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ABSTRACT

Hyperspectral imaging provides rich information across many

wavelengths of the captured scene, which is useful for many poten-

tial applications such as food quality inspection, medical diagnosis,

material identification, artwork authentication, and crime scene

analysis. However, hyperspectral imaging has not been widely de-

ployed for such indoor applications. In this paper, we address one

of the main challenges stifling this wide adoption, which is the

strict illumination requirements for hyperspectral cameras. Hyper-

spectral cameras require a light source that radiates power across

a wide range of the electromagnetic spectrum. Such light sources

are expensive to setup and operate, and in some cases, they are not

possible to use because they could damage important objects in the

scene. We propose a data-driven method that enables indoor hyper-

spectral imaging using cost-effective and widely available lighting

sources such as LED and fluorescent. These common sources, how-

ever, introduce significant noise in the hyperspectral bands in the

invisible range, which are the most important for the applications.

Our proposed method restores the damaged bands using a carefully-

designed supervised deep-learning model. We conduct an extensive

experimental study to analyze the performance of the proposed

method and compare it against the state-of-the-art using real hy-

perspectral datasets that we have collected. Our results show that

the proposed method outperforms the state-of-the-art across all

considered objective and subjective metrics, and it produces hyper-

spectral bands that are close to the ground truth bands captured

under ideal illumination conditions.
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1 INTRODUCTION

A regular camera captures a scene in the visible range of the light

spectrum through three main wavelengths: Red (R), Blue (B), and

Green (G). These wavelengths were chosen based on the character-

istics of the human visual system and its sensitivities to different

colors. In contrast, a hyperspectral camera captures a scene in many

wavelengths across a wide range of the spectrum, including bands

invisible to humans such as the infrared (IR) band. Thus, hyper-

spectral cameras offer very rich information about the captured

scene, which enables deeper understanding of various objects in

the scene, even if they are not visible to the human eye. A sample

hyperspectral band is shown in Figure 1. Notice that the internal

defects of the avocado that cannot be seen in the RGB image appear

in the shown 830nm, IR, band.

Hyperspectral imaging has been used in various industrial and

military applications including remote sensing, surveillance, identi-

fication of camouflaged objects, agricultural research, forest mon-

itoring, pollution monitoring, among many others [4, 17, 26, 32].

Many of the commercially deployed hyperspectral imaging systems

are large-scale and mostly deployed in outdoor environments. In

addition, the potential of hyperspectral imaging has been demon-

strated in indoor applications including medical diagnosis (e.g.,

early detection of skin cancer), food quality inspection (e.g., deter-

mining the ripeness of fruits and fat content in meats), artwork

authentication, and material identification[2, 6, 21, 27, 31]

Hyperspectral imaging, however, has not seen wide deployment

in indoor applications yet, because of the cost and complexity as-

sociated with setting up hyperspectral imaging systems. One of

the main challenges is the strict illumination requirements for cur-

rent hyperspectral cameras to function properly. Specifically, since

hyperspectral cameras capture bands in the visible and invisible

range of the spectrum, they require a light source that radiates

power across a wide range of the electromagnetic spectrum to illu-

minate the scene being captured. The current solution to address

this requirement is to use halogen light sources, which cover a

large part of the spectrum [9]. However, halogen light sources are

expensive, have a short lifetime, consume substantial amounts of

electricity, and in many cases, they are not available or even possi-

ble to use because they may alter the characteristics of objects in

the captured scene due to the heat produced by these sources. For

instance, hyperspectral imaging has been proposed for forensics

and crime scene analysis in [7, 16], in which case even if halogen

sources are possible to setup, they may affect the outcome of the

https://doi.org/10.1145/3458305.3459594
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analysis. Similarly, halogen light sources are not suitable for hyper-

spectral systems designed for artwork authentication [23], as they

may damage the artwork, and food quality inspection [8, 33, 36],

as they may spoil some food items or affect their ripeness.

The goal of this paper is to enable indoor hyperspectral imaging

using cost-effective andwidely available lighting sources such as the

Compact Fluorescent Lamp (CFL) and Light Emitting Diode (LED).

This is a challenging problem since the common CFL and LED light

sources emit low power in the invisible range of the spectrum. This

causes significant damages in the hyperspectral bands captured in

the IR range by the camera, which are the most important bands

for the applications. We propose a data-driven method to restore

the damaged bands captured with LED and CFL light sources. The

proposed method greatly facilitate the deployment of hyperspectral

imaging systems for many real-life applications in a cost-effective

and efficient manner.

The contributions of this paper can be summarized as follows:

• We conduct an empirical study to analyze the effects of

different light sources on hyperspectral imaging, in Section 3.

Our analysis shows that the commonly used LED and CFL

light sources introduce significant noises and damages in the

hyperspectral bands in the invisible range of the spectrum.

• We propose a supervised deep learning model to restore the

damaged hyperspectral bands, in Section 4. The proposed

model considers both the spatial and spectral characteristics

of hyperspectral images. It is also general as it can restore

different number of hyperspectral bands.

