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ABSTRACT

Regular glucose monitoring is crucial for diabetic patients to
avoid the risk of health complications such as stroke, kidney
failure, heart disease, and even death. Most current devices
for measuring glucose are costly and painful. We propose
GlucoSense, a non-invasive glucose sensing solution on mo-
bile devices. GlucoSense builds on the fact that glucose is an
optically active molecule, which interacts with various wave-
lengths. We first conduct spectral analysis to demonstrate
the feasibility of measuring glucose in the visible and near-
infrared range (400-1000 nm), which is the range available
on mobile devices. We also identify the relative importance
of various spectral bands in this range. We further propose
multiple practical designs for obtaining the required spectral
bands for measuring glucose. We then design GlucoSense
exploiting the sensing capabilities of modern smartphones
combined with machine learning models. We conduct an
ethics-approved user study with a diverse set of participants
in terms of age, sex, ethnicity, and body mass index (BMI). We
compare GlucoSense against a widely-used, FDA-approved
glucose measuring device. Our results show that 80.4% of Glu-
coSense predictions are within Zone A (clinically accurate),
and the remaining 19.3% are in Zone B (clinically accept-
able) of the Clarke Error Grid (CEG). In addition, 99.7% of
the predictions are within the None and Slight risk zones
of the Surveillance Error Grid (SEG), indicating their high
accuracy. Both CEG and SEG are standard metrics for assess-
ing glucose-measuring devices. These results were obtained
by GlucoSense running on unmodified phones in realistic
environments with diverse illuminations.
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1 INTRODUCTION

Diabetes has become one of the leading causes of death
globally [64]. According to the World Health Organization
(WHO) [65], currently, there are around 422 million cases of
diabetes in the world. Diabetes is caused by abnormal insulin
levels in the body due to either the pancreas not producing
enough insulin or the body cells not using it adequately.
Insulin is a hormone that regulates glucose level by allowing
cells to absorb it from the bloodstream to obtain energy or
store it for future use. If the glucose level in the blood remains
low or high for long periods, it could cause hypoglycemia
or hyperglycemia, respectively, leading to severe medical
conditions, including tissue damage, stroke, kidney failure,
blindness, heart disease, and death if left untreated [22, 32].

Deficient production of insulin leads to diabetes Type 1,
which is characterized by sudden drops in glucose levels.
On the other hand, the ineffective use of insulin leads to
diabetes Type 2, which is characterized by high levels of
glucose. Both conditions do not have a cure and thus require
regularly measuring glucose; at least four times a day [15]
and up to ten times for patients with severe conditions [19].

Unfortunately, regularly checking blood glucose for most
diabetic people is painful or at least inconvenient. Conven-
tional devices for glucose monitoring use electrochemical
methods, which require a small amount of blood to be drawn
out of fingertips using automatic lancet devices [25]. Al-
though accurate, this method is invasive and painful for
patients to repeat multiple times daily. Alternate devices to
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measure glucose are called continuous glucose monitoring
(CGM) systems [21], which estimate glucose concentration
in the interstitial fluid [34]. These systems contain biosensors
with micro-needles that penetrate the skin. CGM systems
provide glucose readings every 1-5 minutes but need to be
replaced every 10-14 days. Both traditional and CGM sys-
tems cause discomfort and pose risks of potential infection
and tissue damage [9]. Therefore, there is a need for non-
invasive and cost-effective systems for measuring glucose to
help millions of patients worldwide.

In this paper, we consider estimating glucose levels using
only smartphones. This is a challenging research problem
for multiple reasons. First, the sensing capabilities of regular
smartphone (RGB) cameras are limited to the visible range in
the electromagnetic spectrum. Whereas the most promising
range to get information from deeper skin layers, where glu-
cose can be measured, lies in the near-infrared (NIR) part of
the spectrum. Second, the human skin is a highly absorbing
and scattering medium containing many substances, e.g.,
collagen and elastin, which negatively interfere with the re-
flected signal. Third, people have diverse skin characteristics,
e.g., skin tone and thickness, which affect the correlation
between the reflected signal and glucose levels.

To address these challenges, we propose GlucoSense, a
non-invasive glucose monitoring system on smartphones. As
shown in Figure 1, GlucoSense has three main components.
The first component comprises a mobile sensing module in
the visible and near-infrared (VNIR) range. We propose using
near-infrared signals captured by depth-sensing cameras on
modern smartphones and regular RGB cameras. We demon-
strate the potential of different depth-sensing technologies in
modern smartphones, including Time-of-Flight, stereo, and
structured light. This addresses the first challenge mentioned
above. The second component is a deep learning model that
converts the captured RGB and NIR signals to multiple (hy-
perspectral) bands in the VNIR (400-1000 nm) range. We
analyze the importance of individual bands for measuring
glucose, and we identify the crucial bands considering the
diversity of people and the complexity of their skin tissues,
which addresses the second and third challenges. The third
component of GlucoSense is an estimation module that maps
the recovered spectral information to glucose levels.

The contributions of this paper are as follows:

e We conduct spectral analysis of multiple subjects with
and without diabetes using a hyperspectral camera in §4.
Our analysis shows the potential of measuring glucose
from the interstitial fluid in the skin using signals in the
VNIR range, and it identifies the most important spectral
bands to consider. This analysis is useful in its own right,
especially for designers of devices that measure glucose.
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e We propose four solutions for obtaining NIR signals on
mobile devices in §5.2; two of them are readily available
on recent phones, and the others are easily realizable.

o We design a machine learning model for estimating glucose
levels, which is computationally efficient and does not
require customization for different user groups in §5.3.

e We conduct a user study to demonstrate the accuracy of
GlucoSense and compare it against a widely-used, FDA-
approved glucose measuring device in §6. This study was
approved by the Ethics Research Board of our institution.
Our results show, for example, that 80.4% of GlucoSense
predictions are within Zone A (clinically accurate), and
the remaining 19.3% are in Zone B (clinically acceptable)
of the Clarke Error Grid (CEG). In addition, 99.7% of our
results are within the None and Slight risk zones of the
Surveillance Error Grid (SEG). CEG and SEG are commonly
used for evaluating glucose-measuring devices.

2 BACKGROUND AND RELATED WORK

Blood Glucose. Glucose is the main sugar found in our
blood, and it is the primary source of energy [30, 43]. Our
body breaks down the food we eat into glucose and releases
it into our blood stream. Insulin, a hormone produced by
the pancreas, is required to transport glucose from the blood
stream to body cells. If the pancreas does not make enough
insulin or our body cannot use the produced insulin, this
leads to high glucose levels, resulting in diabetes. Prolonged
high glucose levels can cause health complications such as
stroke, kidney failure, heart disease, and even death. Thus, it
is crucial for diabetic people to maintain their glucose levels
within the normal range (70-180 mg/dL [15]).

Invasive and Minimally-Invasive Approaches. A com-
mon approach for measuring glucose is to draw a small blood
sample from the fingertips. The blood sample is analyzed
using a test strip, which contains a glucose oxidase enzyme
that reacts to the glucose molecules and produces a propor-
tional electric current [67]. The current is then mapped to
readable glucose levels. Examples of commercial devices us-
ing this approach include Accu-Chek and True Metrix. This
electrochemical approach provides accurate results, but it is
invasive and uncomfortable.

CGM devices, on the other hand, periodically measure
glucose every few minutes. These devices are based on the
same electrochemical principle, but they measure the glucose
level in the interstitial fluid (ISF) in the skin instead of the
blood. ISF is primarily present in the lowermost skin layer
of the dermis, which is 70% ISF by volume [50]. It has been
shown that the ISF glucose level is highly correlated to blood
glucose level but with an average lag time of 8—10 minutes
[16]. CGM devices require inserting a sensor (tiny needle)
into the skin, and thus, they are considered minimally inva-
sive. These devices may cause skin irritation and discomfort
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Figure 1: Overview of GlucoSense. Users take RGB and NIR images using their phones. A reconstruction model
upscales these images across the spectral domain. The result is then fed to a glucose estimation model.

[59], and they may impose a financial burden on some pa-
tients since they need to be replaced every 10-14 days; the
FreeStyle Libre device used in our study costs $130/unit.
Non-Invasive Approaches. Non-invasive glucose moni-
toring systems include transdermal, thermal, and optical
techniques; comprehensive reviews can be found in [25,
37]. Transdermal techniques measure glucose molecules’
electrical impedance, but they may cause skin irritation
while passing the electric current through tissues. Thermal
techniques measure heat generation, blood flow rate, and
hemoglobin/oxyhemoglobin concentrations to estimate glu-
cose levels, but the accuracy of these systems is significantly
affected by environmental factors like temperature and hu-
midity. Transdermal and thermal techniques are not practical
to realize or approximate on smartphones.

