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Abstract
Group communications appear in various large-scale data-

center applications. These applications, however, do not cur-
rently benefit from multicast, despite its potential substantial
savings in network and processing resources. This is because
current multicast systems do not scale and they impose con-
siderable state and communication overheads. We propose a
new architecture, called Orca, that addresses the challenges
of multicast in datacenter networks. Orca divides the state
and tasks of the data plane among switches and servers, and
it partially offloads the management of multicast sessions
to servers. Orca significantly reduces the state at switches,
minimizes the bandwidth overhead, incurs small and constant
processing overhead, and does not limit the size of multicast
sessions. We implemented Orca in a testbed to demonstrate
its performance in terms of throughput, consumption of server
resources, packet latency, and the impact of server failures.
We also implemented a sample multicast application in our
testbed, and showed that Orca can substantially reduce its
communication time, through optimizing the data transfer
between nodes using multicast instead of unicast. In addition,
we simulated a datacenter consisting of 27,648 hosts and han-
dling 1M multicast sessions, and we compared Orca versus
the state-of-art system in the literature. Our results show that
Orca reduces the switch state by up to two orders of mag-
nitude, the communication overhead by up to 19X, and the
control overhead by up to 14X, compared to the state-of-art.

1 Introduction

Many modern datacenter applications require group com-
munications in the form of one-to-many or many-to-many
patterns. Examples of these applications include distributed
databases, telemetry systems, consensus protocols, and ma-
chine learning systems. Multicast can efficiently support
these communication patterns. For example, in distributed
databases, multicast can be used to distribute and replicate
data among servers [69]. For telemetry systems, multicast is

suitable for sending updates and monitoring data to collector
nodes [46,67]. In addition, multicast can be used for state ma-
chine replication tasks in the Paxos consensus protocol and its
variations [21,39,45,53]. Furthermore, multicast can improve
the performance of iterative algorithms that distribute data
from a server to multiple working nodes. Examples of such
algorithms appear in training machine learning models [28],
text mining [48], and recommendation systems [36].

In addition to the above applications, an efficient multicast
primitive would benefit various systems that naturally per-
form group communication. For example, publish-subscribe
systems [37, 58, 68] typically send each message to a group
of receivers. These systems are the substrate for many appli-
cations such as activity trackers, log aggregators, and stream
processing frameworks. Moreover, in the emerging serverless
platforms [2, 60], a common pattern is that a worker commu-
nicates with multiple other workers to enroll them in a single
burst computation [7, 8], which can efficiently be realized
using multicast.

Despite its potential significant bandwidth savings, multi-
cast faces multiple challenges that slow down its deployment
by major cloud providers [62]. First, to forward packets on
links belonging to the multicast tree, multicast forwarding
requires maintaining state at all switches for each session,
which imposes substantial memory overheads on switches.
Second, updating and refreshing this state upon changes gen-
erates a storm of messages, which reduces the scalability of
switches as they are required to process numerous control
packets. Finally, since multicast trees in datacenters could
potentially span many switches and servers, encoding these
trees into labels could impose substantial processing, commu-
nication and/or bandwidth overheads.

As a result, there has been a lack of efficient and scalable
multicast systems that support large numbers of sessions. For
example, in practice, switch vendors are forced to limit the
number of IP multicast sessions per switch [55], because of
the inefficiencies introduced by the group management [50]
and tree construction [16] protocols of IP multicast. This
is not cost-effective for cloud providers. In addition, while
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current datacenter multicast approaches, e.g., [5, 6, 32, 43],
improve upon the basic IP multicast, they also do not scale
well and impose substantial overheads on the network, as we
show in this paper. To partially mitigate the lack of efficient
multicast systems, many datacenter applications had to rely
on (inefficient) application-layer protocols [51]. For example,
Apache Spark [40] implements its own primitives [9] such as
Cornet [36] and HTTP-based multicast.

This paper presents a new architecture, called Orca, to re-
alize efficient multicast forwarding that can support millions
of concurrent multicast sessions in datacenter networks. The
idea of Orca is to offload some of the state maintained at
network switches to end servers. To achieve this idea, Orca
computes fixed-size and compact labels and attaches them to
packets of multicast sessions. These labels effectively enable
shifting some of the data plane tasks to servers. As a result,
Orca significantly reduces the state at switches, minimizes
the bandwidth overhead, incurs small and constant processing
overhead, does not limit the size of multicast sessions, and
eliminates redundant traffic. Realizing the proposed server-
assisted multicast approach, however, faces multiple chal-
lenges at the control and data planes that Orca addresses. At
the control plane, the proposed architecture needs to calculate
optimized labels, manage state at servers, and handle failures.
At the data plane, it requires packet processing algorithms at
switches and servers that sustain the line-rate performance
and minimize the latency and resource consumption.

This paper makes the following contributions.
• We introduce the idea of server-assisted (or offloaded)

multicast for scalable multicast services in datacenters.

• We design a hierarchical control plane that efficiently
manages multicast sessions and their dynamics, handles
network failures, and does not impose high control over-
heads (§3.3 and §3.4).

• We present a scalable data plane algorithm to pro-
cess multicast packets within high-speed datacenter net-
works, without introducing redundant traffic or requiring
switches to maintain large states (§3.5).

• We design and implement APIs to transparently integrate
multicast into datacenter applications (§4).

• We implement the proposed multicast approach and eval-
uate its performance in a testbed using programmable
switches to demonstrate its practicality (§5). Our results
show that the proposed approach can support high-speed
traffic, uses small CPU resources at servers, and imposes
small and predictable packet delays.

• We show the potential significant gains achieved by us-
ing multicast instead of unicast in datacenter applications.
We implemented a sample application using Orca and
the unicast approach used in current systems such as
Apache Spark [40]. For this application that has only
12 receivers, our results show that Orca can reduce the

communication time by almost an order of magnitude;
larger savings are expected for applications with more
receivers. In addition, since an Orca sender transmits
only one copy per packet regardless of the number of
receivers in the session, the required CPU resources are
significantly reduced, compared to using unicast.

• We compare Orca against the closest system in the lit-
erature, Elmo [5], in large-scale simulations (§6). Our
results show that Orca reduces the switch state by up to
two orders of magnitude, the communication overhead
by up to 19X, and the control overhead by up to 14X
compared to Elmo in large-scale datacenter networks.

2 Related Work

Internet Multicast. IP multicast is not practical for datacen-
ter networks because of its limited scalability for both the
control and data planes [11, 52]. Specifically, its group man-
agement and tree construction protocols, e.g., IGMP [50] and
PIM [16], need to maintain state at routers belonging to each
multicast session. Moreover, to refresh this state, these proto-
cols generate control messages that routers need to process.
These overheads limit the number of multicast sessions, and
they could delay a receiver joining a session for up to 23
seconds [66], which is not practical for datacenters. Further-
more, current multicast approaches designed for ISP networks,
e.g., [1, 43], introduce significant communication overheads,
and thus they are not suitable for datacenter networks.
Datacenter Multicast. Multiple approaches, e.g., [5, 32, 35],
attempted to address the challenges of IP multicast. Li et
al. [35] propose a multi-class Bloom filter (MBF) to sup-
port multicast in datacenter networks. For every interface,
MBF uses a Bloom filter to store whether packets of a session
should be duplicated on that interface. MBF may introduce re-
dundant traffic due to the probabilistic nature of Bloom filters.
Li and Freedman [32] partition the IP address space and aggre-
gate addresses for different sessions. However, this approach
consumes the limited flow table resources in switches and
limits the number of supported multicast sessions. Elmo [5]
encodes links of a multicast tree into rules to be attached to
packets and maintained at switches. Elmo is the state-of-art
multicast system for datacenters, and we compare against it.