• We collect a unique hyperspectral image dataset in this do-

main, which contains different objects and materials cap-

tured by a high-end hyperspectral camera using three differ-

ent lighting sources: halogen, CFL, and LED. The dataset is

available at [1].

• We conduct an extensive empirical study to analyze the

performance of the proposed hyperspectral band restora-

tion method and compare it against the closest work in the

literature, using multiple objective and subjective metrics.

Our results show that the proposed method outperforms

the state-of-the-art across all metrics, and it produces hy-

perspectral bands that are close to the ground truth bands

captured under ideal illumination conditions. Our datasets

and experimental study are described in Section 5.

2 RELATED WORK

Hyperspectral imaging has been getting popular in recent years,

because of technological advances in the camera design as well

as the introduction of powerful machine learning tools that can

address long-standing problems in this domain. For example, mul-

tiple works have considered estimating hyperspectral bands from

regular RGB images, e.g., [11, 14, 27]. Other works have proposed

methods to up-sample multispectral (with few bands) images to

hyperspectral images with much more bands and/or higher spa-

tial resolutions, e.g., [12, 19]. Most of these works estimate bands

in the visible range of the electromagnetic spectrum, which adds

small value beyond RGB images for real-life hyperspectral imaging

applications. In this paper, we focus on maximizing the utility of

images captured (not estimated) by hyperspectral cameras.

One of the hyperspectral bands (830 nm)

Defects not 

visible in RGB

RGB Photo

Figure 1: RGB versus hyperspectral images.

The quality of hyperspectral data can be affected during the ac-

quisition process, because of various reasons such as weather and

illumination conditions. Thus, multiple data enhancement meth-

ods have been proposed in the literature to increase the utility of

hyperspectral images, which are expensive to collect. For example,

Sidorov et al. [29] introduced the concept of the Deep Hyperspec-

tral Prior, which is an extension of the Deep Image Prior [20], for

enhancing hyperspectral images for indoor applications.

Prior works for enhancing hyperspectral images mostly consider

mitigating noises in remote sensing images. In remote sensing appli-

cations, noises and artifacts are introduced because of atmospheric

influences such as clouds, haze, and other weather conditions [25].

Such weather conditions do not impact indoor hyperspectral imag-

ing applications. However, indoor applications may suffer from

distortions and noises because of the illumination conditions. Specif-

ically, outdoor hyperspectral applications benefit from the sunlight,

which has a wide spectral power distribution covering most of

the electromagnetic spectrum. Having an illumination source with

wide spectral coverage is vital for capturing hyperspectral images,

as many of the bands are not in the visible light range. To provide

such wide spectral coverage for indoor applications, halogen light

sources have typically been required. However, as mentioned in Sec-

tion 1, halogen sources limit the adoption of hyperspectral imaging

because they have short lifetimes and are expensive to operate and

install, compared to the widely available light sources such as LED

and CFL. LED and CFL light sources have low radiance intensities

in the infrared (invisible) range; however, they were designed for

everyday use. As shown later in this paper, using LED and CFL

light sources results in damaged hyperspectral bands, especially in

the invisible range. This damage is quite different in nature from

the effect of noise in outdoor applications. In outdoor applications,

noise is added to the original signal, while in indoor applications,

the signal is quite weak from the source because of the low radiance

in the invisible range.

The closest work to ours is the recent work in [34]. It uses 3D

convolutions and recurrent neural networks (RNN) to improve the

quality of hyperspectral images, and was shown to outperform

other works in the literature. We compare the performance of our

proposed method against this work.

3 ANALYSIS OF ILLUMINATION EFFECTS

Background. Figure 2 illustrates the basic concepts behind hyper-

spectral imaging and how it is different from regular RGB imaging.



Enabling Hyperspectral Imaging in Diverse Illumination Conditions for Indoor Applications MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

The figure shows different parts of the electromagnetic spectrum.

An RGB camera samples the spectrum in the visible range, which ap-

proximately lies between 400ś700 nm. The RGB camera takes only

three samples, centred around the red, green, and blue wavelengths.

These three wavelengths were chosen based on the characteristics

of the human visual system.

In contrast, a hyperspectral camera takes much more samples

from the spectrum and goes beyond the visible range. Many of

the hyperspectral cameras that are used for indoor applications

capture bands from 400nm to 1000nm, and these bands are typically

equally spaced in that range. For example, the Specim IQ camera

captures 204 bands between 400nm and 1000nm, with a spectral

resolution of ∼3nm. As shown in the lower part of Figure 2, this

fine-grained sampling of the spectrum allows creating the so-called

spectral signatures. A spectral signature shows how the reflectance

(signal intensity) varies across different wavelengths. Recall that

the reflectance of light (and its various wavelengths) depends on

the material(s) of the surface that reflects the light. Thus, spectral

signatures can be used to classify objects and identify their material

composition.

In Figure 4, we show an example of spectral signatures. Two

signatures are shown of different areas of an apple.