Optical techniques include optical coherence tomography
(OCT), polarimetry [39], photoplethysmography (PPG) [58],
and spectroscopy [38]. All of them require special devices
and sophisticated hardware setups. Among the optical tech-
niques, spectroscopy is the most studied, and it has four main
categories: Raman [38], photoacoustic [54], near-infrared
(NIR) [28, 33], and mid-infrared (MIR) [40]. Raman spec-
troscopy measures the energy shift of lasers used to excite
glucose molecules. Photoacoustic spectroscopy measures the
absorption of glucose by using acoustic signals. NIR and MIR
spectroscopy measure the reflectance from glucose across
multiple wavelengths in different parts of the spectrum.

Multiple attempts have been made to build low-cost ver-
sions of the above spectroscopy systems, e.g., using small
LEDs and photodiodes [45, 46, 57, 58, 66]. Most systems use
a single wavelength to simplify the design. However, relying
on a single wavelength may yield inaccurate measurements
for people with different skin tones and thicknesses [11].

As analyzed in [20], wavelength selection for glucose mea-
surements remains a challenge. Various works have used
different wavelengths, some prioritized wavelengths that
penetrate further in the skin, and others considered water
absorption of wavelengths. Further, none of the prior works
rigorously analyzed the impact of individual wavelengths in
the 400-1000 nm range and their combinations on the accu-
racy of measuring glucose. The 400-1000 nm range is crucial

because it is the sensitivity range of the RGB camera sensors
on smartphones. Our analysis in §4.2 addresses this problem.
Measuring Blood Glucose on Smartphones. Multiple
works considered employing smartphones in measuring glu-
cose, including [27, 61]. GlucoScreen [61], for example, in-
troduces a glucose test strip that works with smartphones,
alleviating the need for specialized readers and reducing
the cost. GlucoScreen, however, is still an invasive approach
as it requires blood samples. SugarMate [27], on the other
hand, is non-invasive. It builds a deep recurrent neural net-
work model to predict blood glucose based on several factors
entered by users and collected by the phone. Specifically,
SugarMate requires users to manually input their daily food,
drug, and insulin intake, which is tedious and error-prone.

The goal of this work is to build a glucose-measuring so-
lution on unmodified smartphones. It also conducts a detailed
analysis to rank wavelengths based on their importance in
measuring glucose, which provides a systematic method for
designing future glucose measurement systems.

3 FOUNDATIONS AND CHALLENGES

We discuss the principles and challenges of measuring blood
glucose using spectral analysis on regular phones.

Light Transport Theory and Measuring Glucose. Glu-
cose is an optically active molecule with a chemical compo-
sition of C¢H1206. When light interacts with a skin tissue
containing glucose, the covalent bonds (C-H, O-H) inside
the glucose molecules vibrate. This causes attenuation of
the incident light due to scattering and absorption. A widely
accepted model to quantify the interaction of glucose with
different light wavelengths can be summarized by the light
transport theory using the following equation [20]:

I =Lt (1)

where I is the reflected light intensity, I, is the incident light
intensity, and L is the optical path length inside the tissue.
Attenuation of light inside the tissue depends on the attenu-
ation coefficient y, which is the sum of the absorption coeffi-
cient y, and the scattering coefficient p; [20]. p1, depends on
the wavelength of the used light and the glucose concentra-
tion. Thus, the reflected light, which is inversely proportional
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to the absorption, can determine glucose concentration in
skin tissue. This, however, faces multiple challenges, which
we describe in the following.

Challenge 1: Complexity of Human Skin. We provide
a simplified illustration of human skin in Figure 2. The out-
ermost layer is the epidermis (about 0.1 mm thick), which
provides a waterproof barrier and creates skin tones based
on different melanin concentrations. Beneath the epidermis
is the dermis (about 2 mm thick), which contains connec-
tive tissues and sweat glands. It contains the interstitial fluid
surrounding the cells, which is used by CGM devices such
as [7]. The deepest layer is the hypodermis (2—-7 mm thick),
which mainly consists of fat tissues that store energy and
nutrients, providing insulation from cold temperatures and
protection from injuries [10]. As Figure 2 shows, the human
skin is a complex and highly absorbing medium. It scatters
most of the incident light and thus decreases the signal-to-
noise (SNR) of the reflected light. This makes it harder to
capture the small variations in the reflected signal caused by
the presence of glucose deep in the skin tissues.

Challenge 2: Diversity of Humans. Humans are quite di-
verse along many dimensions, including skin tone, sex, and
weight. This diversity presents a major challenge for devel-
oping a scalable, non-invasive glucose monitoring solution.
For example, among different users, the optical path L in
Equation (1) varies due to different skin thicknesses, which
changes the amount of reflected light even for the same glu-
cose concentration, making it harder to estimate glucose
concentrations accurately. The optical path also depends on
the wavelength used since the penetration depth of light
in skin tissues varies across the electromagnetic spectrum.
Multiple studies have shown that the penetration depth gen-
erally increases with increasing the wavelength [13, 41]. Skin
thickness and skin tone (melanin concentration) both affect
the ratio of the absorbed/reflected light. Existing systems
(e.g., CGM devices) generally require calibration using blood
tests to improve the estimation across different users.

We propose using multiple wavelengths in the whole 400-
1000 nm range to address the challenges of human diversity
and skin complexity. Multiple wavelengths can reveal in-
formation from different layers of the skin, establishing a
stronger correlation between glucose concentration and the
reflected light intensity. In §4.1, we first analyze the correla-
tion between different wavelengths and changes in glucose
levels in controlled settings. This is done to establish the
feasibility of our approach. We then recruit a diverse set
of participants (31 in total) with and without diabetes, con-
sidering different age groups, skin tones, biological sexes,
and Body Mass Indexes (BMlIs), to understand the impact
of different wavelengths on measuring various glucose con-
centrations. We present a systematic way to select the most
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important wavelengths for estimating glucose. This analysis
also helps in designing future glucose-measuring devices.
Challenge 3: Lack of Information in the Infrared Range.
Glucose is an optically active molecule, and according to [53],
it has shown strong absorption characteristics in the NIR
(700-1000 nm) range. Although the CMOS sensors of RGB
cameras on smartphones have spectral response in the VNIR
(400-1000 nm) range, they utilize cut-off filters to truncate
all signals beyond 700 nm. This is done to improve the visual
quality of RGB images. To address this problem, we propose
different camera solutions that use NIR signals and RGB
images to extend the sensing capabilities of smartphones.
Specifically, we propose using off-the-shelf depth sensing
cameras (e.g., Time-of-Flight) available on modern smart-
phones and used in applications like face recognition and
augmented reality. We also design camera systems using
infrared-enabled cameras that are widely used for surveil-
lance. We present the details of our designs in §5.2.
Challenge 4: Limited Number of Captured Wavelengths.
Regular RGB cameras capture only three channels (or bands).
While these RGB bands enable humans to perceive the cap-
tured scene, they are insufficient to conduct spectral analysis
of different skin layers to estimate glucose levels. Spectral
analysis is typically performed by expensive hyperspectral
cameras or spectrometers that capture many (200+) equally-
spaced, narrow bands in the entire VNIR spectral range. To
address this problem, in §5.3, we leverage a deep-learning
model to convert RGB and NIR signals into multiple nar-
row bands, which allows the creation of accurate spectral
signatures essential for assessing glucose levels.

4 SPECTRAL ANALYSIS AND BAND
SELECTION

In this section, we first conduct controlled experiments to
demonstrate the feasibility of measuring different glucose
levels using a hyperspectral camera operating in the 400—
1000 nm range. This is unlike many prior works, e.g., [62],
which used cameras operating in ranges not available on
smartphones. Then, we analyze the relative importance of
bands for glucose measurements.

4.1 Spectral Analysis to Measure Glucose

We analyze different glucose concentrations in water using
a high-end hyperspectral camera. We note that this study
is difficult to do with humans, as the glucose level may not
change quickly, and it is hard to cover the entire glucose
range. Nonetheless, studying glucose concentrations in water
provides good approximations of glucose concentrations
in blood and interstitial fluid in the skin, as water is the
dominant component in both.
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in skin tissues. spectral analysis.

We prepared glucose solutions using distilled water as
a dissolving medium for the dextrose powder (pure form
of sugar) to achieve concentrations ranging from 40 to 500
mg/dL with 20 mg/dL increments, which cover the entire
practical glucose range. In total, we prepared 25 samples in
30 ml glass bottles, one of which was plain water.

Our experimental setup consists of the hyperspectral cam-
era (model: Specim IQ and costs about $35K), a halogen light
source, and 25 bottles with different glucose concentrations.
The camera captures 204 wavelengths in the 400-1000 nm
range, each with a spatial resolution of 512 X 512 pixels.
The halogen light source is recommended by the camera
manufacturer because it emits power across the 400-1000
nm range, unlike common sources such as LED and fluores-
cent. We captured a hyperspectral image for each glucose
concentration and computed a spectral signature for it. The
spectral signature is the normalized reflectance across all 204
wavelengths. It is computed per pixel and typically averaged
across multiple pixels in a small square area of the captured
scene. In our experiments, the signatures are averaged across
all pixels in 8 X 8 pixel areas.

