
FlexMark: Adaptive Watermarking Method for Images
Mohammad Amin Arab
School of Computing Science

Simon Fraser University
Burnaby, BC, Canada

Ali Ghorbanpour
School of Computing Science

Simon Fraser University
Burnaby, BC, Canada

Mohamed Hefeeda
School of Computing Science

Simon Fraser University
Burnaby, BC, Canada

ABSTRACT
Most current watermarking methods offer low and fixed capacity,
which means they can only embed small-size watermarks into im-
ages. Additionally, they are typically robust to only a small subset
of the known image transformations (aka distortions) that occur
during the processing, transmission, and storage of images. These
shortcomings limit their adoption in many practical multimedia ap-
plications. We propose FlexMark, a robust and adaptive watermark-
ing method for images, which achieves a better capacity-robustness
trade-off than current methods and can easily be used for different
applications. FlexMark categorizes and models the fundamental
aspects of various image transformations, enabling it to achieve
high accuracy in the presence of many practical transformations.
FlexMark introduces new ideas to further improve the performance,
including double-embedding of the input message, employing self-
attention layers to identify the most suitable regions in the image
to embed the watermark bits, and utilization of a discriminator
to improve the visual quality of watermarked images. In addition,
FlexMark offers a parameter, 𝛼 , to enable users to control the trade-
off between robustness and capacity to meet the requirements of
different applications. We implement FlexMark and assess its per-
formance using datasets commonly used in this domain. Our results
show that FlexMark is robust against a wide range of image trans-
formations, including ones that were never seen during its training,
which shows its generality and practicality. Our results also show
that FlexMark substantially outperforms the closest methods in the
literature in terms of capacity and robustness.

CCS CONCEPTS
• Applied computing→ Computer forensics; • Information sys-
tems → Multimedia information systems.

KEYWORDS
Image Watermarking, Steganography

ACM Reference Format:
Mohammad Amin Arab, Ali Ghorbanpour, and Mohamed Hefeeda. 2024.
FlexMark: Adaptive Watermarking Method for Images. In ACM Multimedia
Systems Conference 2024 (MMSys ’24), April 15–18, 2024, Bari, Italy. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3625468.3647611

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MMSys ’24, April 15–18, 2024, Bari, Italy
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM
ACM ISBN 979-8-4007-0412-3/24/04
https://doi.org/10.1145/3625468.3647611

1 INTRODUCTION
Identifying authentic content and detecting copyright infringe-
ments have become major concerns in recent years, as advance-
ments in machine learning have made creating synthetic/fake con-
tent a relatively easy task. One way to protect the integrity and
ownership of content, e.g., an image, is to embed a special message
into it, called a watermark. In many applications, it is required that
the embedded watermark should not change the visual appearance
of the original image, i.e., it should be imperceptible to humans. The
maximum size of the watermark that is imperceptible is known as
the capacity of the watermarking system.

In addition, multimedia objects such as images go through many
transformations (aka distortions) during the storage and transmis-
sion processes. Some of these transformations are legitimate and
part of normal processing, such as compression. Other transfor-
mations are intentionally (or maliciously) introduced to evade the
detection of illegally copied or manipulated images. Examples of
such transformations include cropping, blurring, and changing the
color space of images. To be of practical use, a watermarking system
should be robust to the various transformations that might occur
on images. Traditional watermarking systems, e.g., [4, 14], embed
the watermark into the least significant bits of images to achieve
imperceptibility. This, however, does not provide robustness against
transformations.

Recent machine-learning-based watermarking methods, e.g.,
[21, 23, 30], embed and spread the watermark across the bits of
an image while meeting a given imperceptibility and visual qual-
ity objective. However, while these methods are more robust to
transformations, they offer limited capacity. Furthermore, current
methods are typically designed and trained on a given watermark
size and a fixed set of transformations. Thus, they cannot easily be
adapted to multimedia applications with different authentication
and data-hiding requirements, which limits their applicability in
practice. For example, some applications, such as copyright protec-
tion [25], broadcast monitoring [12], and content authentication [2],
require maximum robustness to transformations, but they do not
need high capacity. Other applications, e.g., privacy protection in
tele-medicine [22], require hiding as much data as possible within
an image while restricting the allowed transformations on the con-
tent and thus do not need much robustness to transformations. A
third class of applications, e.g., stealthy communications [11], lies
between the aforementioned two extremes and requires a balance
between robustness and capacity. We illustrate the spectrum of
various requirements in Figure 1. We note that hiding significant
amounts of information within images is sometimes referred to as
steganography.

Current methods in the literature either trade off capacity for
robustness or the other way around. For example, the methods

https://orcid.org/0000-0002-9708-0670
https://doi.org/10.1145/3625468.3647611
https://doi.org/10.1145/3625468.3647611

MMSys ’24, April 15–18, 2024, Bari, Italy Arab et al.

More Capacity More Robustness

• Covert
Communication

• Tele-Medicine

• Hidden Communication
in Social Media

• Data Hiding in Digital
Art and Creative Media

• Copyright Protection
• Authentication and

Integrity Verification

Figure 1: Examples of multimedia applications with different
data hiding requirements.

in [8, 18] offer high capacity, but they do not tolerate any trans-
formations. Conversely, the methods in [7, 17, 39] are robust to
several types of transformations, but they can only offer limited
capacity. Further, none of the existing methods can be customized
for different applications.

In this paper, we propose FlexMark, which is a watermarking
method that offers both high capacity and strong robustness to all
practical transformations. FlexMark is also adaptable and can easily
be customized for different multimedia applications. Achieving ro-
bustness, high capacity, and adaptability while maintaining image
quality is a challenging research problem. Robustness, for instance,
requires handling various transformations. However, there are nu-
merous types of transformations, and each comes with different
parameters and configurations. For example, image compression
can be done using various codecs, e.g., JPEG and WebP, and each
codec can produce different levels of quality. Similarly, the degree
of blurriness in Gaussian blur and the kernel size in image filter-
ing can have many different values. Thus, it is hard to enumerate
all possible transformations, let alone create datasets to train a
machine-learning model to handle them. To address this problem,
we divide all transformations into four main groups and model the
fundamental aspects of each group. Then, we train our model only
on a few samples with randomized parameters from each group.

To increase the capacity of the watermarking system without
damaging the visual quality of images, we introduce multiple ideas
in FlexMark, including: (i) a message expansion method that allows
for hiding different amounts of information, (ii) embedding the
expanded information at two different stages of themodel to capture
low- and high-level features, and (iii) using a self-attention module
to identify the best locations in the image to embed the information
and design multiple loss functions. To achieve adaptability, we
design FlexMark with a configurable parameter, 𝛼 , which controls
the trade-off between the capacity and robustness. This allows
FlexMark tomeet the requirements of different applications,without
changing or re-training it.

We implement FlexMark and assess its performance on standard
datasets commonly used in this domain. Our results show that
FlexMark provides consistently high accuracy and robustness to
all practical transformations, including the ones that it did not see
in the training dataset. Specifically, we train FlexMark on only
five transformations and show its accuracy and robustness for
sixteen different transformations. In addition, we compare FlexMark
against the state-of-the-art methods [1, 7, 39], and our results show
that it outperforms them in terms of capacity and robustness.