Effect of Illumination. Illumination plays a crucial role in captur-

ing hyperspectral images. In this section, we analyze the impact of

various types of lighting sources on hyperspectral images. We start

with some basics. To obtain a hyperspectral image, a light source

illuminates the scene. Then, the reflected light from the scene is

detected by the camera system, which divides it into wavelengths

using a prism or grating structure, based on the camera design

[3, 24]. Then, the various wavelengths are captured by the camera

sensor to produce the hyperspectral bands.

Let us denote the observed image value at pixel (𝑥,𝑦) of the 𝑛th

band as 𝐼 (𝑥,𝑦, 𝜆𝑛). The light source intensity at the position of (𝑥,𝑦)

is a function of the wavelength 𝜆 and is denoted by 𝐿(𝑥,𝑦, 𝜆). The

surface reflectance is denoted by 𝑆 (𝑥,𝑦, 𝜆) at the location (𝑥,𝑦), and

the sensitivity function of the camera for the 𝑛th band is indicated

by 𝐶𝑛 (𝜆). Then, the image value can be defined as follows [10]:

𝐼 (𝑥,𝑦, 𝜆𝑛) =

∫
𝑆 (𝑥,𝑦, 𝜆) · 𝐿(𝑥,𝑦, 𝜆) ·𝐶𝑛 (𝜆) · 𝑑𝜆. (1)

We note that 𝐶𝑛 (𝜆) is constant and predetermined by the cam-

era manufacturer, and the surface reflectance 𝑆 (𝑥,𝑦, 𝜆) depends

on the material composition of the objects in the scene. Thus, the

illumination source and its intensity at different wavelengths di-

rectly impacts the values of the captured pixels of the hyperspectral

image.

To capture hyperspectral images indoor, current systems require

a light source that covers the 400ś1,000 nm wavelength range with

sufficient intensity. To meet this requirement, halogen light sources

are typically used since such sources have wide spectral power

density [35]. However, as described in Section 1, halogen light

sources are expensive to setup and operate, not durable, and more

importantly, they may alter or damage some objects in the scene.

LED and CFL light sources, on the other hand, are widely de-

ployed, do not emit significant heat, and cost effective. However,

these sources were designed to operate in the visible light range.

Thus, the intensity of these sources beyond the 700 nm wavelength
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Figure 2: Basic concepts of hyperspectral imaging.

is low and not uniform. This results in significant distortions in the

hyperspectral bands captured in the 700ś1,000 nm range, which

are the most useful for hyperspectral applications as they contain

information not visible to the human eyes and cannot be detected

by other bands in the visible range. This is because bands in the

700ś1,000 nm range belong to the near IR part of the spectrum, and

they can penetrate surfaces and materials deeper than other bands.

We conducted multiple experiments to show the damaging ef-

fects of capturing hyperspectral images using LED and CFL sources,

in contrast to halogen sources. Specifically, we used a high-end hy-

perspectral camera to capture various objects under halogen, LED,

and CFL lighting conditions. The model of the hyperspectral camera

is Specim IQ, and it captures 204 bands in the 400ś1,000 nm range

with a spectral resolution of∼3nm. The objects captured include

apples, avocados, and meat samples. Different types of fruits with

different degrees of ripeness were used.

There are many models for LED, CFL, and halogen sources.1

We selected one of the common models in the market for each

of these three light sources. We note that each light source has

its own unique characteristics, which all of its models share. The

differences are usually in the color temperature and wattage. For

example, all CFL sources function in the same way, regardless of

their size and wattage, which is quite different from how LED

and halogen function. Thus, although the three models used in

the experiments do not cover all possible lighting conditions, they

offer representative samples for LED, CFL, and halogen sources.

The chosen models are: (i) 135-watt CFL source that emits 7600

luminous units (LM) and 5500K color temperature, (ii) 9-watt LED

source with 1000 LM and 4000K color temperature, and (iii) 250-watt

halogen source with 6050 LM and a 3050K color temperature.

We analyze the results along two aspects: captured bands and

spectral signatures. A representative sample of our results is shown

in Figures 3 and 5, for an apple with a small defect. In Figure 3,

we show the RGB image as well as three hyperspectral bands pro-

duced by the camera, under the three lighting sources. As the top

row of the figure shows, the halogen source produces clear bands.

Whereas the CFL source (middle row) and the LED source (bottom

1The characteristics of more than 180 LED, CFL, and Halogen sources can be found
at https://lspdd.org/app/en/home.

https://lspdd.org/app/en/home
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Figure 3: Effect of common illumination sources on capturing hyperspectral images.
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Figure 4: Spectral signatures of defective and non defective

areas of an apple.

row) introduce a substantial amount of noise in the captured hy-

perspectral bands, especially as the bands get further away from

the visible range. Note that bands that are in the IR range are the

most useful for hyperspectral applications, and these are the ones

that are damaged the most.

A closer look across the entire spectral range is shown in Figure 5

for a small area of the object, marked by the blue circle. We used

the average value of the pixels in each band and plotted this value

for each band. The spectral signatures shown in Figures 5.c and 5.d

are produced using LED and CFL light sources, respectively, have

significant fluctuations and noise compared to the cleaner signature

in Figure 5.b, which is produced using the halogen source. Such fluc-

tuations in the spectral signatures negatively impact the accuracy

of the processing tasks performed on the captured hyperspectral

images.

