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ABSTRACT

A hyperspectral camera captures a scene in many frequency bands

across the spectrum, providing rich information and facilitating

numerous applications. The potential of hyperspectral imaging

has been established for decades. However, to date hyperspectral

imaging has only seen success in specialized and large-scale in-

dustrial and military applications. This is mainly due to the high

cost of hyperspectral cameras (upwards of $20K) and the complex-

ity of the acquisition system which makes the technology out of

reach for many commercial and end-user applications. In this paper,

we propose a deep learning based approach to convert RGB im-

age sequences taken by regular cameras to (partial) hyperspectral

images. This can enable, for example, low-cost mobile phones to

leverage the characteristics of hyperspectral images in implement-

ing novel applications. We show the benefits of the conversion

model by designing a vein localization and visualization applica-

tion that traditionally uses hyperspectral images. Our application

uses only RGB images and produces accurate results. Vein visu-

alization is important for point-of-care medical applications. We

collected hyperspectral data to validate the proposed conversion

model. Experimental results demonstrate that the proposed method

is promising and can bring some of the benefits of expensive hy-

perspectral cameras to the low-cost and pervasive RGB cameras,

enabling many new applications and enhancing the performance

of others. We also evaluate the vein visualization application and

show its accuracy.
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1 INTRODUCTION

Vein visualization is important for various point-of-care applica-

tions. One important application is needle insertion [38, 39], which

is widely used for blood sample collection and anesthesia injection

during major surgeries. Vein visualization is also gaining popularity

in forensic applications [8]. Although various biometric systems

are available for commercial and government applications, in some

forensic cases, recognizing skin texture and identifying vein pat-

terns may be the only option left to identify the culprit. In majority

of cases including identifying terrorists, gun men, rioters wearing

masks in violent crime scenes, and pedophiles in child sexual of-

fense images [35], the traditional biometric attributes (e.g., faces

and tattoos) are not always available because criminals hide them to

avoid identification. Thus, vein pattern matching is used to narrow

down the list of suspects.

The most common method used to locate veins by doctors and

clinicians is manual, which results in low rates of successful needle

insertion, especially for obese patients and infants [23]. Insertion

failure may cause severe health conditions such as allergies, blood

clotting and even vein damage [33]. Ultrasound imaging is a promis-

ing technology for improving the success rate of vascular accessing.

This technology visualizes the location of veins at various depths

and significantly decreases the failure rate, particularly when used

by less experienced clinicians. However, ultrasound imaging is not

widely available due to the high cost and large processing time.

Another important technology used to localize veins is the infrared

laser excitation, which is used to differentiate veins from other soft

tissues based on their spectroscopic optical absorption coefficients

[39].

Hyperspectral images contain information in wide range of the

spectrum including the infrared range as opposed to regular RGB

images which contain information only in the visible spectrum. The

complete spectral information can only be captured using expensive

hyperspectral cameras having bulky and complex hardware. The

captured images are called hyperspectral images, and they contain

rich information even beyond the human vision. A simple illustra-

tion of hyperspectral imaging is shown in Figure 1, which shows the

spatial x,y domain as well as the spectral λ domain. For each value

of λ, the scene is captured in a different wavelength bands across

the electromagnetic spectrum, and thus different information is

revealed. The captured data is referred to as a hyperspectral data

cube. Spectral information captured in the data cube can be used

to produce a spectral signature, which can be used to identify dif-

ferent materials in the scene. For example, signal values in certain

wavelength bands corresponding to the presence of soil in a scene

differ from the presence of rocks or water. Using a similar concept,

hyperspectral images can provide effective vein visualization.
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Currently, commercially available hyperspectral cameras can

capture more than 200 bands, and thus provide large amounts of

high-dimensional data. Hyperspectral imaging is useful in many

civil, environmental and military applications such as agricultural

research, forest monitoring, and remote sensing. Initially, hyper-

spectral imaging was implemented on satellites and airborne plat-

forms but recent technological advances for capturing and pro-

cessing devices have made it useful in numerous applications such

as material identification, art authentication, medical diagnosis,

analysis of crime scene details, document image analysis including

signature extraction, ink or document aging, information retrieval

from historical document images, and food quality control.