The main contributions of this paper are as follows:

• We propose a robust, adaptable, and high-capacity water-
marking method that can be used with different applications
without re-training.

• We categorize all practical image transformations and model
their fundamental aspects, which significantly improves the
robustness of watermarking systems without requiring large
datasets for training.

• We present multiple ideas to improve the capacity of wa-
termarking systems without damaging the visual quality of
images, such as expanding and double-embedding the input
message as well as employing a self-attention module to
identify the most suitable regions in the image to embed the
watermark bits.

• We conduct rigorous evaluations with standard datasets to
demonstrate the accuracy and robustness of FlexMark. Our
results also show that FlexMark outperforms the state-of-
the-art methods in the literature.

• We conduct an ablation study to analyze the performance
contribution of each component of FlexMark.

2 BACKGROUND AND RELATEDWORK
Terminologies and Symbols. Traditionally, watermarking and
steganography are considered two different but related research
topics. However, the requirements of modern multimedia applica-
tions and the advent of deep learning have blurred the boundaries
between them. We use the term data hiding to abstractly refer to
all variations of watermarking and steganography methods.

In a data hiding system, a message 𝑀 is embedded (or hidden)
into a cover image 𝐼𝑐𝑜 by an encoder, and the result is referred to as
the encoded image 𝐼𝑒𝑛 . Images 𝐼𝑐𝑜 and 𝐼𝑒𝑛 should be visually indis-
tinguishable by humans. This is referred to as the imperceptibility
requirement of data-hiding systems.

The encoded image 𝐼𝑒𝑛 may then be subjected to various trans-
formations, such as compression, cropping, color changes, and noise
additions during the storage and transmission pipeline. Transfor-
mations are sometimes referred to as distortions or attacks in the
literature. Sample transformations are shown in Figure 2. We de-
note the encoded image after transformations by 𝐼 ′𝑒𝑛 , which is then
transferred to receivers. Receivers use a decoder to retrieve the
embedded message𝑀 from the noised image 𝐼 ′𝑒𝑛 .

The capacity, in bits per pixel (bpp), of a data hiding system
is defined as the maximum size of the message 𝑀 that can be
embedded in the pixels of the cover image 𝐼𝑐𝑜 . We call a data hiding
system robust against a specific transformation if the retrieved
message by the decoder𝑀′ is similar to the originally embedded
message 𝑀 by the encoder, given that the encoded image was
subjected to that specific transformation. The similarity between
𝑀 and 𝑀′ is measured by the number of matching bits in them.
Error-correcting codes are usually used in practice to tolerate a few
bit errors in𝑀′.
Watermarking. Image watermarking is the process of embedding
a message (watermark) into an image. It has many applications,
including content authentication and copyright protection. Content
authentication is used to verify the source and ownership of an
image, as well as to ensure that the image has not been tampered
with. This is especially important for legal and forensic purposes

FlexMark: Adaptive Watermarking Method for Images MMSys ’24, April 15–18, 2024, Bari, Italy

(a) Original Image (b) Saturation (c) Gaussian Blur

(d) Crop-out (e) Gaussian Noise (f) Pixel Elimination

Figure 2: Sample image transformations.

as well as for protecting the image owner’s reputation. Copyright
protection, on the other hand, is used by content creators to track
the use of their images. This helps prevent unauthorized usage of
copyrighted images and ensures owners receive proper credit for
their work [6, 29].

Most of the recent watermarking methods use deep neural net-
works. For example, HiDDeN [39] embeds binary messages of 30
bits into an image of size 128 × 128 pixels, which is a capacity of
around 0.002 bpp. Similarly, the method in [19] has a fixed capacity
of 0.002 bpp. ReDMark [1] uses two deep residual neural networks
for embedding and extracting watermarks, which improves the
capacity and robustness of their system to different types of trans-
formations, including cropping and JPEG compression. FIN [7]
employs invertible neural networks instead of the conventional
encoder/decoder architectures, which enables it to offer a larger
capacity.
Steganography. Image steganography is a method for concealing
information within a cover image. It is used in applications such
as stealthy communications [20] and privacy protection of medical
records [13]. In stealthy communications, an image is used as a
covert channel for discretely exchangingmessages. Since images can
be easily shared over open networks such as the Internet without
attracting suspicion, steganography offers an attractive method for
secretly exchanging information [3]. As an example, a report by the
Federal Bureau of Investigation (FBI) in the United States described
how the Russian Foreign Intelligence Services (SVR) employed
image steganography to transmit messages to some of their agents
by embedding these messages into images and posting them on
open websites [26].

Similar to watermarking, most recent steganography methods
use deep learning. For example, several methods, e.g., [5, 27, 34,
35], use an encoder-decoder structure that is based on the U-Net
model. Other methods, e.g., [9, 28, 32, 33], use GANs (Generative
Adversarial Networks), in which a generator/discriminator duo help
each other to generate the results. Invertible neural networks have
also been used in image steganography [10, 16, 18, 36]. In addition,

multiple works have proposed ideas to improve the robustness
of steganography methods. For example, Tao et al. [31] design a
coefficient adjustment scheme that is robust to JPEG compression.
Zhang et al. [38] utilize a burst error model to improve robustness.
Qian et al. [24] propose a steganography method based on texture
synthesis that can provide robustness against JPEG compression,
which is based on hiding the message bits inside some selected tiles
of each image.
State of the Art Methods Considered for Comparisons. ReD-
Mark [1] and FIN[7] represent the current state of the art. These
methods have been shown to outperform others in the literature.
We consider ReDMark because it is the closest work that provides
variable capacity. We compare against FIN since it is the most recent
method we are aware of and is based on invertible neural networks
that offer high capacity.

3 PROPOSED SOLUTION
In this section, we first summarize the design goals of FlexMark
and how it achieves them. Then, we present an overview of its
operation and main components. This is followed by the details of
each component.

3.1 Design Goals
We summarize the design goals of FlexMark and our approaches to
achieve them in the following:

• Adaptable to different applications. As described in §2, multi-
media applications have diverse data hiding requirements.
Unlike current methods in the literature, FlexMark offers
a knob, 𝛼 , through which it can control the trade-off be-
tween the capacity and robustness, and hence it can easily
be customized to different applications.

• Maintain visual quality. Embedding a message into an image
results in changing some of its pixels, which could introduce
distortions in the encoded image or even visually change it
significantly from the input cover image. To achieve high
visual quality, we design FlexMark as a generative model
with a discriminator that ensures the produced encoded
image is visually as close as possible to the input cover image.

• Robust to various transformations without compromising ca-
pacity. It is crucial for a data hiding system to be robust to
transformations that might occur on the encoded image dur-
ing transmission and storage. Prior methods sacrificed sub-
stantial capacity to partially achieve this robustness. In con-
trast, FlexMark introduces new ideas, e.g., double message
embedding and multiple custom loss functions, to achieve a
better robustness-capacity trade-off.

• Expandable to new transformations. Transformations on im-
ages may evolve with time. For example, newer JPEG 2000
andWebP compression algorithms produce different outputs
than JPEG. Thus, a data hiding system designed to be robust
for JPEG may not function properly for JPEG 2000 andWebP.
Therefore, unlike prior works that may not easily support
new transformations, FlexMark categorizes and models the
fundamental effects of all transformations, which allows it to
be robust against transformations not seen during training.