4 PROBLEM DEFINITION AND SOLUTION

4.1 Problem Definition

The objective of this paper is to enable capturing hyperspectral

images using cost effective and widely available lighting sources, in-

cluding LED and CFL sources. However, as we showed in Section 3,

such sources do not radiate enough power outside of the visible

light range. Thus, hyperspectral bands in the non-visible range

(which are the most useful) captured using these light sources suf-

fer from substantial distortions, which renders them useless. This,

in turn, severely limits the applicability of hyperspectral imaging

in many practical applications.

The problemwe address in this paper is how to accurately restore

damaged hyperspectral bands captured using LED and CFL light

sources, instead of the expensive and often not available or not

possible to use halogen light sources. This is a more general and

more challenging problem than the RGB image restoration problem

addressed in prior works for multiple reasons. In our problem, we

need to concurrently restore many hyperspectral bands at once,

compared to restoring one RGB image in prior works. Second,

similar to RGB image restoration, the spatial accuracy needs to

be ensured but for all bands. By spatial accuracy, we mean the

similarity of the restored pixels to the ground truth ones in the 𝑥,𝑦

domain. Third, unlike RGB image restoration, the spectral accuracy

must also be ensured in the case of hyperspectral band restoration.

The spectral accuracy means the similarity of the restored pixels

to the ground truth ones across the 𝜆 wavelength domain. The

spectral accuracy is crucial because it impacts the accuracy of the

spectral signatures created from the different bands, and spectral
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(a) RGB (b) Halogen (c) LED (d) CFL

Figure 5: Spectral signatures plotted for the area marked by the blue circle using three different light sources.

signatures are used for material identification and classification in

hyperspectral applications.

4.2 Proposed Solution

We model our problem as band restoration which has some similar-

ity with image restoration. Deep learning has been successful in

recent years in addressing the image restoration problem, as well

as others. We propose a data-driven solution for the hyperspectral

band restoration problem using deep neural networks. We design a

neural network model that considers both the spatial and spectral

domains. The proposed model is general and supports restoring

different number of hyperspectral bands, which is a significant

feature since the number of bands captured by hyperspectral cam-

eras depends on the design of each camera, and it varies from one

manufacturer to another, and even across models from the same

manufacturer. In addition, we propose four loss functions and inte-

grate them into the neural network model to maximize the spectral

accuracy and the spatial accuracy across many hyperspectral bands.

In the following, we present the details of the neural network

design and the loss functions.

Architecture of the Neural Network. The proposed network ar-

chitecture is illustrated in Figure 6. Similar to previous models, e.g.,

[27, 28], we design our network using residual blocks (RBs) as the

main element of the model. As shown in the figure, in addition to

convolution (C), batch normalization (B) and ReLU activation (R)

layers, each residual block has a skip connection from the input

to the output of the bock. Skip connections allow retaining some

information from earlier layers, which helps in restoring damaged

bands. Residual learning in strikes a balance between remembering

information from earlier layers against replacing it with new infor-

mation from the later layers. The initial layers in a neural network

contain low-level features and later layers have high-level features.

Also, noise is usually dominant at high frequencies which disturbs

images. However, there are some useful features at these high fre-

quencies in noisy images such as edges of different objects (e.g.,

healthy vs defective apple) in different bands. Residual networks

help in learning this useful information along with the elimination

of existing noise. The proposed network has 10 residual blocks

coming after a convolutional layer applied to the input for feature

extraction, each has 6 layers. At the end of the network, there is

a convolutional layer coming after a ReLU layer. The network is

designed and trained on patches of images. The network does not

change the spatial size of input and output images, resulting from

using a stride of 1 in all convolution layers.

Loss Functions. Compared to RGB images, hyperspectral images

have 3 dimensions. Our captured hyperspectral images, for instance,

have 512 x 512 x 204 pixels. Thus, it is essential to consider both

the spatial and spectral domains in our solution. To restore hyper-

spectral bands and ensure the accuracy of the both domains, we

propose four loss functions. The integration of these functions in

the neural network model is shown in Figure 6. In the following,

we define each loss function and justify its usage.

• Mean Relative Absolute Error (MRAE): One of the chal-

lenges in hyperspectral images is that the level of luminance

varies across bands, especially when captured with LED and

CFL light sources. This means that the values of pixels in

some bands are higher than others. This can introduce bias

towards bands with higher values. Thus, we propose using

the mean relative absolute error as one of the losses in the

network, which is defined as follows:

𝑀𝑅𝐴𝐸 =

1

𝑁

∑
𝑖

∑
𝑛

���� 𝐼𝑜𝑢𝑡 (𝑖, 𝜆𝑛) − 𝐼𝑔𝑡 (𝑖, 𝜆𝑛)

𝐼𝑔𝑡 (𝑖, 𝜆𝑛)

���� ,
where 𝐼𝑜𝑢𝑡 (𝑖, 𝜆𝑛) and 𝐼𝑔𝑡 (𝑖, 𝜆𝑛) are values of 𝑖-th pixel at the

𝑛-th band of the output and ground truth images, and 𝑁 is

the total number of pixels in each image.