Other works, e.g., [9, 10, 25], enabled multicast in circuit-
switched datacenter networks. For example, Republic [9] and
Blast [25] realize multicast by using additional optical circuit
switches. Orca is designed to be deployed in the common
packet-switched networks. Application-layer multicast ap-
proaches could also be used in datacenters, by concurrently
sending unicast flows to multiple receivers. This, however,
results in inefficient bandwidth utilization [47, 49, 51], and
increases the CPU load on the sender.
Server-assisted Data Planes. While Orca is the first server-
assisted multicast for datacenters, to the best of our knowledge,
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it is not the first work to utilize server resources to implement
parts of the data plane. For examples, Katta et al. [17] propose
an OpenFlow [26] rule caching system using both switch
TCAM and server memory, which is managed by a controller.
In contrast, we design Orca to reduce the state maintained at
switches instead of improving how the large number of rules
are stored. A recent work [4] offloads the state of network
functions to the server memory using RDMA. Unlike this
system, Orca has small header sizes and its agents maintain
small state instead of large network function state. Moreover,
Orca simplifies how state is fetched, managed, and replicated.

3 Orca: Server-assisted Multicast

We start this section by specifying the design goals of Orca.
Then, we present an overview of Orca describing its main
components and how they work together. This is followed by
the details of each component. In the Appendix, we describe
various overheads, extensions, and limitations of Orca.

3.1 Design Goals

The objective of this paper is to design a multicast architecture
for datacenter networks that achieves the following goals:

• Reduce State at Switches. Maintaining large state at
network switches not only consumes their scarce mem-
ory resources, but it also increases the number and fre-
quency of exchanged update messages to handle network
failures and session dynamics. This forces switches to
process many control messages while forwarding data
packets, which may slow down the data plane [66].

• Minimize Communication Overhead. We aim at min-
imizing the header size per packet to reduce the com-
munication (or bandwidth) overhead, which is critical
to decreasing the total transmission time. We note that
some of the existing multicast systems, e.g., [5], attach
labels that can be as large as the packet payload.

• Support Large-scale Multicast Sessions. As datacenter
applications become complex, the numbers of multicast
sessions and receivers per session are expected to grow
at high rates [70]. Existing systems, e.g., [32], do not
efficiently scale to support the growing demands and
high dynamics of recent datacenter applications.

• Avoid Redundant Traffic. Switches should forward
packets only on links belonging to the multicast tree.
This is because redundant traffic wastes network re-
sources and overloads switches. Many of the existing
multicast systems, e.g., [5, 35], cannot avoid sending re-
dundant traffic without imposing a substantial amount
of communication overheads by using large label sizes
and/or increasing the state size maintained at switches.

Simultaneously realizing these goals is challenging as they
are inter-dependent and pose conflicting trade-offs. For exam-
ple, although attaching a large label to packets reduces switch
state, it significantly increases the communication overhead
and packet processing at switches. Our approach to concur-
rently achieve these design goals is to attach a small and
fixed-size label to packets of every multicast session. This
substantially minimizes the communication overhead and re-
duces packet processing on switches. In addition, we carefully
calculate and process labels to eliminate redundant traffic. Fur-
thermore, to reduce state at switches, we make servers assist
in forwarding the packets. As a result, switches will be able
to support large-scale multicast sessions.

3.2 Overview

Orca is designed for multi-rooted Clos topologies that are
widely deployed in datacenter networks. We use the leaf-spine
topology throughout the paper, but the same principles apply
for other tree-based topologies. In the leaf-spine topology, the
top layer consists of core switches that connect different leaf-
spine planes. Spine switches connect leaf switches to other
leaf switches and to core switches. Every leaf switch connects
a rack of servers to the datacenter network. Each server runs a
hypervisor switch and hosts multiple virtual machines (VMs).

In traditional IP multicast, network switches need to main-
tain state about each multicast session, which imposes sig-
nificant overheads on the switches. In contrast, the proposed
approach carefully offloads most of the work needed to man-
age multicast sessions to end hosts in the datacenter, which
enables efficient and scalable multicast–a long standing prob-
lem. In addition, unlike IP multicast, Orca uses labels to direct
the forwarding of multicast packets through the network. Each
label consists of different components, each of which encodes
a specific datacenter layer (i.e., leaf, spine, or core). However,
as the size of a multicast tree grows, simple stacking of label
components would lead to large, variable-size, labels and thus
significant communication and processing overheads.

The proposed architecture is based on three key insights
that enable us to design small and fixed-size labels and achieve
scalability. First, a large portion of the label overhead comes
from encoding the tree downstream links belonging to leaf
switches, and that this overhead increases for multicast trees
with large numbers of receivers. Second, labels belonging to
leaf downstream links are not needed until the packet reaches
a leaf switch. Third, servers in datacenters already host hy-
pervisor switches to process various packet types. Based on
these insights, we logically divide the data plane at the leaf
layer: between each leaf switch and the servers connected to
it. Then, we offload handling of the leaf downstream labels to
some of the servers. To process the labels, these servers run
an Orca agent, which can run on SmartNICs or CPU cores by
integrating it with an existing hypervisor switch or running it
as a standalone process.
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Figure 1: The proposed multicast architecture.

As illustrated in Figure 1, Orca is composed of two compo-
nents: (i) Hierarchical Control Plane and (ii) Server-assisted
Data Plane. The Control Plane is composed of three con-
trollers: Centralized, Leaf, and Agent. The Centralized con-
troller creates labels to represent multicast trees and decides
the state that needs to be maintained at network switches;
details are presented in §3.3. A leaf controller is deployed on
each leaf switch, while agent controllers are deployed on VMs
within racks. All three components of the Hierarchical Con-
trol Plane collaborate to handle network and agent failures as
well as to manage the dynamic nature of multicast sessions, as
described in §3.4. The Data Plane, presented in §3.5, instructs
switches and Orca agents how to process packets.

At a high-level, a multicast session is created and managed
as follows, refer to Figure 1. The tree spanning the source and
receivers has one path from the source VM to any core switch,
then it reaches the receivers by branching to spine and leaf
switches. The tree is then given to the centralized controller,
which creates a fixed-size label (referred to as source label)
to represent a part of the tree. It is important to notice that
although the multicast tree can be large and spans many parts
of the datacenter network, Orca optimizes the source label and
keeps its size small and constant, as described in §3.3. The
source label is sent to the source of the session, which attaches
it to each packet. The packet is then sent upstream to spine and
core switches, which forward it based on various components
of the source label in that packet. Then, the packet is sent
downstream from the spine and core switches, using other
components of the source label, to the leaf switches that have
receivers of the session in their racks. Each leaf switch sends
the packet to an active Orca agent within its rack. The agent
replaces the source label with another label (called leaf label)
and sends it back to the leaf switch. The leaf label contains the
information needed by the leaf switch to forward the packet
to the end receivers within the rack.

Active Agent

Eth Orca payload

leafStatus
leaf us

spine ds

core ds

leafStatus
leaf ds

src

Leaf

Spine

Core

spine us

agent     leaf      recsrc      leaf

replaced 
by

agent

orcaTypesessionID srcMAC

Source Label Leaf Labela b
a

b

Figure 2: Structure of the Orca header. The color of each label
component matches the corresponding link in the network.