MMSys ’24, April 15–18, 2024, Bari, Italy Arab et al.

3.2 Overview of FlexMark
Figure 3 presents an overview of FlexMark, which has multiple deep
neural network models colored green. All components are trained
together, end-to-end. FlexMark presents multiple new ideas beyond
prior works, e.g., [1, 7, 39], including efficient modeling of diverse
image transformations, double-embedding of the input message
to increase robustness, a flexible message expansion method that
allows different capacities, and new designs of the encoder and
decoder neural network models. After training, FlexMark functions
as follows. A content creator embeds a message 𝑀 into a cover
image 𝐼𝑐𝑜 using the Encoder, which is a deep neural network model
(described in §3.3). The Encoder operation is controlled by the
parameter 𝛽 . Before embedding, the input message𝑀 ∈ {0, 1}𝐷 is
expanded to be the same dimensions as the cover image, which are
𝐻×𝑊 ×3. The expandedmessage is referred to as 𝐼𝑀 . This expansion
process is controlled by the parameter 𝛼 . The two parameters 𝛼
and 𝛽 control the trade-off between the capacity of the data hiding
system, the level of robustness to transformations, and the visual
quality of the produced cover images. When a user receives an
image with an embedded message, it uses the Decoder to retrieve
this message.

The encoded image 𝐼𝑒𝑛 will likely be subjected to various trans-
formations before it arrives at the receiver. This means that the
Decoder should be able to recover the embedded message even
in the presence of transformations. To achieve this, we model the
effects of different transformations. There are many possible trans-
formations, and each can come with different strengths and param-
eters. For example, the quality level used in compression and the
kernel size of the image blurring filter can each have many different
values. This can lead to numerous combinations of transformations,
which are not possible to enumerate and train the model on. To
address this problem, we categorize all transformations into four
main classes. We then model only the essential characteristics of
these classes and train the model on them. This enables our model
to generalize to different transformations, including the ones that
were never seen during training.

In addition, some of the transformations, e.g., adding Gaussian
noise to the encoded image, are differentiable and hence can easily
be added to the training loop of the whole model, while others, e.g.,
JPEG compression, are not differentiable. We design and pre-train a
neural network model for non-differentiable transformations. §3.4
presents the details of modeling the impact of transformations.

Embedding a message𝑀 into the cover image could introduce
visual artifacts. Further, transformations of the encoded image could
change bits of the embedded message. We design multiple loss
functions to maximize the visual quality of the encoded image and
the accuracy of the retrieved message𝑀′, as detailed in §3.5.

3.3 Design of the Encoder and Decoder
Design of the Encoder. The Encoder is a deep neural network
model that embeds the message 𝑀 into the cover image 𝐼𝑐𝑜 .𝑀 is
first expanded to the same dimensions of 𝐼𝑐𝑜 , which we then refer to
as 𝐼𝑀 . As described later, this message expansion is controlled by 𝛼 .
Inspired by the U-NET [27] structure, we design the Encoder to have
a contracting path and an expansive path. During the contracting
path, low-level features are extracted until the feature maps are

Compression
Filter

Encoder

Message
Expansion Cover

Image

Transformed
Image

D
ec
od
er

Message M

Encoded
Image

Message M'

Discriminator

Pixel
Color

Transformations

Figure 3: Overview of FlexMark.

distilled into a small cube of data. Then, the high-level features are
extracted during the expansive path.

The design of the Encoder allows it to provide robustness to
various transformations. This is because some transformations, e.g.,
additive noise, affect high-level features while others, e.g., blurring,
distort low-level features. To further improve the robustness of
FlexMark to transformations that could affect the high- and/or
low-level features, the Encoder embeds the input message twice at
different locations.

The input to the Encoder is the concatenation of 𝐼𝑀 and 𝐼𝑐𝑜 . 𝐼𝑐𝑜
is concatenated with 𝐼𝑀 along the channel dimension to create a
six-channel 3-D cube of shape 𝐻 ×𝑊 × 6. This cube goes through
two layers of convolution, batch normalization, and ReLU. Then,
the contraction starts. During each step of contraction, a skip con-
nection is added to the corresponding layer in the expansion stage.
Skip connections preserve the gradient signal by allowing it to
bypass some layers, which improves the training efficiency of the
network. During the expansive path, we add a weighted version of
the expanded message to the feature maps to preserve the hidden
message in high-level features of the generated image, which is
given by:

𝐼𝐿−1 = 𝐼𝐿−2 + 𝛽 ∗ 𝐼𝑀 , (1)

where 𝐿 is the number of hidden layers in the encoder, and 𝛽 is the
factor controlling the trade-off between visual quality and robust-
ness. Higher 𝛽 values make 𝐼𝑀 easier to recover by the Decoder,
i.e., higher robustness, but they reduce the visual quality. Lower
𝛽 values result in higher-quality images, but they make it harder
for the Decoder to retrieve the embedded message. We conducted
experiments to analyze the impact of 𝛽 and determine the most suit-
able value to optimize the performance of FlexMark. Specifically,
we trained FlexMark on different values of 𝛽 between 0 and 0.15,
and measured the visual quality (quantified by PSNR and SSIM of
the encoded image) and the bit accuracy of the retrieved message.
Our results showed that the bit accuracy did not improve for 𝛽
values greater than 0.01, while the visual quality continued to drop
as we increased 𝛽 . Thus, we set 𝛽 = 0.01 for all of our experiments

FlexMark: Adaptive Watermarking Method for Images MMSys ’24, April 15–18, 2024, Bari, Italy

Downsample

Self-Attention

Upsample

[I co
 , I

M
] Skip

Connection

Convolution

Figure 4: Design of the Encoder in FlexMark. Key design
aspects include: (i) using self-attention to capture the depen-
dencies across image regions and (ii) double-embedding the
input message to improve the robustness to transformations.

in this paper. In addition, the Encoder uses the self-attention mech-
anism [37] to improve the performance of our design. Self-attention
is complementary to the structure of the encoder. It models the
multi-level, long-range dependencies that usually exist across the
various image regions. Thus, it allows the network to explore areas
further than the scope of common convolution layers to find the
most suitable locations to embed the message, helping to achieve
one of the main objectives of data-hiding systems, which is im-
perceptibility. The final activation layer of the encoder is a TanH
function.
Message Expansion.We elaborate on the process of expanding the
message𝑀 into a format suitable for embedding within the cover
image 𝐼𝑐𝑜 , characterized by dimensions 𝐻 ×𝑊 × 3. Our design aims
to offer an adaptive balance between the robustness and capacity
of the watermarking system, a balance regulated by the parameter
𝛼 .

The message 𝑀 is expanded into an image referred to as 𝐼𝑀 ,
which has the same dimensions as 𝐼𝑐𝑜 . Specifically, 𝐼𝑀 is logically
partitioned into blocks, with each block carrying a single bit of
information from𝑀 . The block size is denoted by𝑤 × ℎ, where𝑤
and ℎ are determined by the dimensions of 𝐼𝑐𝑜 and 𝛼 . We define 𝛼
as the square root of the area of the blocks: 𝛼 =

√
𝑤 × ℎ, where𝑤

and ℎ range from 0 to𝑊 and 𝐻 , respectively. Notice that a larger 𝛼
corresponds to larger blocks and, as a result, fewer number of blocks
within 𝐼𝑐𝑜 . Since only one bit is embedded in each block, the capacity
is given by 𝑊 ×𝐻

𝛼2 bits. Increasing the number of blocks increases the
system’s capacity, but it makes it harder for the decoder to extract
the secret bit from a smaller area, especially in the presence of
distortions. Thus, the 𝛼 parameter plays a crucial role in controlling
the trade-off between system robustness and capacity.