We plot the spectral signatures of all 25 samples in Fig-
ure 3. The black curve represents the spectral signature of
pure distilled water. To facilitate visualizing the results, we
divide and color code the glucose concentrations into three
ranges: 40-180 (blue), 200-340 (green), and 360-500 mg/dL
(red). We draw the curve corresponding to the highest glu-
cose concentration in each range as a solid line, while others
are dotted. The results in Figure 3 indicate that as the glu-
cose concentration increases, the absorption across different
bands increases, and the corresponding reflectance decreases
with respect to pure water. Thus, spectral analysis is a po-
tential solution for detecting glucose concentrations.

We note that the human skin is much more complex than
simple glucose solutions in transparent bottles. Therefore,
a detailed analysis of how various wavelengths contribute
to measuring glucose in human skin is needed, which we
conduct in the next section.

tral bands.

4.2 Band (Wavelength) Selection

Relative Importance of Bands. We first analyze the rel-
ative importance of spectral bands on the accuracy of mea-
suring glucose from the ISF in human skin. We use a subset
of the data collected during our user study (detailed in §6.1).
This dataset has many reference glucose readings measured
by a CGM device from 31 diverse participants over multiple
weeks. Each reading is paired with a hyperspectral image
taken at the same time for the participant’s inner wrist.

We implemented a supervised learning model to map the
spectral signatures computed from the hyperspectral im-
ages to their corresponding reference glucose readings. We
designed gradient-boosting decision trees to capture the rela-
tionship between each spectral band and the glucose reading.
To analyze each band’s contribution in predicting glucose, we
use the SHAP (SHapley Additive exPlanations) [42]. SHAP
uses a game theoretic approach that measures each player’s
contribution to the outcome. Our model treats each spectral
band as a player/feature contributing to the output (glucose
estimation). Specifically, we compute a band’s contribution
(SHAP value) by first calculating the average prediction of
the model across the entire dataset, referred to as the baseline.
Then, we compute the marginal contribution of the band
by considering all possible subsets of bands. This involves
adding/removing the band to a given subset and calculating
the change in prediction from the baseline. Then, we average
these changes across all possible subsets. We note that there
are 204! subsets in each case, which is infeasible to try. We
utilize the approximation method in [42] to explore the rele-
vant subset of bands. The run time for each case is several
hours on a decent workstation. We repeat this computation-
ally expensive process for each of the 204 bands captured by
the hyperspectral camera in the 400-1000 nm range.

Using these experiments, we compute a ranking for each
of the 204 bands based on how much the model performance
gets affected by eliminating that particular band. For illustra-
tion, we show the top five and bottom two bands in Figure 4.
The x-axis denotes the SHAP values, which measure how
much a band contributes to pushing the model’s prediction
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away from its expected value (the baseline). Dots clustered
around zero reflect samples where the band has little im-
pact, meaning the prediction stayed close to the baseline.
Red (blue) dots mean that the band pushed the prediction
higher (lower) than the baseline. To illustrate, consider the
top 941.95 nm band. It has the largest mean SHAP value
in the positive direction (>40) and is color-coded blue. This
means when the reflectance value of this band is low, its
contribution to glucose prediction is high.
Effect of Number of Bands. The above SHAP analysis
provides a relative importance for each of the 204 spectral
bands on the accuracy of predicting glucose. We further
analyze the effect of the number of bands on the accuracy.
In other words, we analyze the marginal contribution to the
prediction accuracy as we successively consider more bands.

We train 204 glucose prediction models; the model’s design
is described in §5.4. Each prediction model takes a different
number of spectral bands as input. The first model takes only
the top 1 band (942 nm) according to the SHAP analysis. The
second model takes the top 2 bands (942 and 945 nm), the
third model takes the top 3 bands (942, 945, and 936 nm),
and so on, until the last model takes all 204 bands as inputs.
We assess the accuracy of the prediction model using the
absolute relative difference (ARD) between the predicted
and reference glucose values, normalized by the reference
value. We plot the mean of the ARD (referred to as MARD)
achieved by all models in Figure 5.a. The results indicate
virtually no performance gain from bands beyond the top 50,
as the MARD stabilizes around 10% for 50+ bands. In contrast,
each of the top 10 bands provides a significant performance
gain; in total, the MARD decreased from around 19% (for the
top 1 band) to less than 12% (for the top 10 bands). Adding
the next 10 bands reduced MARD by only 1-1.5%, while the
following 30 bands provided tiny gains.

We present the distribution of the top 50 bands for glu-
cose prediction across the 400-1000 nm range in Figure 5.b.
For easier identification of the important bands and where
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they are in the spectral range, we color-code the bands as:
(i) top 10: red, (ii) 11-20: blue, and (ii) 21-50: black. Two
observations can be made on this figure. First, five spectral
ranges can be identified, which are: [920-950], [850-880],
[780-810], [450-480], and [550-600]. These ranges capture
various information for glucose measurements. For example,
the [920-950] range has the least water absorption and thus
has the highest correlation to the glucose concentration. The
[450-480] range captures the melanin information, which is
crucial for handling user diversity. The [850-880], [780-810],
and [550-600] ranges are important for light penetration in
different levels of the dermis, which help in handling various
skin thicknesses.

The second observation on Figure 5.b is that multiple
bands are close to each other in the spectral range. For ex-
ample, four of the top 10 bands (942, 945, 936, 939 nm) are
all within 9 nm range. Further, the spectral distance between
the neighboring bands is only 3 nm. This fine granularity
is only possible with high-end spectral cameras, because
their design includes complex optical elements and narrow
band-pass filters. In contrast, mobile devices typically have
simpler hardware and can only capture wider bands. Given
these physical/practical limitations, our results in Figure 5.b
can help in selecting the most important bands to capture in
future devices designed for glucose measurements. For ex-
ample, if a device would capture only five bands, our analysis
indicates that a single band should be chosen from each of the
above-mentioned spectral ranges to increase the system’s ro-
bustness to various issues. If the device would capture more
than five bands, the extra bands should first be allocated to
the more important ranges (e.g., ones with more red lines).
Summary. Since the SHAP analysis is model agnostic [42]
and rigorously examines all band combinations, the results
in this section offer a systematic approach to rank spectral
bands in order of importance for glucose prediction. This
is useful for designing future glucose measurement devices
with minimal hardware cost by selecting only the most essen-
tial bands. Our analysis also shows the distribution of bands
across the 400-1000 nm range, which can provide further
guidelines on selecting bands given the physical limitations
of the glucose measurement devices compared to high-end
hyperspectral cameras.

5 DESIGN OF THE PROPOSED SYSTEM

5.1 Overview

Main Components. An overview of GlucoSense is pre-
sented in Figure 1. It contains three main components. The
first is a mobile sensing solution to capture visible and NIR
signals on phones. For obtaining NIR signals on smartphones,
we present four possible solutions in §5.2. The second com-
ponent is a spectral reconstruction machine learning model
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to convert captured sparse signals into rich spectral bands.
This is presented in §5.3. The third component is a machine
learning model to estimate glucose concentration from the
reconstructed spectral signals, which is detailed in §5.4.
Operation. At a high level, GlucoSense operates as follows.
The two machine learning models are first trained on a work-
station. Then, they are uploaded to a phone. To estimate glu-
cose, a user takes RGB and NIR images of the inner part of
their wrist by the phone. These images are then upscaled to
multiple spectral bands by the reconstruction model. Then,
the reconstructed bands are fed to the glucose estimation
model, which outputs the predicted value in mg/dL.

5.2 Infrared Sensing on Phones

We present four camera designs to obtain NIR signals on
smartphones: (i) Using full spectrum RGB cameras with no
IR filter (RGB-NoIR), (ii) Designing camera sensors with
custom RGB-NIR filter (Custom), (iii) Using stereo NIR depth
cameras (RGB+NIR), and (iv) Using the time-of-flight (ToF)
sensors on modern smartphones (RGB+ToF). We analyze
the pros and cons of each solution in the following, and we
experimentally evaluate their performance in §6. We note
that the RGB+NIR design is the only solution that works
on current, unmodified phones. Thus, when we refer to the
performance of GlucoSense, we mean the results achieved
by the RGB+NIR design.

Using Full Spectrum RGB Cameras. Regular RGB cam-
eras consists of an IR filter which is typically a thin film
attached to the camera sensor. Removing the IR cutoff is a
simple hardware change as shown in [5]. RGB sensors with
no IR filters are called full spectrum RGB. These sensors are
already used in surveillance cameras [2] for day/night video
capturing and infrared photography. To realise our ideas for
GlucoSense, we assemble an image capturing system using a
Raspberry Pi Camera Module 3 NoIR [4], as shown in Figure 6,
in combination with off-the-shelf low-powered 850nm LED
(emission curve shown in Figure 7.a). We choose this illumi-
nation wavelength because the highest spectral response of
the RGB-NolIR sensor is at ~ 850nm in the NIR range.