3.3 Calculating Labels
Labels play a critical role in the proposed multicast architec-
ture, and they need to be carefully designed to ensure proper
functioning of the multicast system as well as minimize the
communication and processing overheads.

The centralized controller computes a fixed-size source
label that consists of four components and a single leafS-
tatus bit. Figure 2 illustrates the header format of an Orca
data packet and the label structure. The four label components
encode tree links belonging to leaf upstream (us), spine up-
stream, spine downstream (ds), and core downstream links.
When a data packet reaches an active agent, the source label is
replaced with the corresponding leaf label to forward packets
to the multicast receivers.

The centralized controller calls the CALCULATELABELS
algorithm (pseudo code is given in Algorithm 1) to calculate a
source label to be attached to packets of the multicast session,
a set of leaf labels to be maintained at the agents and state
to be maintained at spine switches (if needed). No session
state is needed at core or leaf switches. The algorithm takes as
input the multicast tree T. It groups tree links of each network
layer and encodes their IDs independently in a fixed-size label
component.

The algorithm first creates a bitmap of size (in bits):
1+max(Ld ,dlog(Lu)e+Pd +F + dlog(Pu)e+Cd),

where Ld , Lu, Pd , Pu, and Cd are the maximum numbers of
downstream and upstream ports per leaf switch, downstream
and upstream ports per spine switch, and downstream ports
per core switch. F is the size of a filter encoding the spine
downstream links. This bitmap accommodates the leaf labels
that will be inserted by agents. A typical datacenter switch
has 48 ports [5]. Thus, the size of Orca label is 19 bytes in
most practical cases.

The first bit in an Orca source label is the leafStatus bit,
which indicates whether an agent has replaced a source label
with a leaf label. The remaining bits are used to encode links
of the multicast tree based on four cases as follows.
Case 1: Leaf and Spine Upstream. For the leaf and spine
upstream links, the CALCULATELABELS algorithm maps
the two link IDs to outgoing ports in the leaf and spine
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Algorithm 1 The CALCULATELABELS algorithm.
Input: T: multicast tree
Output: L: computed source label sent to the source VM
Output: S: state sent to a subset of the spine switches
Output: F: set of leaf labels, each is sent to an agent

1: function CALCULATELABELS(T)
2: 〈L,S〉 = CALCULATESOURCELABEL(T)
3: F = CALCULATELEAFLABELS(T)
4: return 〈L, S, F〉
5: function CALCULATESOURCELABEL(T)
6: size=1+max(Ld ,dlog(Lu)e+ Pd + F + dlog(Pu)e+

Cd)
7: L = BitString(size)
8: L.append(0) // Set leafStatus to 0 (source label)
9: Case 1: Leaf and Spine Upstream.

10: L.append(T.lea f _us_link().port_num)
11: L.append(T.spine_us_link().port_num)
12: Case 2: Spine Downstream.
13: // Common downstream ports across spine switches
14: C = FINDCOMMONPORTS(T.spine_switches())
15: L.append(MAPTOBITSTRING(C,Pd))
16: // Call Algorithm 2
17: 〈D, S〉 = ENCSPINEDSLINKS(T, C, F)
18: L.append(D)
19: Case 3: Core Downstream.
20: core_links = T.core_ds_links()
21: L.append(MAPTOBITSTRING(core_links,Cd))
22: return 〈L, S〉
23: function CALCULATELEAFLABELS(T)
24: F = {}
25: Case 4: Leaf Downstream.
26: for (lea f ∈ T.lea f _switches()) do
27: // Each bit set to 1 represents a session receiver
28: lbl = MAPTOBITSTRING(lea f .ds_links(),Ld))
29: F = F∪ lbl
30: return F

switches and encodes these port numbers as two labels of
sizes dlog(Lu)e and dlog(Pu)e bits, respectively.
Case 2: Spine Downstream. Since the multicast tree may
include more than one spine switch, reserving a bit per spine
downstream link significantly increases the label size. Instead,
we trade off large label sizes, which impose overhead on every
single multicast packet, with a small state maintained at a
subset of the spine switches. Specifically, we encode the spine
downstream links using two label components with a total size
of Pd +F bits. The first label component encodes the common
downstream ports across all spine switches belonging to the
multicast tree using Pd bits. For example, if a tree has three
spine switches and the first two outgoing ports belong to the
tree for each of the three spine switches, then the calculated
label is 1100. . .0. We refer to this set of common ports as C.

The second label component uses a probabilistic set mem-
bership data structure (a.k.a filter) to encode the remaining
spine downstream links in a label D of size F bits. Since these
filters trade off membership accuracy for space efficiency, they
may result in false positives, which occur when some spine
downstream links that do not belong to the multicast tree are
incorrectly included in the computed filter. False positives
result in redundant traffic. To address this issue, we calculate
a state alongside the label. This state can have zero or more
entries, and each entry takes the form 〈sID, linkID〉, where
sID is the ID of the spine switch that should maintain this
state and linkID is the ID of the downstream link identified
as a false positive during the encoding. The filter supports
two functions: (i) D = encode(l) to encode an input item l
(link ID in our case) into a bit string D of size F bits using a
hash function, and (ii) check(l,D) to check whether a given
item l belongs to D using the same hash function. Our link
encoding algorithm can use any filter, e.g., Bloom [54] and
Cuckoo [27] filters, that can support: (1) adding an item to
an existing filter, (2) testing whether an item exists (poten-
tially with false positives), and (3) avoiding false negatives.
A false negative happens when a link in the multicast tree is
not represented in the filter.

The CALCULATELABELS algorithm calls the ENCSPINED-
SLINKS function, the pseudo code is shown in Algorithm 2
in the Appendix. This function encodes spine downstream
links of the multicast tree into a label D and calculates the
state S to be maintained by spine switches. To calculate S,
we need to identify false positive links belonging to spine
switches. We refer to the subset of the spine downstream
links that may be false positives as candidates. There are two
conditions for a spine downstream link to be a false positive
candidate. First, it has to be attached to a spine switch that
belongs to the multicast tree, as packets of that session do not
reach other spine switches. Second, it should not belong to
the spine downstream links of the multicast tree. Otherwise,
it is not a false positive.

The ENCSPINEDSLINKS function has three steps. First,
it encodes every link l in the set of spine downstream links
using the encode function. Then, it computes the false positive
candidates based on the two conditions mentioned earlier.
Finally, it calculates the state that needs to be maintained at
spine switches by checking all false positive candidates stored
in cands and adding only the links that collide with the spine
downstream links encoded in D and not belonging to C.
Case 3: Core Downstream. The CALCULATELABELS algo-
rithm maps IDs of core downstream tree links to a bitmap of
size Cd bits, where Cd is the maximum number of downstream
ports in the core layer. The label bits identify the outgoing
ports at the core switch belonging to the multicast tree. Thus,
a bit at location i in the label is set to 1 if the core switch
should duplicate packets on the ith port.
Case 4: Leaf Downstream. For every leaf switch belong-
ing to the multicast tree, the CALCULATELABELS algorithm
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calculates a leaf label that encodes all link IDs to reach the
receivers of the session within the rack managed by that leaf
switch. Each leaf label simply maps the link IDs into a bitmap
of size Ld bits.