• Multiscale Structural-similarity (MS-SSIM):This is a per-

ceptual loss defined to keep the shape and structure of the

restored bands as close as possible to the ground truth. This

loss function was introduced by Snell et al. [30] for learning

tasks since it is differentiable. 𝐿𝑀𝑆−𝑆𝑆𝐼𝑀 (𝐼𝑔𝑡 , 𝐼𝑜𝑢𝑡 ) is defined

as:

𝐿𝑀𝑆-𝑆𝑆𝐼𝑀 (𝐼𝑔𝑡 , 𝐼𝑜𝑢𝑡 ) =

−
∑
𝑛
∑
𝑖 𝑀𝑆-𝑆𝑆𝐼𝑀 (𝐼𝑜𝑢𝑡 (𝑖, 𝜆𝑛), 𝐼𝑔𝑡 (𝑖, 𝜆𝑛)),

where

𝑀𝑆-𝑆𝑆𝐼𝑀 (𝑥, 𝑥) = 𝐼𝑀 (𝑥, 𝑥)𝛼𝑀

𝑀∏
𝑗=1

𝐶 𝑗 (𝑥, 𝑥)
𝛽 𝑗 𝑆 𝑗 (𝑥, 𝑥)

𝛾 𝑗

which M is downsampling factor usually set to 5, and we

define 𝐼 (𝑥,𝑦), 𝐶 (𝑥,𝑦), and 𝑆 (𝑥,𝑦) as:

𝐼 (𝑥, 𝑥) =
2𝜇𝑥 𝜇𝑥 +𝐶1

𝜇2𝑥 + 𝜇2
𝑥
+𝐶1

,𝐶 (𝑥, 𝑥) =
2𝜎𝑥𝜎𝑥 +𝐶2

𝜎2𝑥 + 𝜎2
𝑥
+𝐶2

,
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Figure 6: Network architecture of the proposed model. "C" = convolution, "R" = ReLU activation function, and "B" = Batch
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𝑆 (𝑥, 𝑥) =
2𝜎𝑥𝑥𝜎𝑥𝑥 +𝐶3

𝜎2𝑥 + 𝜎2
𝑥
+𝐶3

.

The variables 𝜇𝑥 ,𝜇𝑥 , 𝜎𝑥 , and 𝜎𝑥 show the mean and the

standard deviations of pixel intensity in an image patch

positioned at either 𝑥 or 𝑥 , and 𝐶1, 𝐶2, and 𝐶3 are constants.

• Spectral Angle Matching (SAM): SAM is a metric that

measures the similarity between two spectra [18]. SAM con-

siders each spectra as a vector with the number of bands as

its dimension. We define a loss function based on this metric.

This loss function tries to minimize the angle between two

given vectors, which represent the reconstructed and ground

truth bands. In other words, the value of the same pixel in all

bands of a hyperspectral image form a vector, and the SAM

loss function uses the dot product of the normalized versions

of these vectors. Therefore, this loss function is not sensitive

to the length of the vectors, while the angle between them

is important. This feature helps the network to be robust

against the changes in the luminance level. The SAM loss

function is defined as:

𝑆𝐴𝑀 =

∑
𝑥,𝑦

𝑐𝑜𝑠−1
©«

−−→
𝐼𝑜𝑢𝑡 (𝑖, 𝜆1:𝑚)������−−→𝐼𝑜𝑢𝑡 (𝑖, 𝜆1:𝑚)

������ ·
−→
𝐼𝑔𝑡 (𝑖, 𝜆1:𝑚)������−→𝐼𝑔𝑡 (𝑖, 𝜆1:𝑚)

������
ª®®¬
,

where 𝐼𝑜𝑢𝑡 (𝑖, 𝜆1:𝑚) and 𝐼𝑔𝑡 (𝑖, 𝜆1:𝑚) are the spectral vectors

with size𝑚 of the 𝑖-th pixel.

• Spectral Information Divergence (SID): The SAMmetric

treats spectral signatures as geometrical vectors, while the

SID metric proposed by Chang [5] looks at them as random

variables. SID, thus, considers the probabilistic differences

between the probability distributions of the spectral signa-

tures. We define a loss function using SID, which directs the

spectral signature produced by the network to have similar a

probabilistic behavior as ground truth. We used the softmax

function to transfer spectral signatures to the probability do-

main before using this loss function. The SID loss function

is given by:

𝑆𝐼𝐷 =

∑
𝑖 [𝐷 (𝐼𝑜𝑢𝑡 (𝑖, 𝜆1:𝑚) | | 𝐼𝑔𝑡 (𝑖, 𝜆1:𝑚))

+𝐷 (𝐼𝑔𝑡 (𝑖, 𝜆1:𝑚) | | 𝐼𝑜𝑢𝑡 (𝑖, 𝜆1:𝑚))]

where:

𝐷 (𝐼𝑜𝑢𝑡 (𝑖, 𝜆1:𝑚) | | 𝐼𝑔𝑡 (𝑖, 𝜆1:𝑚)) =∑
𝑛 𝐼𝑜𝑢𝑡 (𝑖, 𝜆𝑛) · 𝑙𝑜𝑔2

[
𝐼𝑜𝑢𝑡 (𝑖,𝜆𝑛)
𝐼𝑚𝑔𝑡 (𝑖,𝜆𝑛)

]
and:

𝐷 (𝐼𝑔𝑡 (𝑖, 𝜆1:𝑚) | | 𝐼𝑜𝑢𝑡 (𝑖, 𝜆1:𝑚)) =∑
𝑛 𝐼𝑔𝑡 (𝑖, 𝜆𝑛) · 𝑙𝑜𝑔2

[
𝐼𝑔𝑡 (𝑖,𝜆𝑛)

𝐼𝑜𝑢𝑡 (𝑖,𝜆𝑛)

]
.

5 EXPERIMENTAL EVALUATION

In this section, we assess the performance of the proposed hyper-

spectral band restoration method and compare it against the closest

work in the literature, using a diverse dataset of hyperspectral

images collected under different illumination conditions.

5.1 Experimental Setup

Image Acquisition Setup. The image acquisition setup is shown

in Figure 7. It consists of a hyperspectral camera facing towards an

experimental table, where we put the object(s) to be captured. We

created three different setups for capturing the same scene using

three different light sources. We categorize our dataset into three

groups having different illumination conditions: (i) illuminating the

scene with 2 halogen light sources from both directions providing

ideal illumination condition, and these images are used as ground

truth for our model, (ii) illuminating the scene with one LED light

source from one direction, and (iii) illuminating the scene with one

fluorescent light source from one direction.
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Figure 7: The experimental setup used to capture hyperspec-

tral images under different illumination conditions.

We used the Specim IQ hyperspectral camera for collecting the

data. It is a line scanning camera with a built-in scanner. This cam-

era works in the visible and near infrared (400 − 1000𝑛𝑚) spectral

range with ∼3nm spectral resolution providing 204 bands. This

camera operates by chargeable batteries and it has an internal stor-

age to save the captured data. It also has a mini display to help in

focusing and adjusting the camera lens before capturing and con-

figuring the exposure time. Captured images are later transferred

to a workstation for post processing using a software tool provided

with the Specim IQ camera to visualize hyperspectral images.

Data Collection. To demonstrate the effectiveness of the proposed

hyperspectral band restoration method, we consider two broad

classes of hyperspectral applications: (i) food quality inspection

and (ii) material identification and classification. We would like to

show that our method restores the damaged hyperspectral bands,

which would allow such applications to function under LED and

CFL lighting sources. Since the setups of these applications would

greatly vary based on the actual industrial environment, we fo-

cus on assessing the quality of the restored bands and comparing

them to the ground truth bands that are captured using ideal light-

ing conditions, which in this case are created using halogen light

sources.

For the food quality inspection class of applications, we collected

data for two fruit samples (apples and avocados) and meat sam-

ples (steak). Several previous studies proposed using hyperspectral

imaging to investigate various issues in these common fruits, e.g.,

[13, 22], including determining ripeness and detecting bruises and

internal defects. We purchased 15 samples of different apple types:

4 honey crisp, 4 granny smith, 2 fuji, 2 gala, and 3 ambrosia. We

picked combinations of apples having different degrees of firmness

and bruises.

To capture hyperspectral images of apples, we arranged the

samples in groups of different sizes, ranging from 1 apple per group

to 5 randomly chosen apples per group. For each group of apples, we

captured at least one hyperspectral image, which contains 204 bands

produced by the hyperspectral camera. We repeated the experiment

for the considered three different light sources: halogen, LED, and

CFL. In total, we captured 180 hyperspectral images of different

types and groups of apples: 66 images were captured using halogen

source, 57 using LED, and 57 using CFL. Similarly, we captured

hyperspectral images of different types and groups of avocados. We

had a total of 110 avocado hyperspectral images: 55 images were

captured using halogen and 55 using CFL.

Also, we gathered hyperspectral images samples of steak with

various thicknesses, different qualities and amount of fat captured in

three different lighting. Hyperspectral imaging has been proposed

for analyzing the nutrition and fat contents of meat and other foods,

e.g., [15]. We captured a total of 186 steak hyperspectral images: 72

using halogen, 57 using CFL, and 57 under LED.

For the material identification class of applications, we collected

data from different types of objects composed of various materials

such as metal, wood, plastic, and paper. We captured objects indi-

vidually and in groups. Thus, most scenes contained varieties of

materials at the same time. In total, we captured a total of 123 hy-

perspectral images containing various objects: 49 using halogen, 49

using CFL, and 25 using LED. Figure 8 shows a few (RGB) samples

of our datasets. And Table 1 summarizes the collected hyperspectral

dataset, which we believe is unique in this domain and we make it

publicly available at [1].

Table 1: Summary of the collected hyperspectral dataset.