The advantages of using RGB-NolR sensors are the simplic-
ity and existence of commercial cameras without IR filters
[4]. Also, this is a single sensor solution, where we capture
visible and NIR signals on the same sensor. Removing the
IR filter, however, damages the visual quality of regular im-
ages. Thus, this solution is more suitable for imaging systems
designed especially for glucose monitoring or to bring this
solution to wearable devices, e.g., smartwatches.
Designing Camera Sensors with Custom RGB-NIR Fil-
ter. Full spectrum RGB (NoIR) sensors capture NIR signals
mixed with RGB bands (Figure 6.b). This provides limited
information in the NIR range. Multiple alternative single
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Figure 7: Camera with custom RGB-NIR filter and sep-
arate NIR illuminations.

sensor camera designs have been proposed in the literature
to allow for capturing an explicit NIR band with minimal
or no damage to the RGB image quality. This is realised
by replacing the traditional Bayer color filter array with a
custom-designed wavelength filter array that has an explicit
filter for the NIR band as illustrated in Figure 7.b. A compre-
hensive performance analysis of various filter arrangements
is presented in [44]. The authors demonstrate that the 4 x 4
filter pattern shown in Figure 7.b results in the best overall
performance in terms of obtaining an explicit NIR band with
no damage to the RGB bands.

To evaluate GlucoSense, we assembled a camera system
with a commercial custom sensor board, Model AR0237 RGB-
IR from ON Semiconductor [3]. This sensor and its sensitivity
are shown in Figure 7.b. The sensitivity was obtained from
the manufacturer’s data sheets. The manufacturer also pro-
vided us with its custom image acquisition and processing
software. We capture raw RGB and NIR signals and then pro-
cess them to get standard RGB and NIR bands. This imaging
setup is also used with 850nm LED similar to the previous
setup in combination with ambient light for visible range.

The advantages of using the custom RGB-NIR sensor in-
clude better spectral reconstruction compared to RGB-NoIR
sensor and maintaining the quality of RGB images. This is
also a single sensor approach but the disadvantages are the
complexity and cost of manufacturing imaging sensors with
custom filters. This solution can be useful for designing fu-
ture smartphone cameras and specialized sensing systems
for mobile health applications such as GlucoSense.

Using Stereo NIR Depth Cameras. Depth sensing tech-
nologies on smartphones have evolved significantly over
the past few years. A depth sensor in a mobile camera is a
component that measures the distance between the camera
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Figure 8: Dual camera systems: (a) RGB+NIR (depth)
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and various objects in the scene. The depth information is
valuable for several applications such as face recognition and
augmented reality. Manufacturers use different depth sens-
ing technology but most techniques use high power infrared
LED (~930- 980 nm) and an infrared camera to capture the
scene. The depth sensing camera modules on latest smart-
phones provide an opportunity to get NIR signals without
any hardware changes which is a major advantage. However,
this is a multi-sensor approach where we get NIR signals
from depth camera and RGB from regular RGB camera.

For evaluating GlucoSense, we use the front camera mod-

ule of Google Pixel 4XL which consists of stereo vision depth
sensing module [26]. As illustrated in Figure 8.a, we propose
to use one NIR camera with in-built 940 nm LED (Figure 7.a)
to get NIR signals and RGB signals from front facing RGB
camera. Using a multi-sensor approach requires additional
post processing to resize and align the images, as the two
cameras produce different resolutions and are physically
apart on the phone. In addition, the NIR camera is front-
facing, which poses a slight inconvenience when capturing
images. To address this issue, we design our mobile appli-
cation, to capture images after a short timer (3 sec), where
the user clicks on the start button and then turns the camera
around to capture the RGB and NIR images.
Using Time-of-Flight (ToF) Sensors. ToF sensors can be
categorized into two types: direct (dToF) and indirect (iToF).
dToF directly calculates the time it takes for the emitted in-
frared signal to reach back to the sensor. Then, using the
time and speed of light, it calculates depth maps. This ap-
proach is used in LiDAR sensors on recent Apple’s iPhones
12 Pro and beyond. On the other hand, an iToF camera mea-
sures the phase offset between emitted and reflected light
[47, 60] to calculate depth maps. A number of Android smart-
phones (e.g., Huawei P/Mate series, Samsung S/Note series
[36, 51, 56]) are equipped with iToF cameras for various
applications such as FaceID and AR/VR.

We can directly use IR signals from iToF cameras, which
are generally present in the smartphone back camera module.
The raw phase and amplitude components from iToF cameras
are inaccessible on Android smartphones. So, we designed
a dual-camera imaging system on Raspberry Pi using an
off-the-shelf iToF sensor (Arducam [6]) and a regular RGB
camera [4] as illustrated in Figure 8.b. This imaging system is
used under ambient light and in-built 940 nm LED (Figure 7.a)
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already present in the iToF sensor. This is also a multi-sensor
approach that can be used directly in smartphones without
any hardware changes but will require post-processing based
on the sensor characteristics of both RGB and iToF.

5.3 Spectral Reconstruction

The spectral reconstruction model in GlucoSense is built on
top of the state-of-the-art MobiSpectral model [52], which
extends MST++ [14] to reconstruct bands in the entire visible
and NIR range. Specifically, MobiSpectral takes four bands
(three RGB bands and one NIR band) and produces 204 bands
equally distributed in the 400-1000 nm range. These bands
were shown to be accurate relative to the actual bands cap-
tured by a hyperspectral camera. The reconstruction model
is designed based on transformers, where each spectral fea-
ture is treated as a token, and self-attention is calculated
along the spectral dimension.

In GlucoSense, we make minor changes to the MobiSpec-
tral model. First, we do not reconstruct all bands. Instead,
we reconstruct only the most important bands based on the
analysis in §4.2. Further, these top bands are not equally
spaced in the 400-1000 nm range, as shown in Figure 5.
Reconstructing only the relevant bands reduces the compu-
tational resources for training the reconstruction model and
improves its accuracy. In addition, we proposed four designs
for obtaining NIR signals on phones in §5.2. Three of these
designs (Custom, RGB+NIR, and ToF) produce four bands,
which the reconstruction model can readily use. However,
the fourth (RGB-NolIR) produces only three channels, which
are the RGB channels mixed with NIR signals because the
camera does not have an IR filter. In this case, we change
the structure of the reconstruction model to take three chan-
nels. We provide more details on training the reconstruction
model and demonstrate its accuracy in Appendix A.1.

5.4 Glucose Estimation

We design a supervised learning regression model to map the
reconstructed spectral bands to glucose values. The model is
based on XGBoost (extreme gradient boosting) [17], which is
an optimized implementation of gradient boosting [31]. Gra-
dient boosting sequentially builds an ensemble of weak learn-
ers, typically decision trees. Each tree is trained to correct
the residual errors of the previous ensemble using gradient
descent. At each step, a new decision tree is fit to the negative
gradient of the loss function, and its predictions are scaled by
a learning rate before being added to the overall model. XG-
Boost introduces several enhancements to gradient boosting.
For example, it employs second-order optimization using
both gradients and Hessians (second derivatives) to make
more precise updates, leading to faster convergence. It also
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includes various regularization methods, e.g., tree pruning
and random subsampling, to prevent overfitting.

For our glucose estimation model, each tree in the ensem-
ble strives to capture different aspects of the relationship
between the spectral bands and glucose levels. The first tree
may capture the strongest patterns, while subsequent trees
focus on more subtle relationships and error correction. The
learning rate of the model controls how each new tree con-
tributes to the ensemble, providing a parameter to balance
learning speed and stability. The model has 800 trees, pro-
viding substantial capacity to learn complex patterns.

In addition, we use the SHAP values, described in §4.2,
to create an initial subset of spectral bands that have the
strongest overall impact on the model’s predictions across
all samples. This allows us to reduce the dimensionality of
the input data from 204 bands to the 50 most influential
bands, which significantly accelerates training and improves
accuracy. Once the subset of bands is selected, the model
builds its trees independently using XGBoost’s various op-
timization methods. Specifically, at each node in each tree,
XGBoost decides which feature to split on by calculating
the potential gain (improvement in accuracy) that would
result from each possible split. This gain is based on the re-
duction in training loss that would occur after making that
split. Therefore, while SHAP values determine which bands
are available to the model, the actual order and frequency
of band usage in the tree structure are determined by XG-
Boost’s internal optimization process, which may differ from
the original SHAP-based ranking. This two-step approach
combines the benefits of SHAP-based feature selection with
XGBoost’s sophisticated tree-building algorithm. We pro-
vide more details and illustrations on the glucose estimation
model in Appendix A.2. In addition, our preliminary experi-
mentation evaluated various regression models, including
SVM, KNN, PLSR, and neural networks. Our results, also pre-
sented in Appendix A.2, showed that the gradient boosting
model provides higher accuracy and requires less computing
resources for training and inference.

6 EVALUATION

In this section, we evaluate the performance of GlucoSense
using a user study with diverse participants and compare it
against an FDA-approved glucose-measuring device. Some
results are presented in the appendix due to space limitations.