3.4 Handling Session Dynamics and Failures
Orca employs simple, but effective, mechanisms to manage
the dynamic nature of multicast sessions, and to mitigate
network and agent failures. We only assume the continuous
availability of the top-level, centralized controller of Orca,
which can be achieved through mechanisms usually used for
such datacenter functions, e.g., [42].
Session Dynamics. Multicast receivers can join and leave
any time during the sessions by calling corresponding APIs
that communicate with the centralized controller (§4).

When a joining/leaving event is received, the centralized
controller runs a simple method (Case 4 in §3.3) to update
leaf labels at the agents. The controller then sends the updated
leaf labels to the corresponding leaf controllers. The message
also includes a unique sequence number. Each leaf controller
relays the new leaf label to all active and standby agents
within its rack. An agent updates its memory with the new
label if the received sequence number is larger than the largest
sequence number it has processed so far. Agents then send
confirmation messages to upstream controllers indicating that
the new changes were processed successfully.
Orca Agent Failures. In each rack, we maintain N Orca
agents active and M as standby, where N,M are configurable
parameters. All agents within a rack maintain the same leaf
label per multicast session. The leaf switch in the same rack
distributes the labeling workload among the N active agents,
in a round robin manner. This adds more reliability and re-
duces the labeling load on individual agents.

All agents, active and standby, send heartbeat packets to
the leaf controller at a fixed rate. If the leaf controller does not
receive any heartbeats from an agent within a timeout period
T , the agent is assumed failed. T is in the same order of the
RTT within a single rack, which is often a few milliseconds
[19]. If the failed agent was active, the leaf controller replaces
it by one of the standby agents, otherwise the controller just
removes the failed agent from the standby set.

We note that Orca agents deployed in a rack operate in-
dependently of agents deployed in other racks. Thus, our
approach localizes failures within each rack, which reduces
the control overhead and increases the control plane respon-
siveness. In other words, a leaf controller handles only the
failures of its downstream agents. In addition, heartbeats pro-
vide responsiveness and simplicity, which is sufficient in our
system as all agents maintain the same state. The state is up-
dated across all agents when there is a change in the multicast
tree, which is detected by the centralized controller.
Network Failures. The centralized controller detects network
(link and switch) failures using existing systems such as [12].

Once a failure is detected, the controller re-calculates new
source and leaf labels for the impacted sessions (§3.3). It also
computes a new state at switches (if needed). To mitigate
losses during network or agent failures, applications can use
reliable transport protocols, e.g., [9].

3.5 Server-assisted Data Plane Forwarding

The data plane in Orca consists of leaf, spine and core
switches, as well as agents deployed at servers. The data plane
components process received packets as described below.
Leaf Switch. For a packet received on a downstream port,
the leaf switch data plane processes that packet based on the
leafStatus bit. If this bit is zero, i.e., a packet from the
source, the data plane reads the first log(dLue) bits after the
leafStatus bit as a leaf upstream label component, and for-
wards the packet based on the upstream port number encoded
in that component. If the leafStatus is set to 1, this means
the active agent has inserted a leaf label into the packet header.
Thus, the data plane uses the leaf label component of size Ld
bits to forward/duplicate the packet to corresponding servers.
Specifically, a bit set at location i instructs the data plane to
duplicate the packet on its ith port.

If a packet is received on an upstream port, the data plane
forwards the packet on a port connected to one of the active
agents, which is set and updated by the leaf controller.
Spine Switch. For a packet received on a downstream port,
the data plane processes both the upstream and downstream
label components. First, the packet is forwarded to a core
switch by reading the spine upstream label, which encodes
the outgoing port number. Second, since the packet may be
forwarded/duplicated on the spine downstream links, the data
plane runs the PROCSPINEDSLABEL algorithm to process
the two spine downstream labels (pseudo code is shown in
Algorithm 3 in the Appendix). This algorithm is executed for
packets received on upstream ports as well. The algorithm
first identifies the common links C by reading the first label.
If a link is set to one in the label, the switch duplicates the
packet on that link. Then, the algorithm uses the second label
D and state State maintained by the spine switch to decide
which of the other downstream links belong to the tree.

For each link l /∈ C, the algorithm decides to not forward
the packet on l if it is not encoded in D. This is because filters
in Orca do not produce false negatives. When l.id exists in the
label, the algorithm needs to check the maintained state State
as l.id may be a false positive. Recall that the state contains
the false positive links computed by the control plane. The
algorithm duplicates the packet only if l.id does not exists in
State[sID].
Core Switch. The data plane reads the core downstream label
component (of size Cd bits) to forward/duplicate the packet to
downstream spine switches. Similar to the leaf downstream la-
bel, this label encodes which downstream ports the incoming
packet should be forwarded on.
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Orca Agent. For incoming packets from a leaf switch, the
agent data plane checks the leafStatus bit. If it is set to 0
(i.e., it has no leaf label), the agent reads the corresponding
leaf label from the leaf label map and inserts it into the packet
header and sets the leafStatus bit to 1. If the leafStatus
bit is 1, this packet is destined to receiver VMs.
Overheads and Limitations of Orca. We describe Orca
overheads and limitations in the Appendix. In summary, Orca
agents require small processing resources at servers as the
computation performed on packets is simple. In addition, Orca
adds a small latency to packets at the leaf layer only. Further-
more, deploying Orca in graph-based datacenter networks
requires changes in some of its components.

4 Implementation and Orca APIs

We briefly describe the implementation of Orca components
which are illustrated in Figure 3.
Orca APIs for Multicast Applications. We implemented
two sets of interfaces for multicast applications. The first
one is between the agent and applications to provide send
and recv functionalities seamlessly to the application. These
APIs use Unix domain sockets to communicate with the agent.
When using send at the source, the agent gets data from
the sockets, attaches Orca label and transmits the packets
to the leaf switch. Receivers use recv to instruct the agent
to relay available data to the application. The second set of
APIs is between applications and the centralized controller to
create, join and leave multicast sessions. We implemented
the communication and data encoding/decoding using gRPC
[64] and Protocol Buffers.
Orca Agents. We implemented the agent using BESS [23,61]
in about 640 lines of C++, where packet processing is done
completely in the user space using DPDK [63]. The agent
leverages Receive Side Scaling (RSS) to receive packets on
different RX queues, each is assigned to a single core.
Orca Hierarchical Controller. The centralized and leaf con-
trollers are implemented in about 3K lines of Golang. The
current implementation of the leaf controller communicates
with the data plane through raw or Unix domain sockets, but
it can easily support other interfaces. For instance, in our
testbed, the leaf controller process is deployed to the worksta-
tion hosting a NetFPGA, and it uses PCIe to exchange control
packets with the NetFPGA, which is done through the RIFFA
framework [18]. Communications between the centralized
and leaf controllers are done using gRPC [64].
Switch Data Plane. Since Orca’s data plane processing
is simple, it can easily be implemented in different pro-
grammable switches. We implemented the data plane of Orca
in NetFPGA SUME [29] and tested it on multiple of them.
We used the open source project in [56], and implemented a
Verilog module to decide the outgoing ports. We measured the
number of clock cycles and resource usage of our implemen-
tation using Xilinx tools. Our implementation of core and leaf
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Figure 3: Implementation of Orca components.

switches maps the corresponding bitmaps to outgoing ports,
which is done in one clock cycle. We implemented the spine
switch algorithm in three clock cycles to identify common
ports and check the Bloom filter using a bitwise-AND be-
tween the label and hashed link IDs stored at the switch, read
state from memory, and decide the outgoing ports. In terms
of resource usage, our algorithm utilizes a tiny percentage of
the available hardware resources. It uses 0.12% and 0.16% of
the available lookup tables (LUTs) and registers, respectively.