Each sample has 204 bands, where a bands is 2d image

Halogen CFL LED Total

Apples 66 57 57 180

Avocado 55 55 - 110

Meat 72 57 57 186

Objects 49 49 25 123

Total 242 218 139 599

Figure 8: RGB samples from our dataset.

Model Implementation andTraining.We implemented our neu-

ral network model using PyTorch. We used the Adam optimizer

with a batch size of 64 and a decaying learning rate, and each con-

volutional layer has 64 filters with 3x3 size and a stride of 1. All

training and testing of the model were done on a workstation with

an NVIDIA TITAN RTX GPU.

We train our model for each class of applications separately. For

example, for the material identification, we use the hyperspectral
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Figure 9: Comparison of the bands produced by the proposed method (3rd row) against the ground truth (4th row) and the

state-of-the-art (2nd row) from the input data (1st row). Data shown for the LED illumination setting.
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Figure 10: Comparison of the bands produced by the proposed method (3rd row) against the ground truth (4th row) and the

state-of-the-art (2nd row) from the input data (1st row). Data shown for the CFL illumination setting.

images collected from different objects, but we do not use images

for fruits or meat. This is realistic, as such applications will not

likely be mixed in the same environment and the characteristics

of materials are quite different in each class, which makes using

a single model to handle all such varieties impractical. For each

application class, we divide the relevant dataset into three disjoint

sets: training, validation, and testing.
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Figure 11: Spectral Signature for the apple in Figure 10.

For each sample in our dataset, we have three hyperspectral

images: one taken under halogen, another under LED and a third

under CFL. For training, we pair each image captured under CFL

or LED with its corresponding image under halogen. The hyper-

spectral images taken under halogen light do not have distortions

and are considered as the ground truth.

Each hyperspectral image has 204 bands. Since neighbouring

bands are similar to each other and to save processing time, we

selected 25 of these bands that are equally spaced in the spectral

range. We note that our method is general and supports restor-

ing any number of bands, including all of the 204 bands. Training

on more bands will, however, take longer and require more mem-

ory. In practice, sample bands are typically used in hyperspectral

applications.

We utilize common data augmentation techniques in the litera-

ture, including combinations of flipping and rotating the images.

This augmentation has increased our datasets by 8 folds. In addition,

our neural network model is designed to process patches of images.

Each image is divided into 64 non-overlapping patches of size 50 x

50 pixels.

State-of-the-Art Compared Against. Our problem is close in na-

ture to works that address noise reduction in hyperspectral imaging.

We chose the most recent method for hyperspectral denoising [34]

to compare against. This method, referred to as QRNN3D, was

shown to outperform others in the literature. QRNN3D uses a re-

current neural network (RNN) with 3D convolutions to consider

the spectral dimension in addition to the two spatial ones in the

denoising process. QRNN3D was shown to handle different types

of noise such as Gaussian noise, impulse noise, and dead pixels or

lines. We trained QRNN3D on our datasets, in which hyperspectral

bands contain noise due to diverse illumination conditions.

Performance Metrics.We use subjective and objective metrics in

our analysis. We demonstrate multiple sample images from differ-

ent bands and experiments to subjectively assess the visual quality

and accuracy of our method relative to the ground truth and in com-

parison to the state-of-the-art. In addition, we show and compare

sample spectral signatures across the entire spectrum.

We use four objective metrics to assess the spatial and spectral

accuracy of the restored bands, relative to the ground truth. These

metrics were defined in Section 4 and they are: Mean Relative Ab-

solute Error (MRAE), Structural Similarity Index Measure (SSIM),

Spectral Angle Matching (SAM), and Spectral Information Diver-

gence(SID). MRAE and SSIM assess the spatial accuracy through

measuring the error introduced in the restored bands as well as the

similarity of their structure to the ground truth bands. SAM and

SID consider the differences between the restored bands and the

ground truth ones across the spectral dimension.

5.2 Results for Food Quality Inspection
Applications

We present sample results showing the quality of the restored bands

for hyperspectral applications designed for inspecting fruits such

as apples.

We start with the objective metrics, which are summarized in

Table 2. All metrics reported in the table are measured relative to

the ground truth. These metrics can be divided to two groups. The

first group contains MRAE and SSIM, and it shows the quality of the

restored images in the spatial domain. The second group contains

SAM and SID, and it measures the quality of the restored images

in the spectral domain. As Table 2 shows, the proposed method

outperforms the state-of-the-art across all metrics, and it produces

fairly accurate bands across the spatial and spectral domains.

Table 2: Comparison of the proposed band restoration

method against the state-of-the-art (QRNN3D) using multi-

ple objective metrics. Data shown for the food quality in-

spection class of hyperspectral applications.