6.1 Description of the User Study

This user study has been approved by the Research Ethics
Board of our university. Since it involves humans using med-
ical devices, everybody involved in this research project had
to go through rigorous training and national certification
to ensure the safety, comfort, and rights of the participants.
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This is in addition to the usual measures for anonymizing,
storing, and sharing the collected datasets. The approval
process and experiments took multiple months to complete.
Participants. Table 1 summarizes the participants’ demo-
graphic information. Specifically, we enrolled 31 participants
between 18 and 59 years old. Six participants have diabetes (3
Type I and 3 Type II), and one is prediabetic. The remaining
24 participants are healthy with normal glucose levels. We
also strived to ensure other aspects of participants’ diver-
sity, including body mass index (BMI) and ethnicity. BMI
correlates with skin thickness, affecting the absorption and
reflection of different wavelengths. We calculate the BMI for
each participant based on their height and weight. Among
the 31 participants, 19 are categorized as Healthy (BMI be-
tween 18.5 and 24.9), 9 as Overweight (BMI between 25 and
29.9), and 3 as Obese (BMI above 30). Ethnicity, on the other
hand, is a complex construct that reflects multiple attributes,
including genetic, cultural, and social aspects [55]. We con-
sidered these ethnic groups—White, Black, Middle-Eastern,
East Asian, and South-East Asian—based on previous studies
([23, 49]) that highlight ethnic variability in glucose metab-
olism and prediabetes prevalence. We note that although
ethnicity does not necessarily correlate with skin tone [63],
the participants in our study were quite diverse and covered
a wide range of skin tones.

The study excluded pregnant and breastfeeding women
and people with known allergies to medical-grade adhesives.
We discuss the limitations and extensions of this study and
GlucoSense in general in §6.6.

Reference Glucose Levels. Participants agreed to wear a
CGM device throughout the study. The device chosen for
the study is Freestyle Libre 2. This widely-used device is
approved by the US FDA, meets the requirements of the ISO
15197:2013 standard [1], and has been shown to yield high
accuracy [29]. The device is typically worn on the upper part
of the arm. It has a tiny needle that reaches the interstitial
fluid in the skin to measure the glucose level once every
minute. It is paired with a mobile application, which displays
the glucose reading and periodically archives the data on the
cloud. Like other CGM devices, the lifetime of the Freestyle
Libre 2 is up to 14 days, after which it has to be replaced.
Frequency of Participant Visits and Study Length. Each
participant agreed to visit our lab 4 to 6 times on different
days while wearing the glucose monitoring device. These
visits did not have to occur on consecutive days. However,
they must occur while the monitoring device is still valid, i.e.,
the last visit must be within 14 days from the first one. Each
visit lasted 30-60 minutes. Participant visits were scheduled
to cover a wide range of glucose levels. Specifically, the visits
were arranged at different times throughout most of the
day, including evenings. They were also arranged shortly
before/after meals and occasionally 2-3 hours after meals.
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Participant Demographics (Total = 31)

Biological Sex Male: 14 Female: 17
Age 19-25: 18 25-40: 8 40-59: 5
BMI Healthy: 19 Overweight: 9 Obese: 3
Diabetic Normal: 24 TypeI: 3
Profile Prediabetic: 1 Type II: 3
White: 8 Middle-Eastern: 9
Ethnicity East Asian: 9 South-East Asian: 4
Black: 1

Table 1: Demographic information of the participants.

6.2 Hardware and Software of the Testbed

Image Capturing Hardware. Our hardware setup includes
five image capturing systems. The first is a high-end hyper-
spectral camera (Model: Specim IQ), which is a line scanning
camera that captures 204 spectral bands with a spatial reso-
lution of 512 x 512 pixels. This camera takes 20-30 seconds
to produce a single hyperspectral image, as it has to scan
the captured scene mechanically. The remaining four imag-
ing systems are: (i) RGB+NIR: unmodified Google Pixel 4XL
smartphone with RGB and NIR cameras, (ii) RGB-NoIR: Rasp-
berry Pi RGB camera sensor without IR filter, (iii) RGB+ToF:
Raspberry Pi RGB camera sensor and time of flight (ToF)
sensor, and (iv) Custom: camera sensor with a custom color
filter array (model: OnSemiconductor AR0237 RGB-IR).
Software and Automation Scripts. The hyperspectral cam-
era came with its software tools to capture images. Similarly,
we used existing applications on the Google Pixel phone to
capture RGB and NIR images. However, we wrote software
to program the other three capturing systems: RGB-NoIR,
RGB+ToF, and Custom. In addition, we wrote automation
scripts to control all five imaging systems so that they capture
right after each other. This is important for the convenience
of the participants, as they will not have to hold their arms
for a long time. It is also critical to ensure that the glucose
level has not changed while capturing successive images.
INlumination Sources. We have four illumination settings:
halogen, LED, fluorescent (CFL), and arbitrary. Halogen sources
emit power across most of the 400-1000 nm spectral range,
which is suitable for hyperspectral cameras. We use a 250
watt halogen bulb. We also use multiple off-the-shelf LED
and CFL bulbs widely used in regular environments such
as homes. In addition, we mix several sources, including
LED, CFL, light bulbs in the ceiling of our lab, and natural
sunlight coming from the lab windows. We refer to this illu-
mination setting as arbitrary, which stresses our system and
demonstrates its robustness.

6.3 Data Collection and Model Training

Data Collection. We invite one participant at a time for
30-60 min data collection sessions. The participant sits in a
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chair with a relaxing posture. We capture their inner wrist
using our five imaging systems successively and under all
considered illumination settings, typically within a few sec-
onds. The ideal working distance for each imaging system
is 20-40cm. Right after capturing these images, we log the
glucose reading from the mobile app of the CGM device and
associate it with the captured images; we tag all of them with
the same timestamp. The timestamp granularity is 1 minute,
which is the finest granularity at which the CGM device can
record glucose.

We repeat the capturing process every 5-10 minutes within
each session, where the participant may rest between captur-
ing and/or eat/drink some snacks/juices we make available.
Since we invited each participant for 4-6 sessions on differ-
ent days, we collected between 48 to 80 glucose readings and
images from each. All participants received a $100 amazon
gift card each as a token of appreciation upon completing
the study.

In total, we collected 1,752 reference glucose readings
from the CGM device and their corresponding images cap-
tured by our five imaging systems. The distribution of these
1,752 glucose readings is: (i) 21.2%: Low (61-94 mg/dL), (ii)
41.6%: Normal (95-130 mg/dL), (iii) 26.0%: High (131-180
mg/dL), and (iv)11.2%: Abnormally High (181-258 mg/dL).
Model Training and Inference. GlucoSense has two ma-
chine learning models: spectral reconstruction and glucose
estimation. The reconstruction model is trained on the hy-
perspectral images dataset. It does not use or see images
captured by the other four (mobile) imaging systems. Once
trained, this model is used to reconstruct 50 spectral bands
from the images captured by the mobile imaging systems.

The glucose estimation model is trained on the glucose
readings and their corresponding mobile images. Specifically,
for each of the four imaging systems (RGB+NIR, RGB-NolIR,
RGB+ToF, and Custom), we train a separate model on 80%
of the corresponding glucose readings and images, and we
use the remaining 20% for testing. We ensure here to in-
clude all samples captured under considered illuminations
for each glucose measurement in training as well in testing.
So, that model can learn spectral information for different
illuminations for each glucose value.

The experiments proceed as follows. We first train the
reconstruction and glucose estimation models as described
above. Then, for each mobile imaging system, e.g., RGB+NIR,
we take a sample from the test dataset, which is a pair of
RGB and NIR images in this case. We use the trained recon-
struction model to create 50 spectral bands from the sample.
Then we feed the 50 spectral bands to the glucose estimation
model, which produces a predicted value for the glucose
level. This predicted value is then compared against the cor-
responding reference value measured by the CGM device at
the time of taking the sample.
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6.4 Accuracy of GlucoSense

We examine the accuracy of GlucoSense in estimating the
glucose levels from mobile images captured by the four pro-
posed systems: RGB+NIR, RGB-NolIR, RGB+ToF, and Custom.
Simply comparing predicted values against reference values
does not provide a sufficient understanding of the results
in the case of glucose analysis. This is because errors have
varying clinical significance at different glucose levels. For
example, a specific error value, e.g., +20 mg/dL, may be clin-
ically accepted for glucose levels > 200 mg/dL (diabetic), but
the same error would pose a significant risk of misdiagnosis
at levels around 130 mg/dL (border of normal and diabetic).

To address this serious issue, error grids have been pro-
posed for glucose analysis. There are three known error grids
[35]: Clark Error Grid (CEG), Consensus (aka Parkes) Error
Grid (PEG), and Surveillance Error Grid (SEG). CEG is the
oldest and has been in use since the late 1980s. It has nine risk
zones: A, B, C, D, and E, where some of the zones are repeated
at different locations, as shown in Figure 9. PEG addresses
some of the shortcomings of CEG, has eight risk zones (also
named A-E), and has been adopted by the ISO standard for
evaluating glucose devices [1]. SEG is the newest, and as an-
alyzed in [35], it provides the finest granularity in analyzing
the accuracy. Specifically, it offers a color-coded continuous
scale for assessing the risk associated with errors in measur-
ing glucose levels. In Figure 10, we demonstrate PEG (A-E
zones separated by lines) overlaid on top of SEG (areas with
different shades of colors).