5 Evaluation of Orca in Testbed

We evaluate Orca in a testbed to demonstrate its potential ben-
efits to applications and asses the performance of its data plane
and control plane components. The testbed has three NetF-
PGA SUME switches [29] representing a spine and two leaf
switches, each of which has four 10GbE ports. The testbed
also has five workstations to act as Orca agents and multicast
senders and receivers. We configure our testbed to only have
one active agent per rack to stress our labeling algorithm at
servers. Each workstation is equipped with a dual-port Intel
82599ES 10GbE NIC. Each leaf switch is connected to two
workstations, and the spine switch is connected to one work-
station. We generate traffic at line rate from a multicast source
and transmit it to leaf switches through the spine switch.

5.1 Benefits of Orca
We implemented a sample multicast application that has the
same behavior of the iterative machine learning algorithms
implemented in Spark [40]. In these algorithms, the data to
be processed is often written to files, and a server iteratively
sends them to all receivers for processing. In our application, a
server reads a file and transmits it in chunks. In every iteration,
after a file is sent, the server awaits acknowledgment of file
reception from the receivers. The next round starts only after
receiving all acknowledgments. This emulates the aggregation
phase in distributed data processing frameworks [44], which
indicates all workers have updated their model parameters. In
our implementation, we set the payload size to the maximum
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Figure 4: Benefits of Orca.

UDP message length. We run each instance of the client
application inside a separate Docker container on the receiver
machines.
Performance Metrics. We compare Orca versus the current
unicast approach used in systems such as Apache Spark [40].
In particular, we demonstrate the potential benefits of Orca
in terms of the communication time, impact of available pro-
cessing capacity at the sender on the communication time,
and total transmitted traffic.

The running time of datacenter applications consists of
communication and computation times. The communication
time of an application is the total time spent on sending data
and receiving corresponding acknowledgments without in-
cluding the computation times. We measure the communica-
tion time of Orca versus unicast, as this is the main aspect
being optimized by Orca and it does not control or modify the
computations. In addition, we aim at showing that Orca can
present the same packet to the application layer much faster
compared to the current unicast approaches.

Depending on the application and its total computation
time, Orca can reduce the running times of a variety of ap-
plications. For example, the authors in [36] reported that the
communication time of data-intensive tasks using unicast can
be larger than the computation time, especially as the number
of workers increases. Thus, optimizing data transfer is critical
for these applications.
Workloads. The number and size of the transmitted files are
similar to the ones used in the distributed latent Dirichlet
allocation (LDA) algorithm [9, 30]. LDA identifies topics
in the input documents and maps each document to a set of
topics. The vocabulary training set is the data transmitted to
the worker nodes. To calculate the workload size, we run the
algorithm on a synthetic dataset containing 16,923 documents
and 100 topics using the tool in [71]. To evaluate Orca using
realistic workloads, we create five different workloads with
sizes of 88MB, 176MB, 352MB, 704MB, and 1.4GB.
Results. We conduct experiments using concurrent 4, 8 and
12 receivers and the five different workloads mentioned above.

Figure 4a shows the communication time for Orca and uni-
cast for different workloads when the number of receivers
is 12. The sender in the multicast session uses one CPU
core to transmit the traffic. These results show that Orca can

significantly reduce the communication time for all consid-
ered workloads. In addition, the figure shows that, unlike the
case for Orca, the communication time for unicast grows in a
super-linear manner with the workload size. This is because
the unicast sender needs more time to transmit packets to each
of the concurrent 12 receivers, whereas Orca transmits only
a single packet for all receivers. Packet transmission at high
rates also requires processing cycles.

To analyze the impact of the available processing capac-
ity at the sender on the communication time, we allocate a
varying number of CPU cores to transmit the traffic of the
multicast session in the case of unicast. For Orca, only one
CPU core is used. In Figure 4b, we plot the communication
time for the largest workload (1.4GB) for Orca and unicast,
as we vary the number of available CPU cores. The figure
shows that Orca has a fairly stable communication time as the
number of receivers increases, despite using only one CPU
core to transmit all packets of the session. In contrast, unicast
needs more CPU cores to send the traffic to different receivers
to reduce the communication time. In our testbed, allocating a
single core per receiver for unicast could not sustain the high
packet rate at the sender for 8 and 12 receivers.

Next, we measure the total transmitted traffic from the
sender for the largest workload as well as the label overhead
of Orca. When using Orca, the total outgoing traffic is only
1.51 GB, compared to 18.01 GB when using unicast. This
means the sender in the unicast model would need to transmit
12X more traffic, which not only consumes more bandwidth,
but also requires more processing and memory resources to
transmit much more packets. The total label overhead of Orca
is 7.69 MB which represents only 0.51% of the transmitted
multicast traffic.

Although current multicast approaches may yield similar
benefits to applications, they cannot scale well to support a
large number of multicast sessions. Therefore, we compare
the scalability of Orca versus the state-of-art multicast system
using large-scale simulations in §6.

Summary: For a sample application with 4–12 receivers,
Orca achieves substantial savings in communication time,
required processing resources at the sender, and bandwidth,
compared to the current unicast approach.

5.2 Data Plane Performance

Throughput of Spine Switches. We report the throughput of
the spine switch; we omit the results of leaf and core switches
as they run simple forwarding algorithms.

We transmit labelled packets of many concurrent multicast
sessions at the maximum link speed (i.e., 10 Gbps) from
the source to the spine switch. The labels instruct the spine
switch to duplicate packets to two leaf switches. We run this
experiment five times for every packet size and compute the
average across them. We compare the incoming packet rate
against the outgoing packet rates observed at the two leaf
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Figure 5: Data plane performance of Orca.

switches in Figure 5a. Our results show that the packet rates
are the same (i.e., no packet losses). We also measure the
achieved throughput at the two interfaces, and confirm that
the spine switch can sustain the 10 Gbps for all packet sizes.
Agent Scalability. We stress and evaluate the scalability of
the agent data plane. In this setup, we deploy two NICs (i.e.,
4x10GbE ports) at the agent workstation and direct labeled
traffic at rate of 40Gbps from the other two workstations.
The labels have the leafStatus set to zero, which indicates
that the agent needs to label them using a corresponding leaf
label. We measure the throughput of the packets after being
processed by the agent.

Figure 5b shows the throughput versus the number of al-
located cores for the data plane, which shows that the agent
scales well to support high rates. We measure the smallest
packet size at which the agent can sustain the 40Gbps traffic
using a single core. Our results show that the agent can sustain
this rate using 1 core for packets of size 560 bytes or larger.
For enterprise datacenters, the average packet size is reported
to be 850 bytes [41]. Furthermore, data-intensive jobs like
Hadoop workloads often use 1500-byte packets [20]. That is,
Orca agents require only a few cores per rack to support many
multicast sessions at high rates. Major datacenters deploy 24–
48 servers per rack [14, 65], and each typically has more than
16 cores. That is, even for applications that require small 64-
byte packets and send at an aggregate rate of 40Gbps, an Orca
agent would need up to 1–2% of the available CPU resources
in a rack when SmartNICs are unavailable.