Ours QRNN3D Comments

MRAE 0.24694 0.31486 Closer to 0 is better

SSIM 0.84460 0.64000 Closer to 1 is better

SAM 0.05903 0.18007 Closer to 0 is better

SID 0.00013 0.00015 Closer to 0 is better

Next, we present sample results to visually demonstrate the

quality of the restored bands. Two samples are shown in Figure 9

and Figure 10 for different apples. Figure 10 shows the results for

the CFL illumination setting, while Figure 9 shows the results for

the LED illumination setting. In each figure, the RGB image is

shown as well as four sample bands at wavelengths 740, 810, 890,

and 960𝑛𝑚. The figures also show the ground truth bands captured

using halogen illumination in the lowest row.

We can conclude three points from Figures 9 and 10. First, hyper-

spectral bands captured under LED and CFL illuminations (1st row)

are severely damaged, especially for the most important bands in

the infrared range. Second, the proposed band restoration method

produces much better hyperspectral bands than the state-of-the-art

(QRNN3D). Third, the bands produced by our method are close to

the ground truth.

Finally, we analyze and compare the spectral signatures created

based on bands restored by our method versus the ones restored

by the state-of-the-art method. Figure 11 presents a sample of our

results. The figure also shows the spectral signatures created from
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Figure 12: Comparison of the bands produced by the proposed method (3rd row) against the ground truth (4th row) and the

state-of-the-art (2nd row) from the input data (1st row). Data shown for the CFL illumination setting.
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Figure 13: Comparison of the bands produced by the proposed method (3rd row) against the ground truth (4th row) and the

state-of-the-art (2nd row) from the input data (1st row). Data shown for the LED illumination setting.

the ground truth bands and from the noisy inputs for comparison.

The figure shows that signatures created based on bands produced

by our method are much closer to the ground truth signatures than

the ones produced by the state-of-the-art method.

5.3 Results for Material Identification
Applications

We evaluate our method on another common class of hyperspectral

imaging applications, which is material identification. As described
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Figure 14: Spectral Signature for objects in Figure 12.

in Section 5.1, we collected hyperspectral images of different mate-

rials. We trained our model on some (but not all) materials. That is,

we intentionally put some objects in the test dataset that were not

seen during the training process.

Two representative samples of our results are shown in Figure 12

for the CFL illumination condition and in Figure 13 for the LED

illumination condition. We note that none of the images in the

training set contained the cups in Figure 12 or the whiteboard

markers in Figure 13. However, our network used the characteristics

of other objects with similar materials in the training dataset to

restore the hyperspectral bands of these objects that were never

seen before.

In Figure 12, there are three cups. The white cup is made of

paper and the blue and red cups are made of plastic. We show in

Figure 14 the spectral signatures for the two different materials

of the cups. The figure shows that our method produces fairly

accurate signatures that are close to the ground truth ones. This

is unlike the signatures created by the QRNN3D method, which

deviate from the ground truth signatures, and hence may compro-

mise the performance of hyperspectral systems used for material

identification.

Finally, we present the summary of the objective performance

metrics in Table 3, which shows that our method outperforms the

state-of-the-art in all metrics. We note, however, that the perfor-

mance of our method on this class of applications is relatively lower

than its performance on the food quality inspection class of applica-

tions (summarized in Table 2). This is because our setup contained

significantly more diverse objects and materials in the material

identification case. In real-life applications, hyperspectral systems

are typically designed to differentiate a smaller number of different

materials, e.g., identifying metal objects from non-metal ones for

recycling purposes. Thus, we expect our method to perform even

better for real applications.

Table 3: Comparison of the proposed band restoration

method against the state-of-the-art (QRNN3D) using multi-

ple objective metrics. Data shown for the material identifi-

cation class of hyperspectral applications.

Ours QRNN3D Comments

MRAE 0.39096 0.48839 Closer to 0 is better

SSIM 0.75140 0.58540 Closer to 1 is better

SAM 0.09199 0.19367 Closer to 0 is better

SID 0.00020 0.00027 Closer to 0 is better

6 CONCLUSION

In this paper, we considered the problem of capturing hyperspectral

imaging using common lighting sources such as fluorescent(CFL)

and LED for indoor applications, instead of using expensive, and

occasionally not possible to use, halogen sources. Unlike halogen

sources, CFL and LED light sources emit low power in the invisible

range of the spectrum. We analyzed the effects of using different

light sources on hyperspectral imaging and showed that LED and

CFL sources introduce significant noises and damages in the hy-

perspectral bands in the invisible range of the spectrum, which are

the most important bands for the applications. Then, we proposed

a deep-learning model to restore the damaged hyperspectral bands,

which accounts for the spatial and spectral characteristics of hy-

perspectral images. We collected a hyperspectral image dataset of

around 600 images, each with 204 bands. Our dataset contains dif-

ferent objects and materials captured using various lighting sources.

We are not aware of similar datasets in the literature. We conducted

an empirical study to analyze the performance of the proposed

method. Our results showed that the proposed method produces hy-

perspectral bands that are close to the ground truth bands captured

under ideal illumination conditions. Thus, the proposed method

could facilitate the deployment of hyperspectral imaging systems

for many real-life applications using cost-effective lighting sources.

In addition, we compared the proposed method against the closest

work in the literature, using multiple objective and subjective met-

rics. Our results showed that the proposed method outperforms the

state-of-the-art across all metrics.
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