We illustrate the message expansion process in Figure 5 for a
small message of 4 bits expanded into a cover image of size 128×128,
which is divided into 4 blocks each of size 64 × 64. 𝛼 is set to 64 in
this case. The figure also shows a table of some possible values of 𝛼
and their corresponding block sizes. As the figure shows, each bit
of the input message is first padded with 7 random bits to form a

1 10 0

0

0

0

0

000

0

0

0

150

1

1

1

1

1

1

0

0

0

0

0

0

1

1

1

1

1

1

Message: 1001

37 22 142

150 37

22 142

150 37

22 142

37 37 37

37 37

37 37

37 37 37 37

150150150

150150

150150

150150150150

222222

2222

2222

22222222

142 142 142

142 142

142 142

142 142 142 142

Redundant
Bits

Message
Bits

Pixel
Values

Grayscale
Image 2*2

Grayscale
Image 64*64

... ...

... ...

Block
Shape

Message
Length

128 128×128 1

64√2
128×64

 or

64×128
2

64 64×64 4

... ...

1 1×1 16384

Figure 5: Message expansion in FlexMark. Various values of
𝛼 and their corresponding block andmessage sizes are shown
on the left. The illustration on the right is for a message size
of 4 bits and block size of 64 × 64. Each bit of the message is
padded with random bits to create an 8-bit pixel. Pixels are
then duplicated to form 64×64 blocks, which are concatenated
together to form the expanded message 𝐼𝑀 .

gray-scale pixel. Then, each pixel value is duplicated to fill a block
of size 64 × 64.
Robustness via Double Embedding.We note that, unlike most
prior works in the literature, we expand the message to create a
secret image before we concatenate it with the cover image. So,
instead of combining the message with the cover image only in the
hidden layers of the Encoder, we also concatenate the expanded
secret message with the cover image before feeding it to the En-
coder. This double embedding mechanism is one of the reasons
for the robustness of FlexMark against a wide range of transfor-
mations. This is because double embedding inserts the message
both in the deep and shallow layers of the network. Since most
transformations affect one or a few features of the encoded image,
FlexMark can retrieve the message even in the presence of several
transformations.
Capacity-Robustness Adaptation. FlexMark uses 𝛼 to control
the trade-off between capacity and robustness. This flexibility al-
lows FlexMark to meet the data-hiding requirements of different
applications across many applications. For example, in scenarios
such as covert communications or tele-medicine, visual quality and
capacity are the most important factors. To meet these require-
ments, FlexMark uses large 𝛼 . Smaller 𝛼 corresponds to smaller
block sizes, which means higher data-hiding capacities. However,
smaller blocks make the decoder more susceptible to distortions
and as a result, make the system less robust. On the contrary, for
applications such as copyright protection or integrity verification,
robustness is the most important aspect. Thus, FlexMark sets 𝛼

MMSys ’24, April 15–18, 2024, Bari, Italy Arab et al.

Decoder
1

1

0

0 0

000

0

0

0

00 0

111

11 1

00 0

00 0

111

111

Message
Bits

Redundant Bits

U
psam

pling

Partitioning

Figure 6: The operation of the Decoder in FlexMark. The illustration is for an image embedded with 4 bits of data (1001). First,
the watermarked image is partitioned into blocks. Each partition is upsampled to the original image size. Then, the Decoder
extracts one bit of information alongside the padding bits from each block.

to smaller values for higher robustness in such applications. Fig-
ure 1 illustrates a spectrum of applications that can be effectively
supported by FlexMark.
Design of the Decoder. The Decoder’s structure is similar to
the first half of the encoder. Figure 6 shows the decoding phase
of FlexMark. The purpose of the Decoder is to extract the secret
message from each block of the encoded image that hides an 8-bit
message chunk. Each block contains 1 bit of information and 7 bits
of random padding, ensuring the independence of the system from
the least significant values in the pixel as they are vulnerable to
distortions. The Decoder output’s layer consists of 8 nodes. The
output is an 8-bit binary code, which has to equal the 8-bit of
the corresponding one bit of the secret message and seven bits of
padding. Since our system is adaptable to different message sizes,
the Decoder needs to be able to handle different block sizes. We
solve this issue by upsampling all block sizes to the original image
size before feeding it into the Decoder. Interpolating smaller blocks
to the largest size possible allows FlexMark to undergo training just
once, accommodating different message sizes.

3.4 Modeling Image Transformations
Transformations are changes that occur on encoded images during
storage or transmission. These transformations can be intentional
or malicious to evade the detection mechanism in a watermarking
system. In this case, they are referred to as attacks. Transformations
can also occur because of normal processing, e.g., compression, or
noise on the transmission channel, e.g., Gaussian noise. In the
latter case, transformations are sometimes referred to as distortions.
Example image transformations are shown in Figure 2.

We model the impact of transformations with the goal of effi-
ciently and robustly covering the wide range of existing transforma-
tions in the literature as well as new ones that may be introduced
in the future. To achieve this goal, we focus on modeling the funda-
mental aspects of transformations. That is, we model how various
transformations could potentially affect an image. For example,
some transformations affect all pixels in the image, e.g., Gaussian
Blur, while others only alter a fraction of the pixels, e.g., pixel elim-
ination. Furthermore, some transformations involve the frequency
domain, e.g., compression, and others impact the color space of the
image, e.g., changing brightness.

We propose dividing all image transformations into four cate-
gories: Compression, Image Filtering, Color Changes, and Local
Pixel Changes. We describe each category in the following.
Compression. Compression is one of the most important trans-
formations that occur in the transmission/storage pipeline. Most
compression methods involve multiple steps, including color con-
version, sub-sampling, block-processing, domain transformation,
quantization, and length encoding. Some of these steps, e.g., quanti-
zation, are non-differentiable, which makes the whole compression
transformation non-differentiable. Thus, it cannot be implemented
in the neural network pipeline, as this would stop the gradient
propagation.

To address this problem, we design a neural network model to
approximate the effects of different compression methods and non-
differentiable transformations in general. The model has 23 layers
and is structured as a U-Net [27]. The contracting/expansive paths
allow the model to learn subtle differences between compressed
and non-compressed images.

We train the transformation approximation model using pairs of
images, with and without the considered non-differentiable trans-
formation(s). Once this model is trained, it is included in the pipeline
of training FlexMark as shown in Figure 3.

The performance of the proposed transformation approximation
model is summarized in Table 1, where we show the differences (in
terms of L1 and L2 losses) between images compressed by actual
WebP and JPEG2000 encoders and the same images processed by
our model without any compression. These results are averaged
over 5,000 images, and they show that the compressed images are
very similar to the approximated ones.

JPEG WebP JPEG 2000
𝐿1 Loss Value 0.007 0.011 0.006
𝐿2 Loss Value 0.00013 0.00025 0.00010

Table 1: Performance of the proposed neural network model
to approximate non-differentiable transformations such as
JPEG, WebP, and JPEG2000 compression. 𝐿1 and 𝐿2 are com-
puted between each compressed and its approximated one.