In addition, recall from §5.1 that Orca requires only one
CPU core at the sender side regardless of the number of re-
ceivers, whereas the current unicast approach needs a pro-
portional number of CPU cores to sustain the transmission
rate especially as the number of receivers increases. Thus,
the processing capacity needed to run Orca agents will likely
be offset by the savings in the processing capacity needed to
transmit the traffic in the unicast approach.
Agent CPU Usage. Recall that an active agent needs to look
up a leaf label from its memory using the session ID. We
measure the total number of CPU cycles needed by the agent
to process packets (including labeling and memory lookup).
We stress the agent by allocating leaf labels for 1M sessions at

the agent. In this experiment, the sender randomly transmits
traffic belonging to a subset of the total sessions, which we
refer to as active sessions. We use large numbers of active
sessions to stress the agent.

Figure 5c shows different statistics of the used number of
CPU cycles per packet (measured by rdtsc) when the packet
size is 1024 bytes. The results show the efficiency of the
agent even without any code optimizations. For example, the
agent running on a 3.8GHz CPU needs an average of 99 ns
per packet when the number of active sessions is 100K per
rack. We note that the number of CPU cycles is constant for
different packet sizes, since the agent processes fixed-size
labels. To put these numbers in context, existing, optimized,
software switches such as OVS [24] and PISCES [15] use
409 and 426 cycles/packet, on average, to handle IP packets,
respectively. The average for Orca is 375 cycles/packet when
handling 100K active sessions.
Packet Latency and Jitter. We measure the packet latency
and jitter of Orca at the leaf layer, which is defined as the
total duration from when a packet is sent to the leaf switch
to the time it is received by a multicast receiver connected
to that switch. We emulate a dynamic traffic scenario, where
the sender starts transmitting traffic at 1Gbps and increases
the sending rate with 1Gbps steps every 20 seconds until it
saturates the link, and holds this transmission rate for another
20 seconds.

Figure 5d shows the packet latency for different packet
sizes. For 64-byte packets, the median latency is 11.3 µs.
The packet latency slightly increases for large packet sizes
because of the increased transmission time. Notice that in
latency-sensitive applications, where latency for individual
packets are important, smaller packets are more prevalent [57]
where Orca has short packet latency.

We next measure the packet inter-arrival jitter, which is
calculated as the difference between the current packet delay
and previous packet delay. Our results show that Orca im-
poses negligible variance in packet latency. The average and
maximum inter-arrival jitter values for 1024-byte packets are
1.135 µs and 3.3 µs, respectively.

Summary: The Orca data plane is scalable and can sustain
high throughputs even with small packet sizes. Orca agents
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Figure 6: Control plane performance of Orca.

can process large numbers of concurrent sessions, use low
CPU resources, and only add a small latency to packets.

5.3 Control Plane Performance

Responsiveness to Agent Failures. Orca localizes agent fail-
ures within the rack, thus we analyze failures for a single rack.
We measure the performance while an active agent is han-
dling traffic at 10Gbps. We manually crash the active agent
and measure the following metrics at a receiver: failover de-
lay, throughput, and data loss rate. We report the results for
the worst-case scenario, where the rack has only one active
agent. Failover delay is the time when the receiver does not
receive traffic due to active agent failure and when it receives
traffic again. Figure 6a shows the average failover delay for
all packet sizes when we control the heartbeat timeout. The re-
sults confirm the fast response of the control plane in choosing
a new active agent when the original agent fails. For instance,
receivers can resume receiving traffic within 1.04 ms after an
active agent fails when T is 1 ms.

We next measure the observed throughput at the receiver
during a failure, where we crash the agent after two seconds.
For 1024-byte packets and heartbeat timeout of 1ms, we ob-
serve a throughput drop by up to 0.012% only. In addition, for
all packet sizes, the total throughput drop is less than 0.013%
during a failure. Our results confirm that Orca quickly re-
stores the transmission to full capacity after a failure. Finally,
we plot the loss rate caused by an agent failure in Figure 6b.
When the heartbeat timeout is 1 ms, Orca incurs a loss rate of
0.18%, on average, across all packet sizes. We note that such
losses can be easily mitigated by using reliable multicast [9].
Receiver Joining Delay. We assess the performance of the
proposed method for updating leaf labels when a new receiver
joins. Recall that when a session changes, Orca sends new leaf
labels to the corresponding agents. This impacts how quickly
a joining receiver would receive traffic. In addition, network
delays between the control plane components in datacenters
might vary depending on the placement of the controllers and
receivers. We emulate different controller placement setups in
our testbed by adding synthetic delays at the network interface
queues of the workstations (using tc) to stress our system.

We consider four different placement setups (P1–P4) starting
with no synthetic delay in P1 with mean RTT of 479 µs and
adding 200 µs of delay every step till we reach a mean RTT of
1,120 µs (maximum 1,326 µs) in P4 setup. These RTT values
follow what is reported in [19] where the 99th percentile RTT
between two hosts is 1.34 ms. We note that even the lowest
RTT in our setup (i.e., P1) is larger than the median RTT
inside a rack in datacenter networks which is 268 µs [19].

We measure the receiver join delay, which is the time dura-
tion from when a receiver sends a join request for a session
and the time the first packet of that session is received by the
receiver. For each placement setup, the experiment is repeated
for 30 join events. Figure 6c shows the average join delay
as well as the contribution of network delays. We report that
even in the worst-case scenario (P4), the average join delay is
less than 4 ms. In total, the median and 99th-percentile delays
are 3.12 ms and 6.53 ms, respectively. To put these numbers
into perspective, note that inserting a new rule into an Open-
Flow switch takes 1–3 ms, and rule modification delays vary
from 2–18 ms [22].

We next measure the throughput of processed confirmation
messages at the centralized controller in Figure 6d, which
represents the end-to-end performance. In the P1 setup, Orca
handles an average of 1,147 msgs/sec (SD is 74). As increas-
ing latency affects gRPC, the average throughput of the largest
delay scenario is 662 msgs/sec (SD is 14).

Summary: Orca recovers quickly from failures and it sup-
ports dynamic multicast sessions. Furthermore, the failure
detection mechanism in Orca is localized to individual racks.

6 Orca versus State-of-Art

We analyze the performance and scalablity of Orca and com-
pare it against the state-of-art system, Elmo [5], using large-
scale simulations. We use the open-source code of Elmo.

Elmo employs three stages to encode a multicast tree. Elmo
encodes switches of a tree as a union of multiple bitmaps
representing outgoing ports. When the label size reaches a
pre-configured value, Elmo installs forwarding state entries at
switches without exceeding their capacities. Otherwise, Elmo
calculates a default entry that may result in redundant traffic.
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Figure 7: Performance of Orca versus Elmo.

6.1 Simulation Setup
Topology and VM Placement. We simulate a multi-rooted
Clos topology consisting of 48 pods, each has 576 48-port leaf
and spine switches. This results in a large datacenter network
of 27,648 hosts. We use a setup similar to [5, 32]: There are
3,000 tenants, each has a number of VMs ranging from 10 to
5,000. The maximum number of VMs per server is 20. We
use two VM placement strategies. The first one is a Clustered
placement (denoted by C), which places at most 12 tenant
VMs per rack. The second is a Scattered strategy (denoted by
S), and it places at most one tenant VM per rack.
Multicast Sessions and Datasets. Multicast receivers per
session are randomly chosen from all tenant VMs. The size
of these sessions follows two different distributions similar
to [5, 32]. The first distribution follows a workload from the
IBM WebSphere Virtual Enterprise (WVE) [32], and the sec-
ond one is a uniform distribution (Uni). The minimum and
maximum session sizes for both distributions are 5 and 5,000
receivers, respectively.

