

0.4

0.6

0.8

1.0

1.2

#
 C

o
p

y
 O

p
er

at
io

n
s 36 49 53 58 69

(b) # copy operations

113 145 149 153
Topology Size (# Routers)

0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
O

p
er

at
io

n
s

FSP FTE MCT CPY

(c) Distribution of operations

36 49 53 58 69
Topology Size (# Routers)

0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
O

p
er

at
io

n
s

FSP FTE MCT CPY

(d) Distribution of operations

Figure 17: Analysis of processing overheads of Yeti for different ISP topologies.

USENIX Association 19th USENIX Symposium on Networked Systems Design and Implementation 1113

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

0.2

0.4

0.6

0.8

1.0

#
 C

o
p
y
 O

p
er

at
io

n
s 84 110 125 158 197

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

0.2

0.4

0.6

0.8

1.0

#
 C

o
p
y
 O

p
er

at
io

n
s 113 145 149 153

0 5 10 15 20 25 30 35 40
Receiver Density (%)

0

0.2

0.4

0.6

0.8

1.0

1.2

#
 C

o
p
y
 O

p
er

at
io

n
s 36 49 53 58 69

Figure 18: # copy operations for different ISP topologies to support service chaining.

84 110 125 158 197
Topology Size (# Routers)

0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
O

p
er

at
io

n
s

FSP FTE MCT CPY

113 145 149 153
Topology Size (# Routers)

0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
O

p
er

at
io

n
s

FSP FTE MCT CPY

36 49 53 58 69
Topology Size (# Routers)

0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
 o

f
O

p
er

at
io

n
s

FSP FTE MCT CPY

Figure 19: Distribution of FSP, FTE, MCT and CPY operations to support service chaining.

1114 19th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Related Work
	Problem Definition and Solution
	Problem Definition and Challenges
	Solution Overview
	Label Types in Yeti
	Creating Yeti Labels at the Controller
	Processing Yeti Packets
	Analysis and Practical Considerations

	Evaluation in a Testbed
	Testbed Setup
	Experiments and Results

	Evaluation using Simulation
	Simulation Setup
	Yeti vs Stateful and Hybrid Approaches
	Yeti vs A Stateless Approach
	Analysis of Yeti

	Conclusions
	Correctness of Yeti
	Practical Considerations of Yeti
	Illustrative Example
	Implementation of Yeti using P4
	Additional Simulation Results