Using the proposed neural networkmodel, various non-differentiable
transformations and compression methods can be handled, includ-
ing the following:

FlexMark: Adaptive Watermarking Method for Images MMSys ’24, April 15–18, 2024, Bari, Italy

• *JPEG: One of the most widely used compression.
• JPEG 2000: Uses the discrete wavelet transform instead of
the discrete cosine transform in JPEG.

• WebP: Introduced by Google for web page images, and it
makes multiple changes to the de-quantization, prediction,
and length encoding steps of JPEG.

• Other non-differentiable transformations.

We note that transformations marked by * are the ones used in
the training of our watermarking method.
Image Filtering. Another common group of transformations can
be collectively modeled by image filtering. Generally, a filter sweeps
the image and convolves it with a kernel. Image filtering usually
affects all pixels in the image, and it can be implemented using dif-
ferentiable functions. Examples that can be handled by this category
include the following:

• *Gaussian Blur: Pixels close to the center of the kernel are
given higher weights than those away from the center, ac-
cording to a Gaussian function.

• *Gaussian Noise: Adds random values to the pixels with a
Gaussian probability density function. It does not have a
kernel, but it models various noises that can be added to the
image.

• Average Filter: Has a kernel with the constant value of 1/(𝑘×
𝑘), where 𝑘 is the kernel size.

• Other transformations that change most pixels in an image
using filter-like functions.

Color Changes. This group models changes in the color space of
images, which affects all pixels in an image and has differentiable
functions. Examples that can be handled by this category include
the following:

• Brightness: Adjusts the overall lightness in an image.
• Contrast: Changes the difference between the darkest and
lightest colors in an image.

• Color Intensity: Modifies the color balance of an image.
• Sharpness: Changes the sharpness/blurriness of an image.
• Other transformations that manipulate various aspects of
the color channels.

Local Pixel Changes. Unlike previous transformations, this group
models local changes to a subset of the pixels in an image. However,
similar to the Color and Image Filtering categories, transformations
in this category also have differentiable functions. Examples that
can be handled by this category include the following:

• *Cropout: Removes a square of random size from an image.
• *Dropout: Drops a fraction of bits from an encoded image.
• Pixel Elimination: Removes some rows or columns from an
image.

• Other transformations that affect a subset of pixels.

Summary. The above transformations have been grouped based
on their effects on images. Other and/or future transformations can
easily be modeled by one of these categories or a combination of
them. Thus, by training FlexMark on representative transforma-
tion samples, along with randomization in their parameters, it can
generalize to a wide variety of transformations, including ones that
were never seen during training.

3.5 Loss Functions and Model Training
Loss Functions. FlexMark includes three loss functions. The first
one is the Mean Absolute Error (MAE), which minimizes the differ-
ences between the cover and encoded images and is given by:

𝐿𝑖𝑚𝑔 = | (𝐼𝑒𝑛 𝑗
− 𝐼𝑐𝑜 𝑗

) |. (2)

To further improve the visual quality, we use ideas from genera-
tive adversarial networks (GANs). Specifically, we design a Discrim-
inator to differentiate between images with and without embedded
messages, similar in nature to prior works that utilize discrimina-
tors to differentiate between real and fake images. Using the outputs
from the Discriminator and Encoder, we compute an Adversarial
Minimax loss as:

𝐿𝑎𝑑𝑣 =
1
2
log𝐷𝑖𝑠 (𝐼𝑐𝑜) −

1
2
log𝐷𝑖𝑠 (𝐸𝑛𝑐 (𝐼𝑐𝑜 , 𝐼𝑀)). (3)

Finally, to ensure that the retrieved message 𝑀′ is as close as
possible to the original message 𝑀 , we include the Binary Cross
Entropy between 𝑀 and 𝑀′ as the third loss function, which is
given by:

𝐿𝑀 = (𝑦𝑖 log(𝑦𝑖) + (1 − 𝑦𝑖) log(1 − 𝑦𝑖)), (4)

where 𝑦𝑖 is the 𝑖𝑡ℎ bit in𝑀 , and 𝑦𝑖 is the 𝑖𝑡ℎ bit in𝑀′.
The total loss function is given by:

𝐿𝑡𝑜𝑡𝑎𝑙 = E𝐼𝑐𝑜 ,𝑀 [(1 − 𝜆1 − 𝜆2)𝐿𝑎𝑑𝑣 + 𝜆1𝐿𝑖𝑚𝑔 + 𝜆2𝐿𝑀], (5)

where 𝜆1, 𝜆2 are hyper-parameters tuned experimentally. 𝜆1 is set
to 0.7 and 𝜆2 is set to 0.29 in our experiments.
End-to-end Training of the Model. We train FlexMark end to
end. As shown in Figure 3, FlexMark consists of multiple trainable
and non-trainable modules. The input image and message first go
through the Encoder. The output, the encoded image, then goes
through both the Discriminator and one of the transformations,
randomly chosen. A differentiable transformation is implemented
using multiple layers, whereas a non-differentiable one is imple-
mented using our pre-trained neural network model approximating
the non-differentiable transformations, which will pass the gradient
through, but it is not trainable by itself.

Finally, the Decoder will extract the retrieved message from the
transformed image. In each iteration, the encoded image will go
through the Discriminator, which tries to distinguish whether the
image is encoded or not. Over time, as the quality of the encoded
image increases, it becomes more difficult for the Discriminator
to recognize the encoded image. The objective is to make sure the
encoded image is similar to the original cover image. Also, the
retrieved message should be close to the embedded message.

After the training process is complete, the Encoder model is used
to embed messages in images, and the Decoder model is used to
extract the embedded messages.

4 EVALUATION
We analyze the performance of FlexMark and compare it against the
closest systems in the literature [1, 7] using their publicly available
open-source codes. We also conduct an ablation study to analyze
the impact of different components of FlexMark.

MMSys ’24, April 15–18, 2024, Bari, Italy Arab et al.

Transformation Parameters
JPEG Compression Quality Factor = [0–100]; 80
Gaussian Blur 𝜎=[1,2,3]
CropOut Ratio=[0–1][(0.2,0.4)]
DropOut Probability=[0.1,0.2,0.3]
Gaussian Noise 𝜎=[0.01,0.02,0.03]
Pixel Elimination Ratio=[0.05,0.1,0.15]
Saturation Factor = [0.5,1,1.5]
Brightness Factor = [0.5,1,1.5]
Contrast Factor = [0.55,0.66,0.77]
Sharpness Factor = [0.5,1,1.5]
Color Intensity Factor = [0.5,1,1.5]
Average Filter Kernel = [3,5,7]
Median Filter Kernel = [3,5,7]

Table 2: The range of parameter values for each transforma-
tion. Bold values are used in testing, while other values are
used in training the considered data-hiding methods.

4.1 Setup and Dataset
Dataset and Model Training. Similar to prior works [1, 7, 39],
we use the COCO dataset [15], which has a large and diverse set
of images. We randomly select 15,500 images: 15,000 for training
and 500 for testing. We resize and crop the images to 128 × 128. We
train the model for 50 epochs. The batch size for training is 16. We
use the Adam optimizer with 𝛽1 = 0.5, 𝛽2 = 0.999, and a learning
rate of 0.0002.