We analyze our results using CEG as it is still the most fa-

miliar to researchers in this area. We also analyze our results
in the combined PEG/SEG for completeness and compatibil-
ity with various evaluation methods [1, 24].
Results on the Clark Error Grid. In Figure 9, we present
sample results for the accuracy achieved by GlucoSense run-
ning on RGB+NIR and RGB+ToF imaging systems in CEG.
The results of the other two camera systems (RGB-NoIR and
Custom) are presented in Appendix A.3. The figure demon-
strates the high accuracy achieved by GlucoSense. For exam-
ple, Figure 9.a shows that 99.7% of the predicted values of
GlucoSense for the RGB+NIR case (which is the unmodified
Google Pixel phone) fall within zones A and B of the Clark er-
ror grid. Note that in each sub-figure, we plot 350 predicted
glucose values, many of them are overlapping. These are
the whole test dataset of the glucose estimation machine
learning model (20% of 1,752 = 350), as described in §6.3.

Interpretations of the various zones CEG in Figure 9 are
as follows [18, 35]. Glucose predictions in zone A are con-
sidered clinically accurate, and in zone B, they are clinically
acceptable. In contrast, predictions in zone C may lead to
unnecessary treatment, whereas in zone D, they fail to detect
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Figure 9: Clarke error grid analysis of GlucoSense on
(a) Google Pixel, (b) Raspberry Pi camera with time of
flight sensor. Almost all predicted glucose values fall
in regions A and B (clinically accurate/acceptable).

hypoglycemia or hyperglycemia. Predictions in zone E lead
to incorrect treatment decisions in the opposite direction.

Table 6 (Appendix A.3) summarizes the results for all four

mobile imaging systems using the Clark error grid. As the
table shows, at most 0.6% of the GlucoSense predictions oc-
curred outside zones A or B for any of the proposed imaging
systems.
Results on the Consensus and Surveillance Error Grids.
We present sample analysis for the RGB+NIR and RGB+ToF
cases in Figure 10 and summarize all results in Table 2. The
remaining results are in Appendix A.3. Interpretations of
zones in PEG are similar to those in CEG. For SEG, green
areas represent no risk of using the predicted glucose values,
whereas yellow and red areas represent moderate and high
risk, respectively. Similar to the case for CEG, we plot in
Figure 10 all 350 predicted glucose values in the test dataset;
many of them are also overlapping in this case.

The results in Figure 10 and Table 2 demonstrate the accu-
racy of GlucoSense and confirm its potential suitability for
practical deployment. For example, Table 2 shows that 99.7%
of GlucoSense predictions in the RGB+ToF case are within
zones A and B. Further, 77.4% of the predictions introduce
no risk, whereas 22.6% of them pose only a slight risk.
Quantifying Absolute Relative Difference (ARD). In ad-
dition to error grids, the absolute relative difference (ARD) is
occasionally used in the literature to assess the accuracy of
glucose monitoring systems. ARD is computed as the abso-
lute difference between the predicted and reference glucose
values, normalized by the reference value.

We report the mean of the ARD values (MARD) of all
considered four mobile imaging systems in Figure 11.a. We
also show the MARD achieved by the hyperspectral camera
as the lower bound on MARD that can be achieved in the
400-1000 nm range. Further, we show the 95% confidence
interval as error bars for each case. The figure shows that

S
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Figure 10: Consensus error grid overlaid on surveil-
lance error grid for the analysis of GlucoSense on (a)
Google Pixel, (b) Raspberry Pi camera with time of
flight sensor. All predicted glucose values fall in re-
gions A and B and within the no (green) or slight (yel-
low) risk areas.

| Cons. Error Grid (%) ‘ Surv. Error Grid (%)
| A B C | None Slight Mod.

RGB+NIR | 80.0 17.8 2.2 76.0 23.7 0.3
RGB+ToF | 81.3 18.4 0.3 774  22.6 0.0
RGB-NoIR | 60.4 349 4.7 59.3 40.4 0.3
Custom 73.6 258 0.6 73.5 26.5 0.0

Table 2: Summary of the results using Consensus and
Surveillance error grids. At least 95% of GlucoSense
predictions in all cases fall within zones A and B, and
99% of them have no or slight risk.

the RGB+NIR and RGB+ToF achieve MARD of about 13%,
which is close to the lower bound achieved by the expensive
hyperspectral camera. On the other hand, the Custom and
RGB-NoIR imaging systems produce MARD of 15% and 20%,
respectively. We attribute the relatively lower performance
in these two cases to the weak NIR signals captured by the
Custom and RGB-NolIR systems.

Reference Comparison to FDA and ISO Requirements.
To shed more light on our results, we compare them to glob-
ally recognized requirements and standards: US FDA require-
ments [24] and ISO 15197:2013 standard [1].

We first note that there are two broad categories of sys-
tems for measuring glucose: blood glucose monitoring (BGM)
and continuous glucose monitoring (CGM). BGM systems,
e.g., Accu-Chek, measure glucose directly from the blood
using, for example, medical test strips to obtain small blood
samples after finger pricking. CGM systems, e.g., Free Libre
2, measure glucose within the interstitial fluid in the skin.
The ISO 15197:2013 standard [1] defines requirements for
BGM systems but does not target CGM. The US FDA defines
requirements for CGM systems [24].
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To be clinically accurate, one of the main FDA require-
ments for CGM devices is that at least 87% of all predicted
glucose values should be within £20% of the reference values.
We plot the CDF of all ARD values resulted from running
GlucoSense on different imaging systems in Figure 11.b. The
figure shows that the hyperspectral camera meets this re-
quirement, as it results in 88% of the predictions having 20%
or less absolute relative error. On the other hand, two of the
proposed mobile imaging systems (RGB+NIR and RGB+ToF)
result in 80% of all predictions within the +20% error margin,
which is a small gap of 7% from the FDA main requirement.

The ISO 15197:2013 standard [1] for BGM systems has two
main accuracy requirements: (i) at least 99% of the glucose
readings must fall within zones A and B on the Consensus
Error Grid, and (ii) at least 95% of the readings should be
within +15 mg/dL of the reference measurement for glucose
concentrations < 100 mg/dL and within +15% for concen-
trations > 100 mg/dL. As shown in Figure 10, GlucoSense
running on a simple, unmodified smartphone (the RGB+NIR
case) with no external attachments and no direct access to
blood can meet the first requirement of the ISO standard. But
it does not yet meet the second requirement.

In our future work, we will explore various optimizations
to hopefully achieve the second requirement of the ISO stan-
dard and shrink the gap with the FDA main requirement
mentioned above, as well as achieve the few other range-
specific FDA requirements stated in [24].

6.5 Robustness Analysis

Robustness to User Diversity. Figure 12 shows the MARD
and 95% confidence intervals for different genders, ethnic
groups, ages, BMI categories, and diabetes groups on the
RGB+NIR case. Overall, the MARD is similar across diverse
participants. We detected less error in the black ethnic group.
This can be attributed to the low sample size (1 person) in this
category. Due to local demographics, we could not recruit
more in this community. We will conduct more experiments
in the future to validate such cases. We also identified slightly
more error in subjects having diabetes as compared to normal
subjects. This can be attributed to the fact that the total
participants having diabetes (7 people) is considerably less
than the normal (24 people). We analyze the generalizability
of GlucoSense by using the leave-one-out training approach
and showed the positive effect of calibration in Appendix A.3
Robustness to Illuminations. We evaluate the perfor-
mance of GlucoSense under different illuminations, and the
results (Figure 13) demonstrate its robustness as the accuracy
did not significantly change across different illuminations.

Identification of Optimal Body Site. We experimented
with different locations on the body to identify the most
convenient location(s) for participants to take pictures while
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Figure 11: Distributions of the glucose mea-
surement errors for different camera sys
tems. HS: Hyperspectral.

optimizing the accuracy of GlucoSense. Through discussions
with participants and multiple trials, we concluded that the
inner part of the wrist is the best location. This is because the
skin in this location is the thinnest, maximizing the reflected
signals from the inner layers of the skin. In addition, this
location typically has the least amount of hair, which reduces
obstruction during image capturing. Further, the melanin
content in this location is lower than in other parts of the
arm, reducing the impact of skin tone on the accuracy.

6.6 Limitations and Practical
Considerations

Limitations of our User Study. We compared our glucose
predictions against reference values obtained by the Free
Libre 2 device. While this device is approved by the FDA and
is reported to be among the most accurate in the market, it
still has some errors compared to directly measuring glucose
from the blood. In the future, we plan to collaborate with dia-
betes medical specialists and to compare GlucoSense directly
against the ground-truth blood glucose levels.