We generate four datasets representing various workload
characteristics and VM placement strategies. We denote a
dataset using its session size distribution and VM placement
strategy, e.g., a dataset with uniform session sizes and scat-
tered strategy is referred to as Uni-S. We simulate 1M mul-
ticast sessions per dataset, where each tenant has sessions
proportional to the number of its VMs.
Orca and Elmo Parameters. We set the filter size in Orca to
69 bits to compute byte-aligned label. For Elmo, we control
two parameters to analyze different aspects of it, and set them
according to [5]. The first one is the number of rules encoded
in Elmo label, which is set to be either 10 or 30. The second
parameter is the redundancy limit that controls the amount
of redundant traffic caused by sharing a single rule in Elmo
label. We set this parameter to be 0 (no redundant traffic) or
12. We refer to the Elmo four configurations as Elmo-1 (10,
0), Elmo-2 (10, 12), Elmo-3 (30, 0) and Elmo-4 (30, 12).

6.2 Data Plane Performance
Switch State. Figure 7a shows the CDF of the switch state for
the Uni-S dataset. The results for other datasets are similar.

The figure shows that Orca significantly reduces the state
size compared to all considered configurations of Elmo. For
example, in Orca, 99% of switches need to only maintain up
to 253 entries in their memory, and no switch maintains more
than 437 entries. In contrast, for Elmo-1, which calculates
the smallest label sizes (i.e., 100 bytes on average), 99% of
switches need to maintain up to 47.7K entries in their memory,
with some switches need to maintain as many as 53.5K entries.
Elmo could not reduce the state even when it doubles the
label size. For example, in Elmo-4, 99% of switches need to
maintain up to 24K entries in their memory (maximum is 30K
entries). This is a significant improvement because it indicates
that Orca requires much lower switch memory to support the
same number of multicast sessions and much fewer control
messages to update the switch state.

We next study the impact of session size on the required
state to be maintained for that session in Figure 7b. The figure
shows that Orca scales well, and it can reduce the session
state by up to 55X compared to Elmo. For example, when a
session has 2.5K receivers, Orca needs to maintain state at
up to two switches only. Elmo-1, however, needs to maintain
state at up to 110 switches.

These significant gains are achieved because, unlike Elmo,
Orca does not require maintaining state at any leaf or core
switch. In addition, the proposed spine labels can encode most
of the spine downstream links while requiring small state at
few spine switches.

Summary: Orca reduces state size by up to two orders
of magnitude compared to Elmo, and can support a large
number of concurrent multicast sessions.
Communication Overhead. Figure 7c shows that Orca re-
duces the communication overhead by using a small and
fixed-size label of size 19 bytes to forward traffic of 1M ses-
sions. On the other hand, Elmo uses much larger labels. For
example, in the Uni-S dataset, the average and maximum la-
bel sizes of Elmo-4 are 211 bytes and 368 bytes, respectively;
SD is 62 bytes.

Elmo introduces variations in the label size for the same
configuration across different datasets. This means that
changes in VM placement strategy or shifts in traffic patterns
introduce unpredictable forwarding performance in Elmo, as
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its switches need to process labels with varying sizes. For ex-
ample, changing the VM placement strategy from clustered to
scattered in Elmo-4 increases the average label size by 148%
because receivers in the scattered strategy span more racks
compared to the clustered one. For the same configuration, a
shift in traffic pattern from WVE to Uni increases the average
label size by 42% as Elmo needs to encode more receivers
using the same label size. This is because the WVE distri-
bution is skewed, and thus, fewer sessions have large group
sizes compared to the Uni distribution. In contrast, Orca has a
fixed-size label of 19 bytes because it utilizes the key insights
described in §3.2.

Summary: Orca reduces the communication overhead by
up to 19X compared to Elmo while being robust against VM
placement strategies and session sizes.
Redundant Traffic. We define the redundant traffic per ses-
sion as the ratio between the number of receivers that receive
unwanted traffic to the total number of receivers in the ses-
sion. By design, Orca does not introduce any redundant traffic.
Elmo may introduce redundant traffic to reduce state size by
controlling the redundancy limit parameter as it shares the
same rule among multiple switches. We analyze the traf-
fic redundancy of Elmo-2 and Elmo-4 for the Uni-S dataset.
Other Elmo configurations have redundancy limit of 0 sim-
ilar to Orca but they require maintaining much larger state
at switches. Our results show that, for Elmo-2, 25% of the
sessions have more than 67% redundant traffic, with a maxi-
mum value of 172%. For Elmo-4, with much larger labels, the
maximum redundant traffic is 113%. That is, the traffic could
erroneously be sent to more destinations not participating in
the multicast session than the actual receivers.

Summary: Orca does not introduce any redundant traffic,
whereas Elmo may impose up to 172% redundant traffic.

6.3 Control Plane Performance

Session Dynamics. We randomly generate 1,000 receiver
joining/leaving events per second with joining probability
of 0.5. Every event changes a multicast tree, and thus, the
state maintained at switches may need to be refreshed. Re-
freshing the state requires the control plane to send update
messages to the switches. We measure the total number of up-
date messages per second sent by the controller for both Orca
and Elmo. We report the results for all datasets in Figure 7d.
For example, the Orca controller needs to send an average
of 1,889 messages per second (SD is 45) for the WVE-S
dataset. On the other hand, the Elmo controller needs to send
19.9K, 10K, 9.5K and 615 messages per second on average
for Elmo-1, Elmo-2, Elmo-3 and Elmo-4, respectively. This
is because Orca maintains state only at a small number of
switches. Elmo-4 does not need to update many switches.
It, however, imposes the largest label size among all Elmo
configurations with high amount of traffic redundancy.

Summary: Orca reduces the rate of update messages by

up to 10X compared to Elmo.
Network Failures. Similar to session changes, a core or
spine switch failure triggers Orca and Elmo to update state
at switches if needed. For the WVE-S dataset, Orca needs
to send 3,900 messages per core switch failure on average,
while Elmo-1, Elmo-2, Elmo-3, and Elmo-4 needs to send an
average of 56.2K, 31.2K, 27.6K, and 1.7K messages per core
switch failure, respectively. For a spine switch failure, Elmo-1,
Elmo-2, Elmo-3, and Elmo-4 send 34.7K, 20.6K, 18K, and
1.2K messages per failure, respectively, whereas Orca sends
4,890 messages per failure. Although Elmo-4 requires sending
fewer messages per failure, it imposes significant overheads
in terms of the label size and traffic redundancy.

Summary: Compared to Elmo, Orca reduces the control
overhead for handling failures by up to 14X.
Running Time. Orca calculates labels faster than Elmo. We
report the running time of Orca and Elmo in the Appendix.

7 Conclusions and Future Work

We presented Orca, an efficient multicast architecture for data-
center networks. Orca splits the data plane operations between
leaf switches and servers. That is, Orca offloads managing
multicast sessions from leaf switches to servers. Orca has a
scalable control plane that handles session dynamics and net-
work failures. It also has a simple data plane that can sustain
high rates and can easily be implemented in programmable
switches. The server component in Orca can be implemented
on SmartNICs, or on regular CPU cores if SmartNICs are
not available. We implemented lightweight APIs to seam-
lessly integrate multicast into datacenter applications. We also
implemented Orca in a testbed that contains programmable
switches. We evaluated a sample multicast application in our
testbed. Our results show that Orca can substantially reduce
the communication time compared to unicast. In addition,
we assessed the performance of Orca in terms of its through-
put, resource usage, packet latency and the impact of failures.
Moreover, we compared Orca versus the state-of-art multicast
system, Elmo, using large-scale simulations. Compared to
Elmo, Orca reduces the switch state by up to two orders of
magnitude and the label size by up to 19X.