We note that FlexMark is trained only once on different message
sizes and a few representative transformations. During inference,
we control the trade-off between capacity and robustness using 𝛼 .
This is to demonstrate the flexibility and applicability of FlexMark
to different multimedia applications.
Transformation Parameters. The parameter values of each trans-
formation used in our evaluation are listed in Table 2, which helps in
reproducing our results. During training, we randomly select values
in the listed ranges for each iteration. We highlight the parameter
values used in the test dataset in bold font.
Performance Metrics.We consider two main metrics, which were
also used in prior works [1, 7]: Capacity and Robustness. Capacity
is the number of bits that can be hidden inside a pixel (measured in
bits); it is given by𝐶 = |𝑀 |. Robustness is the bit retrieval accuracy,
which is the number of matching bits between𝑀′ and𝑀 divided
by |𝑀 |. As mentioned before, we set 𝛽 = 0.01 in all experiments.
This was done to ensure the visual quality (in terms of PSNR) of
the encoded images is at least 30 dB.

4.2 Performance of FlexMark
Accuracy andRobustness.Weanalyze the robustness of FlexMark
against most practical transformations that we are aware of to
demonstrate its generality. Specifically, we train FlexMark on only
five transformations chosen from different categories, which are:
Gaussian Noise, Cropout, Gaussian Blur, JPEG Compression, and
Dropout. During training, each distortion is assigned a standardized
parameter, e.g., a quality factor of 80 for JPEG Compression. The
system performance is initially tested on these five transformations

91 97 91 95 96

JP
EG

C
ro
pO

ut

D
ro
pO

ut

G
au

ss
ia
n
B
lu
r

G
au

ss
ia
n
N
oi
se

(a)

93 99 92 98 89

JP
EG

C
ro
pO

ut

D
ro
pO

ut

G
au

ss
ia
n
B
lu
r

G
au

ss
ia
n
N
oi
se

(b)

88 98 100 99 99 95 96 99 99 97

Sa
tu
ra
ti
on

B
ri
gh

tn
es
s

C
on

tr
as
t

C
ol
or

In
t.

Sh
ar
pn

es
s

JP
EG

20
00

W
eb

P

M
ed

ia
n
Fi
lt
er

A
ve

ra
ge

Fi
lt
er

Pi
xe

lE
li
m
in
at
io
n

(c)

Figure 7: Robustness of FlexMark against: (a) diverse trans-
formations, (b) different parameter values of the transforma-
tions, and (c) transformations never seen during training.

using the same parameters employed during training, as depicted
in Figure 7a.

Subsequently, we introduce variability by randomly selecting
alternative parameters for the aforementioned distortions. The
outcomes of these randomized scenarios are illustrated in Figure 7b.
We then extend our evaluation to assess the robustness of FlexMark
to previously unseen transformations. In this phase, the parameters
are chosen randomly. Figure 7c demonstrates that FlexMark exhibits
robustness even against distortions that it was not exposed to during
training and is able to retrieve embedded watermarks with high
accuracy.
Adaptability. We analyze the adaptability of FlexMark and the
impact of different 𝛼 values on the performance. 𝛼 controls the
trade-off between capacity and robustness. It ranges from 0 to√
𝐻 ×𝑊 . Smaller 𝛼 values correspond to smaller blocks and higher

capacity. Smaller blocks need to be up-sampled to the original image
size and go through the decoder for message extraction.

In this experiment, we vary the capacity from 4 to 1024 bits.
We compute the robustness as the average accuracy across all dis-
tortions. We plot the average robustness in Figure 8. The figure
also shows the error bars, which are computed as the mean ± the
standard deviation. The results indicate that FlexMark is highly
accurate in lower bit capacities. This makes FlexMark suitable for
applications that need high robustness such as copyright protection
and media authentication. As the capacity increases, the robustness
decreases, which makes FlexMark suitable for capacity-demanding
applications such as covert communication and tele-medicine.
Complexity Analysis and and System Requirements. The
Encoder of FlexMark has about 78 million trainable parameters,
whereas its Decoder has about 39 million. Recall that FlexMark is

FlexMark: Adaptive Watermarking Method for Images MMSys ’24, April 15–18, 2024, Bari, Italy

0 4 16 64 256 1024

70

75

80

85

90

95

100

Capacity [bits]

Ro
bu

st
ne
ss
[%
]

Figure 8: Adaptability of FlexMark, which allows it to control
the trade-off between the robustness and capacity to meet
the requirements of different applications.

Message Length (bits) Time (sec)

Message
Embedding

16 0.08
64 0.08
256 0.10

Message
Extraction

16 0.37
64 1.43
256 5.7

Table 3: Execution times for each phase in FlexMark.

trained end to end, meaning that both the Encoder and Decoder
are trained together. Training FlexMark requires a single GPU with
at least 10 GB of memory. In all of our experiments, we used an
NVIDIA Geforce RTX 2080 Ti GPU with 12 GB of memory. On this
GPU, training of FlexMark took about 30 hours.

After training, the whole model requires about 300 MB of disk
space. The trained Encoder model is used to embed messages in
images, and the trained Decoder model is used to extract them.

We measured the average time to embed and extract messages
of different sizes, and the results are reported in Table 3. These
average times were computed across the 500 images in the testing
dataset. As shown in the table, FlexMark takes less than 0.1 sec
to embed a message, and it takes up to a few seconds to extract a
message. The table also shows that longer messages need more time
for extraction. This is because of two reasons. First, the decoder
needs to extract messages block by block to extract bits one by one.
Thus, if we have a 256-bit message, the decoder is called 256 times.
Second, before decoding, the blocks need to be upsampled to the
original image size. This upsampling again needs to be done 256
times for a message of size 256. These two reasons make message
extraction more time-consuming than message embedding.

4.3 Comparison against State-of-the-Art
We compare FlexMark against the state-of-the-art methods for ro-
bust data hiding, which are ReDMark [1] and FIN [7]. To ensure fair
comparisons, we tune these methods on our dataset. Additionally,
since the capacity in FIN[7] is not adaptable, we train their network
for each capacity separately.
Robustness. For fair comparisons, we train all methods on the
same transformations: Gaussian Noise, Cropout, Gaussian Blur,
JPEG compression, and Dropout. We also configure all methods to
produce the same visual quality with PSNR of at least 30 dB.

We assess the robustness of the three data hidingmethods against
transformations that they have been trained on, as well as on
transformations that were not included in the training. Robust-
ness against unseen transformations is crucial, and it shows the
practicality of the method. Specifically, we evaluate the robustness
against 15 different transformations: 5 were seen during training
and 10 were not. The results are summarized in Figure 9, which are
color-coded to facilitate comparisons: darker cells mean higher ac-
curacy. The number in each cell of the table represents the average
accuracy for the considered watermarking method and message
size (in the corresponding row) and applied transformation (in the
corresponding column). Notice that each cell in the table represents
a whole separate experiment, thus, this color-coded table presents
the results of numerous experiments in a compact form.