In addition, while our user study lasted for months, it

contained data from only 31 participants. A larger number
of diverse participants would better assess the potential of
GlucoSense. For example, more participants are needed to
cover the broad spectrum of human skin tones. This is in
addition to the diversity in ethnicity because ethnicity is an
inadequate proxy for skin tone [63].
Practical Considerations. GlucoSense requires NIR signals
on phones. Most recent phones have NIR cameras and/or
time-of-flight sensors. However, some phone manufacturers,
e.g., Apple, do not currently expose the APIs for accessing
such sensors to external developers. We hope that the results
in this paper motivate more phone manufacturers to allow
accessing their NIR camera modules.

For deployment, GlucoSense does not need a hyperspec-
tral camera or hyperspectral images; it requires only RGB
and NIR images captured by regular cameras. The spectral re-
construction model in GlucoSense does need hyperspectral
images for training but not for inference. Our hyperspec-
tral images dataset, which will be open-source, presents a

201Gender{ Racial categories

M F EA ME SEA W B <2525-40>40 <2424-30>30 N D

RGB+NIR MM Custom
RGB+ToF HEl RGB-Nol

0 Halogen CFL

LED Arbitrary

Figure 12: Impact of user diversity. EA: East Figure 13: Robustness
_Asian, ME: Middle Eastern, SEA: South East to different illumina-
Asian, W: White, and B: Black.

tions.

good start for training. When larger hyperspectral image
datasets become available, the reconstruction model can be
fine-tuned on them to improve the accuracy.

Finally, we note that GlucoSense is a non-invasive system
for measuring glucose. This alleviates the pain for many dia-
betic patients, especially those who use blood tests through
finger pricking. GlucoSense also reduces the cost compared
to using CGM devices, which are fairly expensive and need
to be periodically replaced. In addition, CGM devices may
increase the chances of skin infection/irritation because of
their prolonged use. GlucoSense, on the other hand, requires
patients to actively take pictures and measure glucose, which
may be inconvenient for some patients compared to CGM
devices that continuously monitor glucose.

7 CONCLUSIONS AND FUTURE WORK

Diabetes is a chronic disease that affects hundreds of mil-
lions of people worldwide. To avoid severe health complica-
tions, diabetic patients must closely monitor their glucose
levels through multiple measurements each day. Most cur-
rent commercial glucose monitoring systems are painful
and costly. We presented GlucoSense, a non-invasive glu-
cose measurement system that runs on smartphones. We
first demonstrated the feasibility of measuring glucose in
the visible and NIR range (400-1000 nm) using a hyper-
spectral camera. We also proposed a systematic approach
to rank wavelengths in order of importance for designing
low-cost glucose-measurement devices. We then presented
multiple camera designs to obtain NIR signals on phones.
We conducted a user study to analyze the performance and
robustness of GlucoSense. The results demonstrated that
GlucoSense achieves high accuracy in measuring glucose on
a diverse set of participants, close to the clinically accepted
measurements that require expensive/invasive devices.

In the future, we plan to conduct a clinical study in col-
laboration with medical experts to include larger and more
diverse user populations, compare against glucose measure-
ments obtained in medical labs directly from blood, and
customize our system to support various patient needs, e.g.,
focus on specific glucose ranges.
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A APPENDIX

This appendix contains more details and results that supple-
ment the materials presented in the paper.

A.1 Details of the Spectral Reconstruction
Model

Training the Reconstruction Model. A significant chal-
lenge in building a reconstruction model for mobile images is
that we need paired data to train the model. That is, we need
ground truth hyperspectral images captured by a hyperspec-
tral camera that correspond to images captured by mobile
devices of the same scene. This, however, is not practically
possible because hyperspectral cameras have very different
sensor characteristics, e.g., resolution and bit representation,
than mobile cameras. To address this challenge, we first cap-
ture a large hyperspectral image dataset with our high-end
hyperspectral camera. Then, we create the corresponding
mobile image dataset by applying the camera’s sensitivity
function of the considered mobile device.

To illustrate, consider a mobile device that has the full
spectrum RGB camera shown in Figure 6.a. We process the
200+ spectral bands of each image in the hyperspectral image
dataset by applying the sensitivity function in Figure 6.b on
it, which results in a synthesized image similar to the one that
a real full spectrum RGB camera would have captured. Since
the hyperspectral camera produces far more detailed infor-
mation than other cameras, the synthesized images are fairly
accurate. This image synthesization is commonly used to
evaluate the performance of hyperspectral imaging systems
[12, 14, 48, 52].

In addition, to simulate the camera processing pipeline of

smartphone cameras and normalize the effect of different
ambient light, we apply Automatic White Balancing (AWB)
[8] to the synthesized RGB images. Since the input to our
reconstruction model is RGB and NIR images, we choose a
paired NIR band (940 nm) from the hyperspectral image. This
NIR wavelength was selected based on the multiple depth
sensing solutions on recent smartphones that use the same
wavelength to mitigate the effect of sunlight.
Accuracy of the Reconstructed Bands. The reconstruc-
tion model produces 50 bands from which we extract spec-
tral signatures representing different glucose concentrations.
Thus, the accuracy of these bands is critical for the perfor-
mance of GlucoSense.

We assess the accuracy of the reconstructed bands by
comparing them against the ground truth ones captured by
the hyperspectral camera. We train our reconstruction model
on two settings: (i) Input RGB and NIR (4 bands) and (ii) Input
full spectrum RGB (3 bands). In both settings, we reconstruct

the top 50 bands selected based on the order of importance
as discussed in §4.2. Unlike prior works [14, 52], these bands

are not equally spaced in the 400-1000 nm spectral range.
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RMSE| SAM| SID| PSNR?

0.0217 26.5
0.1035 15.2

RGB+NIR
RGB-NolR

0.0528
0.1919

0.1035
0.1790

Table 3: Performance of the reconstruction model us-
ing two different inputs: (i) 4 bands (RGB+NIR) and (ii)
3 bands (RGB-NoIR).

We divide the hyperspectral image dataset into 75% train-
ing and 25% testing partitions. The training partition has
data points from 23 (out of 31) participants, which belong to
three (out of the five) ethnic groups: White (7), East Asian
(8), and Middle Eastern (8). The test partition has data points
from the remaining eight participants covering all five ethnic
groups: White (1), East Asian (1), Middle Eastern (1), South
East Asian (4), and Black (1). Notice that each participant
has multiple data points collected over several days. Further,
data from the Black and South East Asian were not seen
during the training of the reconstruction model. This is done
to stress the model and assess its robustness.

We report the overall performance of the two versions
of the reconstruction model in Table 3 using four perfor-
mance metrics commonly used in the literature [14, 52]. The
RMSE (Root Mean Square Error) measures the pixel-wise
error between reconstructed and ground truth bands, SAM
(Spectral Angle Mapper) and SID (Spectral information di-
vergence) measure the error in the spectral domain, and
PSNR (Peak Signal-to-Noise Ratio) assesses the quality of
the reconstructed bands.

The results in Table 3 show that the recovery is much
better from 4 input bands (RGB and an independent NIR)
compared to the 3 input bands (RGB-NolIR) having mixed
RGB and NIR signals. For example, PSNR is decreased (26.5
to 15.2) for the RGB-NolIR version, indicating higher noise
in the recovered signal. The low quality of the reconstructed
bands affects the overall performance of GlucoSense, as was
shown in §6.4.

We further analyze the performance on different ethnicity
groups in the test partition using the RGB+NIR version of
the model. The results, shown in Table 4, show that the
performance of all metrics is near the average, even for the
ethnicity groups not present in the training partition (South
East Asian and Black). This demonstrates the robustness of
the reconstruction model.

Finally, we present a sample result to visually illustrate
the accuracy of the reconstructed bands in Figure 14. The
figure shows the spectral profile of a participant in the test
partition (Black) and compares it to the ground truth across
all 50 bands. Specifically, we select a 64x64 patch of the im-
age. Then, we perform spectral reconstruction for this patch
to recover the top 50 bands. Then, we compute a spectral
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RMSE| SAM| SID| PSNR?
White 0.0501  0.0859 0.0077  26.2
East Asian 0.0494 0.1228 0.0320 27.3
Middle Eastern  0.0516  0.1173 0.0452  27.6
South East Asian ~ 0.0540  0.0938 0.0147  26.4
Black 0.0471  0.0957 0.0114  26.5

Table 4: Performance of the reconstruction model on
various ethnic groups.

[ T T w1 1L
= Ground Truth

= Reconstructed

=
(a) Captured scene 0.2
1.0 Selected 50 ban
0.05 e
E 38 533z g 3 BE2
¥ YL & 96 Yoo o
0.5 S Mma o o~ n o
S © o m © © o
T 2L B o ® 2
Wavelength (nm)
0.0

(c) Heatmap (SAM) (b) Spectral Signatures

Figure 14: An example to visually illustrate the accu-
racy of the spectral reconstruction model in producing
signatures close to the ground truth ones.

signature for each pixel in this patch. The spectral signa-
ture shows how the reflectance changes across the 50 bands.
We plot the signatures created from reconstructed bands
in red Figure 14.b. We also compute the spectral signatures
for all pixels from the ground truth bands and plot them in
blue. The thick red and blue lines represent the average of
all reconstructed and ground truth signatures, respectively.
The figure shows that the reconstructed and ground truth
signatures overlap across most of the spectral range, demon-
strating the high quality of the reconstructed bands even for
a participant from an ethnic group not seen during training.