This work can be extended in multiple directions. For exam-
ple, we plan to extend Orca to support various group commu-
nication primitives needed by modern datacenter applications.
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Appendix A Supplementary Materials

This appendix includes materials that complement the con-
tents presented in the paper.

A.1 Encoding Spine Downstream Links
The pseudo code of the ENCSPINEDSLINKS algorithm is
shown in Algorithm 2. This algorithm encodes spine down-
stream links of the multicast tree into a label D and calculates
the state S to be maintained by spine switches.

A.2 Processing Spine Downstream Labels
The pseudo code of the PROCSPINEDSLABEL algorithm is
shown in Algorithm 3. The algorithm processes two spine
downstream labels: the common links among spine switches
in the tree (denoted by C), and the filter that encodes the
remaining spine downstream links (denoted by D).

A.3 Overheads of Orca
Multicast offers significant bandwidth savings compared to
unicast, and thus, it can scale data-intensive tasks that domi-
nate datacenter networks. The authors of [36] reported that
the communication time of data-intensive tasks using unicast
can be larger than the computation time, especially as the
number of workers increases. Achieving the benefits of mul-
ticast has been a long-standing problem. Orca achieves the
benefits of multicast at the expense of the small overheads
described below.
Server Resources. Orca agents require processing resources
at servers. However, the computation performed on packets
(mostly replacing labels) is quite simple and the memory
needed to store leaf labels is small. Thus, Orca agents can
easily be implemented on SmartNICs, which are getting pop-
ular in datacenters [3]. In this case, no CPU cores are taken
away from the servers. Orca agents can also run on regular
CPU cores. In this case, the agents consume only a small
fraction of the available computing resources in each rack, as
shown in the evaluation section. We note that since Orca is a
multicast paradigm, the sender in the session transmits only
one copy of each packet regardless of the number of receivers
in the session. In contract, in unicast, the sender needs to send
a separate copy of each packet to every receiver, which for
large-scale applications with many receivers and/or high data
rates requires allocating additional CPU cores at the sender
to sustain the needed data rate. That is, at the whole system
level, the CPU resources used by Orca agents can be offset
by the savings of CPU resources at the sender.
Packet Latency. Orca adds latency to packets at the leaf layer
only, because the packets need to be sent to Orca agents for
relabeling. This latency is in the order of one RTT within the
rack, because of the simple processing done on packets by

Algorithm 2 Encode spine downstream links.
Input: T: multicast tree
Input: C: common ports in spine downstream switches
Input: F : filter size in bits
Output: D: computed spine downstream label
Output: S: state sent to a subset of the spine switches

1: function ENCSPINEDSLINKS(T, C, F)
2: A Calculate a spine downstream label
3: D = BitString(size=F)
4: for (l ∈ T.spine_ds_links()) do
5: if (l /∈ C) then
6: D = D ∪ encode(l.id)
7: B Calculate false positive candidates
8: cands = {}
9: for (u ∈ T.spine_switches()) do

10: for (l ∈ u.ds_links()) do
11: if (l /∈ T.spine_ds_links()) then
12: cands = cands ∪ (u, l.dst)
13: C Calculate spine switch state
14: S = {}
15: for (l ∈ cands) do
16: if (check(l.id,D) and l /∈C) then //false positive
17: S = S∪{〈l.src, l.id〉} // add link to state
18: return 〈D, S〉

Orca agents. Most throughput-intensive datacenter applica-
tions, e.g., MapReduce [44], Hadoop [59], and Spark [40],
can easily tolerate this small latency [33].
Communications Overheads. Orca achieves substantial
bandwidth savings compared to the commonly-used unicast
model. Orca, on the other hand, attaches a small, fixed-sized
label (19 bytes) to each packet in typical datacenters; Orca
label is smaller than the IP header. In addition, Orca uses
additional bandwidth between leaf switches and agents de-
ployed on servers within the same rack. Prior studies, how-
ever, reported that links at leaf layer are under-utilized. For
instance, the study in [38] has found that the datacenter edge
is lightly utilized: 80% of the time, the utilization is less than
10% for cloud and enterprise datacenters. A recent study by
Facebook [20] reported that links between leaf switches and
servers have a 1-minute average utilization of less than 1%.

A.4 Extensions and Limitations of Orca
Multipath Routing. In Orca, the multicast tree has one path
from the source VM to any core switch, then it reaches the
receivers by branching to spine and leaf switches. Orca can
support multipath routing to achieve reliability and load bal-
ancing as follows. The centralized controller can compute
multiple trees, each has the same source and receivers of the
session but consists of different links. For example, the cen-
tralized controller can choose a different core switch as the
root for each tree. It then calculates a different source label
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Algorithm 3 Process a spine downstream label.
Input: D: spine downstream label
Input: l: downstream link attached to the spine switch
Input: C: set of common ports in spine downstream switches
Input: State: state maintained at the spine switch
Output: true if duplicating a pkt on link l, else false

// Runs for every link attached to the spine switch
1: function PROCSPINEDSLABEL(D, l, State)

// Links belonging to C
2: If index(l.id) ∈ C then return true

// Checking the filter for index(l.id) /∈ C
3: If not check(l.id,D) then return false

// sID is the session ID included in the packet header
4: return l.id /∈ State[sID]

for each tree, and instructs the source VM to store the new
labels and spine switches to maintain state (if needed). The
source attaches different source labels to the packets to in-
struct switches to forward them on links of different trees.
Leaf labels are identical for all trees as they have the same
receivers. As in other multipath routing systems, packet re-
ordering may occur in this case and would need to be handled
by the application.
Reliability and Congestion Control in Multicast. Prior
works, e.g., [9, 31], proposed various methods for reliable
transmission and congestion control for datacenter multicast.
These methods can be used on top of Orca. In addition, the

Orca agent can reduce the number of control messages, e.g.,
ACK or NACK, since it can aggregate them per rack.
Incremental Deployment. Orca can run on legacy switches
by encapsulating its labels in VLAN or VXLAN headers. The
header identifier can be used to instruct switches to duplicate
incoming packets.
Limitations of Orca. Deploying Orca in graph-based data-
center networks, e.g., Jellyfish [34] and Xpander [13], may
require changes in some components of Orca. For example,
although our server-assisted approach will work at the leaf
layer in Jellyfish, Jellyfish’s lack of structure does not allow
Orca to use the same algorithms at other layers. A new label
calculation algorithm would need to be designed to encode
tree links without imposing assumptions on their layers.

A.5 Additional Simulation Results
We evaluate the running time of Orca and Elmo spent by the
centralized controller when sessions change.
Running Time. Orca is simple and enables more updates
per second to be processed by the control plane. For the Uni-
S dataset, the average running time for Orca to calculate a
session label is 0.34 ms (SD is 0.4 ms), while this average is
up to 7.286 ms (SD is 9.8 ms) for Elmo-3. The average (SD)
running times for Elmo-1, Elmo-2 and Elmo-4 are 6.1 ms (5.7
ms), 5.5 ms (5.6 ms) and 6.5 ms (8.6 ms), respectively. These
times were measured on a workstation with a 2.3 GHz CPU.

Summary: Orca calculates labels 21X faster than Elmo.
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