Figure 9 shows that, unlike the state-of-the-art data hiding meth-
ods, FlexMark consistently results in high accuracy across all trans-
formations, including the ones that were not included in the training
dataset. This is because FlexMark is designed to consider the funda-
mental aspects of all different transformations, as described in §3.4,
and it does not need to be fine-tuned on specific transformations.
This is unlike FIN and ReDMark which were tuned on a specific set
of transformations, which made them fail for some transformations
such as Gaussian Blur and Median Filter.

We note that some transformations only affect scattered pixels,
like DropOut, while others, such as Gaussian blur, affect the entire
image. Various components of FlexMark, e.g., message expansion,
double embedding, and self-attention, enable it to extract messages
even in the presence of distortions. This makes FlexMark more
robust than other methods, which fail in similar situations.
Variable Capacity. We compare the capacity of the considered
data-hiding methods. Both FIN and ReDMark can support messages
of various sizes. For images of size 128 × 128 pixels, the maximum
message size for both of them is 256 bits. The results in Figure 9
show that FlexMark substantially outperforms ReDMark and FIN,
by offering much higher bit accuracy in each capacity level and con-
sistently providing higher robustness against all transformations,
especially for large message sizes and unseen transformations.

4.4 Ablation Study
We assess the performance contribution of various components
of FlexMark, including the transformation module, double embed-
ding of the input message, and using a discriminator in the loss
function. We start with a base model without any of the aforemen-
tioned components. Then, we add components incrementally and
measure their impact. The results are summarized in Figure 10,

MMSys ’24, April 15–18, 2024, Bari, Italy Arab et al.

85 97 70 50 100 83 96 95 95 100 100 100 50 50 92

74 99 97 55 100 85 79 85 84 90 69 69 55 70 100

91 97 91 95 96 86 93 99 97 97 88 94 96 98 94

81 97 68 50 100 81 94 94 93 100 98 100 50 50 90

70 99 96 55 100 83 77 85 82 87 68 69 55 59 100

87 96 91 83 94 82 94 97 97 98 81 87 91 97 95

62 83 63 52 97 76 91 90 91 91 96 80 50 50 87

69 99 94 50 100 80 77 84 78 84 68 69 54 50 100

85 95 88 87 81 80 77 91 97 96 81 80 83 93 95

Method

M
es
sa
ge

Le
ng

th

JP
EG

C
ro
pO

ut

D
ro
pO

ut

G
au

ss
ia
n
B
lu
r

G
au

ss
ia
n
N
oi
se

Sa
tu
ra
ti
on

B
ri
gh

tn
es
s

C
on

tr
as
t

C
ol
or

In
t.

Sh
ar
pn

es
s

JP
EG

20
00

W
eb

P

M
ed

ia
n
Fi
lt
er

A
ve

ra
ge

Fi
lt
er

Pi
xe

lE
li
m
in
at
io
n

ReDMark [1]

FIN [7]

FlexMark (ours)

ReDMark [1]

FIN [7]

FlexMark (ours)

ReDMark [1]

FIN [7]

FlexMark (ours)

16

64

256

Figure 9: Comparing FlexMark against state-of-the-art, ReDMark [1] and FIN [7], on 15 transformations: the left 5 transforma-
tions were seen during training and the other 10 were not. Darker colors mean higher accuracy. White color represents no
accuracy, i.e., totally random results. Three message lengths (16, 64, and 256 bits) are considered.

for three sample transformations: Gaussian Noise, JPEG Compres-
sion, and Gaussian Blur. The results indicate that our base model
already offers some resilience to different transformations, partly
attributed to our message expansion method. The transformation
module notably has the greatest impact on improving the bit accu-
racy because it helps the model become familiar with distortions
during training. The discriminator loss comes next, making sure
that the protected images stay similar to the original ones. Finally,
the double embedding of the input message further improves the
bit accuracy, because it allows the neural network model to con-
sider the characteristics of the message and the cover image at two
different locations: in the early layers where low-level features are
considered, and in later layers where conceptual and high-level
features are emphasized.

5 CONCLUSIONS
We presented FlexMark, an adaptable, high-capacity, and robust
watermarking method for images. FlexMark can be customized for
different applications by controlling its parameter, 𝛼 . The robust-
ness of FlexMark is achieved by modeling the essential aspects of
image transformations and training the model on them, whereas the
high capacity is enabled by its Encoder design that utilizes multiple
ideas such as double embedding of the input message. Through
extensive experiments, we showed that FlexMark is adaptable and
can achieve high accuracy and robustness against a large variety of
transformations such as lossy compression, image filtering, pixel
eliminations, and color changes. In addition, we demonstrated that

GN JPG GB
70

80

90

Transformations

Bi
tA

cc
ur
ac
y

Base
DE
D
T

Figure 10: Ablation study. Performance impact of various
components: Double Embedding (DE), using Discriminator in
the loss function (D), and transformationmodule (T). Results
are shown for three sample transformations: Gaussian Noise
(GN), JPEG Compression (JPG), and Gaussian Blur (GB).

FlexMark offers robustness against many transformations not seen
during training, which makes it more practical than current meth-
ods in the literature. We conducted an ablation study to analyze
the performance contributions of various components of FlexMark.
Finally, we showed that FlexMark outperforms the closest methods
in the literature in terms of robustness and capacity, while offering
adaptability to different applications.

FlexMark: Adaptive Watermarking Method for Images MMSys ’24, April 15–18, 2024, Bari, Italy

REFERENCES
[1] Mahdi Ahmadi, Alireza Norouzi, Nader Karimi, Shadrokh Samavi, and Ali Emami.

2020. ReDMark: Framework for residual diffusion watermarking based on deep
networks. Expert Systems with Applications 146 (2020), 113157.

[2] Hazem Munawer Al-Otum and Mouaz Ibrahim. 2021. Color image watermarking
for content authentication and self-restoration applications based on a dual-
domain approach. Multimedia Tools and Applications 80, 8 (2021), 11739–11764.

[3] Lori Cameron. 2017. Hackers’ latest weapon: Steganography: IEEE Computer
Society. https://www.computer.org/publications/tech-news/research/how-
steganography-works

[4] Deepshikha Chopra, Preeti Gupta, Gaur Sanjay, and Anil Gupta. 2012. LSB based
digital image watermarking for gray scale image. IOSR journal of Computer
Engineering 6, 1 (2012), 36–41.

[5] Xintao Duan, Kai Jia, Baoxia Li, Daidou Guo, En Zhang, and Chuan Qin. 2019.
Reversible image steganography scheme based on a U-Net structure. IEEE Access
7 (2019), 9314–9323.

[6] Ersin Elbasi and Volkan Kaya. 2018. Robust medical image watermarking using
frequency domain and least significant bits algorithms. In 2018 International
Conference on Computing Sciences and Engineering (ICCSE). IEEE, 1–5.

[7] Han Fang, Yupeng Qiu, Kejiang Chen, Jiyi Zhang, Weiming Zhang, and Ee-Chien
Chang. 2023. Flow-Based Robust Watermarking with Invertible Noise Layer
for Black-Box Distortions. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 37. 5054–5061.

[8] Zhenyu Guan, Junpeng Jing, Xin Deng, Mai Xu, Lai Jiang, Zhou Zhang, and
Yipeng Li. 2022. DeepMIH: Deep Invertible Network for Multiple Image Hiding.
IEEE Transactions on Pattern Analysis and Machine Intelligence (2022).