To further illustrate this accuracy, we plot the error (mea-
sured using the SAM metric) between the reconstructed and
ground truth bands as a heat map in Figure 14.c. As the heat
map shows, the error is close to 0 in most cases.

A.2 Details of the Glucose Estimation
Model

Implementation Details and Hyperparameters. We use
the XGBoost library [17] to implement our model. XGBoost
is a powerful gradient-boosting framework optimized for
efficiency and performance. The model uses 800 decision
trees and incorporates several key regularization parameters
to control model complexity and prevent overfitting. Specifi-
cally, the model is configured with the following parameters:
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maximum tree depth of 8, tree pruning parameter y of 0.006,
learning rate of 0.26, and subsample ratio of 0.89. The tree
depth parameter effectively limits the complexity of each
decision tree by restricting how deep it can grow, prevent-
ing the model from creating overly specific decision paths
that might overfit the training data. The y parameter imple-
ments a form of tree pruning by requiring a minimum loss
reduction for further tree partitioning, helping to eliminate
unnecessary complexity in the model structure. The learning
rate scales the contribution of each tree, allowing for more
conservative model updates and preventing any single tree
from having too much influence on the final predictions. The
subsample ratio parameter introduces an element of random-
ness, which helps create a more robust ensemble that’s less
likely to overfit specific patterns in the training data.

Our model further enhances XGBoost’s regularization
strategy by employing the SHAP values to select the top 50
most important spectral bands from the original 204 bands.
This feature selection approach significantly reduces the
dimensionality of the input data while retaining the most in-
formative features for glucose prediction. Focusing on fewer,
more relevant bands makes the model less susceptible to
noise and more computationally efficient. The selected bands
are likely to correspond to meaningful glucose absorption
wavelengths, which improves the model’s interpretability
and ensures that predictions are based on genuine spectral
relationships rather than spurious correlations.

The synergy between XGBoost’s internal regularization
mechanisms and SHAP-based feature selection creates a
robust framework for glucose prediction. The initial fea-
ture selection process provides a first layer of complexity
reduction by eliminating less important spectral bands, while
XGBoost’s regularization parameters fine-tune the model’s
behavior on the selected features. This multi-level approach
to regularization results in a more stable and generalizable
model. The reduced feature set also enables faster training
times and more extensive hyperparameter tuning, making
more efficient use of computational resources. Most impor-
tantly, focusing on the most predictive spectral bands and em-
ploying proper regularization techniques makes the model
less susceptible to noise and artifacts, leading to better per-
formance on unseen data.

Finally, the model is configured to run on GPU using the
histogram-based algorithm for split finding, which is opti-
mized for large datasets. This architecture balances model
complexity with computational efficiency while maintaining
strong predictive performance. Further, our model leverages
XGBoost’s various system optimizations, e.g., parallel pro-
cessing and cache-aware access patterns, to improve training
efficiency.

Illustrative Example. We present a simplified visualization
of a single decision tree from our XGBoost-based glucose
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no, missing

Figure 15: Illustration of one of the decision trees in
our glucose prediction model.

prediction model in Figure 15. The complete model has an
ensemble of 800 trees, each with a depth of up to 8. Each
tree is a weak learner that attempts to correct the residual
errors from previous trees’ predictions. The final glucose
prediction is computed as the sum of predictions from all
trees multiplied by the learning rate (0.26 in our model) plus
an initial base prediction. In this visualization, each node
displays crucial information: the feature index (correspond-
ing to a specific wavelength), the splitting condition, the
prediction value, and the coverage (number of training sam-
ples). For instance, if a node shows ‘foqs < 0.5’, it indicates
that the model evaluates whether the reflectance at wave-
length 942nm is less than 0.5. The ‘leaf” value in terminal
nodes represents this path’s contribution to the final predic-
tion. While this single tree provides insights into the model’s
decision-making process, it’s important to note that the final
prediction accuracy comes from the combined effect of all
800 trees working together.

Comparison against other Regression Models. We con-
sidered other widely adopted regression methods for our
glucose prediction model, including K-Nearest-Neighbours
(KNN), Random Forest (RF), Support Vector Machine Regres-
sor (SVR), Partial Least Square Regressor (PLSR), and Neural
Network (multilayer perceptron). We implemented all these
models and evaluated their accuracy in predicting glucose.
For the Neural Network case, we tried many designs with
different numbers of layers and neurons in each layer. We
present the results for a network with two layers, each with
100 neurons. Deeper networks quickly overfit our relatively
small datasets and did not produce better results.

The results, summarized in Table 5, demonstrate that our
XGBoost-based model outperforms all other machine learn-
ing regression models considered in the comparison. This
is attributed to the fact that XGBoost is more likely to dis-
tinguish between numerical features than other models, as
it minimizes the loss function by adding new decision trees

that predict the residuals or errors made by the existing trees.
XGBoost can also handle unbalanced datasets since it creates
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Figure 16: The impact of calibration on the perfor-
mance of GlucoSense. The experiments are conducted
using the leave-one-participant-out method.

an ensemble of decision trees for prediction. Furthermore,
in our experiments, the training and testing of the XGBoost
model were much faster than other models.

A.3 More Evaluation Results and Figures

Generalization and Calibration of GlucoSense. We as-
sess the generalizability of GlucoSense and the impact of cal-
ibration on the performance. We train the regression model
using the leave-one-out approach. That is, we train the model
on 30 participants and test on the left-out participant. We
repeat this process 31 times, each time testing on a different
participant. We summarize the results in Figure 16, which
show the MARD (blue curve) value in each case. The x-axis
denotes the participant left out. The results show that the
overall performance decreases due to the smaller number
of participants. The performance is notably worse for some
participants, e.g., 31 and 3. Participant 31 is the only black
person in the user study. The model did not see any darker
skin tone during training, which is the main reason behind
the poor performance. Participant 3, on the other hand, has
low glucose values (around 70 mg/dL) compared to the rest
of the participants. Other participants either have glucose
values in the normal range (70-180 mg/dL) for healthy peo-
ple or high glucose values (> 180 mg/dL) for diabetic people.
The training data has very few data points in the low glucose
range. Datasets from larger and more diverse user popula-
tions will be needed to potentially deploy the GlucoSense in
real life.

To partially mitigate the effect of our small datasets, we
recommend a calibration step for GlucoSense. In this case,
GlucoSense is initially fine-tuned on a few data points from
the user. To demonstrate the impact of calibration, we fine-
tuned GlucoSense on two days of the glucose readings from
the left-out participant. Then, we assess the accuracy on
the remaining days after fine-tuning and plot results in Fig-
ure 16 (black dashed curve). The figure shows performance
improvement for all participants, including 31 and 3. We
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| Clark Error Grid (%) ‘ Surv. Error Grid (%) ‘ MARD

| A B D | None Slight Mod. |
XGBoost (ours) | 80.4 19.3 0.3 76.0 23.7 0.3 0.1297
KNN 77.4 22.3 0.3 74.9 24.8 0.3 0.1339
RF 74.9 245 0.5 74.9 25.1 0.0 0.1376
SVR 70.5 29.0 0.5 64.7 35.3 0.0 0.1592
PLSR 57.3 42.1 0.6 51.2 48.8 0.0 0.1890
Neural Network | 78.0 21.5 0.5 74.7 25.1 0.3 0.1380

Table 5: Performance of various machine learning regression models for glucose prediction.
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Figure 17: Clarke error grid analysis of GlucoSense on
(a) RGB-NoIR, (b) Custom sensor. Almost all predicted
glucose values fall in regions A and B (clinically accu-
rate/acceptable).

Predicted Glucose (mg/dL)
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200 300 400
Actual Glucose (mg/dL)
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Figure 18: Consensus error grid overlaid on surveil-
lance error grid for the analysis of GlucoSense on (a)
RGB-NoIR, (b) Custom sensor. All predicted glucose
values fall in regions A and B and within the no (green)
or slight (yellow) risk areas.

| Clark Error Grid (%)

| A B D
RGB+NIR | 80.4 19.3 0.3
RGB+ToF | 78.2 21.5 0.3
RGB-NoIR | 59.9 39.6 0.5
Custom 71.8 27.6 0.6

Table 6: Summary of the results using Clarke error
grid. In all cases, 99% of GlucoSense predictions fall
within zones A and B, which are clinically accurate and
acceptable, respectively.

note that participant 18 observed a relatively smaller perfor-
mance improvement compared to other participants after
calibration. After investigation, we found that most of their
captured image had significant obstructions from the hair
on their hand. Thus, we plan to implement image processing
methods to reduce the impact of hair obstruction to address
such cases.

In summary, the experiments in this section demon-
strate the potential of the calibration step in generalizing
GlucoSense to broader and more diverse user populations.
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