[9] Daniel Jiwoong Im, Chris Dongjoo Kim, Hui Jiang, and Roland Memisevic.
2016. Generating images with recurrent adversarial networks. arXiv preprint
arXiv:1602.05110 (2016).

[10] Junpeng Jing, Xin Deng, Mai Xu, Jianyi Wang, and Zhenyu Guan. 2021. HiNet:
deep image hiding by invertible network. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision. 4733–4742.

[11] Inas Jawad Kadhim, Prashan Premaratne, Peter James Vial, and Brendan Halloran.
2019. Comprehensive survey of image steganography: Techniques, Evaluations,
and trends in future research. Neurocomputing 335 (2019), 299–326.

[12] Ton Kalker, Geert Depovere, Jaap Haitsma, and Maurice JJJB Maes. 1999. Video
watermarking system for broadcast monitoring. In Security and Watermarking of
Multimedia contents, Vol. 3657. SPIE, 103–112.

[13] Songul Karakus and Engin Avci. 2020. A new image steganography method with
optimum pixel similarity for data hiding in medical images. Medical Hypotheses
139 (2020), 109691.

[14] N Senthil Kumaran and S Abinaya. 2016. Comparison analysis of digital image
watermarking using DWT and LSB technique. In 2016 International Conference
on Communication and Signal Processing (ICCSP). IEEE, 0448–0451.

[15] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In European conference on computer vision. Springer, 740–755.

[16] Lianshan Liu, Li Tang, and Weimin Zheng. 2022. Lossless Image Steganography
Based on Invertible Neural Networks. Entropy 24, 12 (2022), 1762.

[17] Yang Liu, Mengxi Guo, Jian Zhang, Yuesheng Zhu, and Xiaodong Xie. 2019. A
novel two-stage separable deep learning framework for practical blind water-
marking. In Proceedings of the 27th ACM International conference on multimedia.
1509–1517.

[18] Shao-Ping Lu, Rong Wang, Tao Zhong, and Paul L Rosin. 2021. Large-capacity
image steganography based on invertible neural networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 10816–10825.

[19] Xiyang Luo, Ruohan Zhan, Huiwen Chang, Feng Yang, and Peyman Milanfar.
2020. Distortion agnostic deep watermarking. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 13548–13557.

[20] Pratap Chandra Mandal, Imon Mukherjee, Goutam Paul, and BN Chatterji. 2022.
Digital image steganography: A literature survey. Information Sciences (2022).

[21] Nour Mohamed, Mohammed Baziyad, Tamer Rabie, and Ibrahim Kamel. 2020. L*
a* b* color space high capacity steganography utilizing quad-trees. Multimedia
Tools and Applications 79, 33 (2020), 25089–25113.

[22] Shabir A Parah, Javaid A Sheikh, Farhana Ahad, Nazir A Loan, and GhulamMohi-
uddin Bhat. 2017. Information hiding in medical images: a robust medical image
watermarking system for E-healthcare. Multimedia Tools and Applications 76, 8
(2017), 10599–10633.

[23] Goutam Paul, Sanjoy Kumar Saha, Debanjan Burman, et al. 2020. A PVD based
high capacity steganography algorithm with embedding in non-sequential posi-
tion. Multimedia Tools and Applications 79, 19 (2020), 13449–13479.

[24] Zhenxing Qian, Hang Zhou, Weiming Zhang, and Xinpeng Zhang. 2017. Robust
steganography using texture synthesis. In Advances in Intelligent Information
Hiding and Multimedia Signal Processing. Springer, 25–33.

[25] Arkadip Ray and Somaditya Roy. 2020. Recent trends in image watermarking
techniques for copyright protection: a survey. International Journal of Multimedia
Information Retrieval 9, 4 (2020), 249–270.

[26] Maria L Ricci. 2010. United States Department of Justice. https://www.justice.
gov/sites/default/files/opa/legacy/2010/06/28/062810complaint2.pdf Accessed :
1-1-2023.

[27] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional
networks for biomedical image segmentation. In International Conference on
Medical image computing and computer-assisted intervention. Springer, 234–241.

[28] Haichao Shi, Jing Dong, Wei Wang, Yinlong Qian, and Xiaoyu Zhang. 2017.
SSGAN: secure steganography based on generative adversarial networks. In
Pacific Rim Conference on Multimedia. Springer, 534–544.

[29] Ajib Susanto, EkoHari Rachmawanto, Christy Atika Sari, et al. 2018. A robust non-
blind image watermarking method using 2-level HWT-DCT. In 2018 International
Seminar on Application for Technology of Information and Communication. IEEE,
304–308.

[30] Gandharba Swain. 2019. Very high capacity image steganography technique
using quotient value differencing and LSB substitution. Arabian Journal for
Science and Engineering 44, 4 (2019), 2995–3004.

[31] Jinyuan Tao, Sheng Li, Xinpeng Zhang, and Zichi Wang. 2018. Towards ro-
bust image steganography. IEEE Transactions on Circuits and Systems for Video
Technology 29, 2 (2018), 594–600.

[32] Denis Volkhonskiy, Boris Borisenko, and Evgeny Burnaev. 2016. Generative
adversarial networks for image steganography. (2016).

[33] Denis Volkhonskiy, Ivan Nazarov, and Evgeny Burnaev. 2020. Steganographic
generative adversarial networks. In Twelfth International Conference on Machine
Vision (ICMV 2019), Vol. 11433. International Society for Optics and Photonics,
114333M.

[34] Pin Wu, Yang Yang, and Xiaoqiang Li. 2018. Image-into-image steganography
using deep convolutional network. In Pacific Rim Conference on Multimedia.
Springer, 792–802.

[35] Pin Wu, Yang Yang, and Xiaoqiang Li. 2018. Stegnet: Mega image steganography
capacity with deep convolutional network. Future Internet 10, 6 (2018), 54.

[36] Youmin Xu, Chong Mou, Yujie Hu, Jingfen Xie, and Jian Zhang. 2022. Robust
Invertible Image Steganography. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 7875–7884.

[37] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. 2019. Self-
attention generative adversarial networks. In International conference on machine
learning. PMLR, 7354–7363.

[38] Yi Zhang, Chuan Qin, Weiming Zhang, Fenlin Liu, and Xiangyang Luo. 2018. On
the fault-tolerant performance for a class of robust image steganography. Signal
Processing 146 (2018), 99–111.

[39] Jiren Zhu, Russell Kaplan, Justin Johnson, and Li Fei-Fei. 2018. Hidden: Hiding
data with deep networks. In Proceedings of the European conference on computer
vision (ECCV). 657–672.

https://www.computer.org/publications/tech-news/research/how-steganography-works
https://www.computer.org/publications/tech-news/research/how-steganography-works
https://www.justice.gov/sites/default/files/opa/legacy/2010/06/28/062810complaint2.pdf
https://www.justice.gov/sites/default/files/opa/legacy/2010/06/28/062810complaint2.pdf

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Proposed Solution
	3.1 Design Goals
	3.2 Overview of FlexMark
	3.3 Design of the Encoder and Decoder
	3.4 Modeling Image Transformations
	3.5 Loss Functions and Model Training

	4 Evaluation
	4.1 Setup and Dataset
	4.2 Performance of FlexMark
	4.3 Comparison against State-of-the-Art
	4.4 Ablation Study

	5 Conclusions
	References