Hyperspectral images are expensive to capture and require spe-

cialized hardware that is not readily accessible by most users. Digi-

tal and smartphone cameras, on the other hand, are significantly

cheaper and can easily be used in everyday life. These cameras use

filters on their sensors to convert the incoming light into three color

channels (Red, Green, and Blue). These filters result in a loss of the

other spectral information within the visible range. But, many ap-

plications require information in some target spectral range based

on the optical properties of the materials used in the application.

Also, the target spectral range will vary based on the application.

Thus, the motivation of this work is to develop a framework which

can be used to design various applications harnessing hyperspectral

imaging characteristics. We propose a deep learning based method

to reconstruct an object’s spectral reflectance from a single RGB

image captured by a regular camera, which can be used in many

applications.

The contributions of this paper are summarized as follows:

• We propose a data-driven method to reconstruct hyperspec-

tral images from RGB images. Our method is the first to

produce hyperspectral recovery from RGB beyond the visi-

ble spectrum.

• We show the potential of our method by developing a human

vein visualization application that uses only regular RGB

images.

• We conduct a subjective study to collect dataset of hyperspec-

tral images to evaluate the performance of the proposed vein

visualization method. The subjective study was approved by

the Research Ethics Board of our university. This is the first

dataset in this domain and we make it available for other

researchers at [9, 10].

• We conduct experiments to show the accuracy of our RGB

to hyperspectral conversion method as well as the accuracy

of the vein visualization application.

The rest of this paper is organized as follows. We summarize

the related work in Section 2. We present the proposed method in

Section 3. We present our experimental evaluation in Section 4. We

conclude the paper in Section 5.

2 RELATED WORK

Vein Visualization. Multiple medical devices, e.g., [13, 37], work

in the infrared range to produce vein visualization. These devices

illuminate the target scene with infrared light, which penetrates

deep inside the skin and produce vein localization map [24]. These

Figure 1: Hyperspectral data cube with spectral signature.

devices are expensive and are not suitable for point-of-care ap-

plications. There are methods to produce low cost infrared vein

visualization [30]. Most of the methods use an infrared light source

with a traditional RGB camera sensor to acquire vein-enhanced

images. Ayoub et al. [5] use 850nm and 940nm wavelength light

sources along with a Nikon D810 camera to capture veins. Goel et al.

[15] design an imaging system having 17 LEDs in the wavelength

range 450 − 990nm with a CMOS camera sensor. All these low cost

image acquisition systems require special hardware configurations,

which is not suitable for most practical cases. Software-based ap-

proaches for vein visualization have also been considered in the

literature. For example, Song et al. [32] perform multispectral vein

visualization from RGB images using Wiener estimation. They esti-

mate the reflectance spectrum matrix for a GALAXY Note 2 camera

using spectrometer in the wavelength range 380 − 780nm. Their

method requires calibration and estimation matrix calculation for

each smartphone device using a spectrometer, which is not practical

for wide deployment.

Hyperspectral Reconstruction fromRGB.Hyperspectral imag-

ing has proved to be useful in several applications from agriculture

and food processing to medical diagnosis and surveillance [2, 18].

Hyperspectral cameras are, however, expensive and bulky, which

makes them out of reach for most end users. To overcome this

barrier, there is a variety of approaches to get hyperspectral images

without using a hyperspectral camera. Some methods use commer-

cial RGB cameras and reconstruct the reflectance spectrum. Oh

et al. [29] exploited the different spectral sensitivities of multiple

camera sensors to reconstruct the visible spectrum. Other methods

use add-on devices such as color filters and reflectors [20, 34]. Also,

there are methods that use a single RGB image to reconstruct the

spectrum, such as principal component analysis (PCA) [1, 7], inter-

polation [25], and weighted canonical correlation regression [12].

Recently, training-based approaches [4] for spectral reconstruction

have been considered. Nguyen et al. [27] consider a non-linear

mapping strategy for modeling the camera-specific RGB values

and scene reflectance spectra. They use a radial basis function net-

work for modeling the mapping. Xiong et al. [22, 31, 36] present

a deep learning framework to recover hyperspectral images from

spectrally undersampled projections.

All the methods explained above produce sparse reconstruction

only in visible range of the spectrum. That is, all prior methods
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work in the spectral range 400 − 700nm. In contrast, we present

a deep learning method that produces reconstruction outside the

visible range, which adds more value to different applications. In

addition, unlike prior conversion methods, our method handles

different illumination conditions, which is a desirable feature for

practical uses.

3 PROBLEM STATEMENT AND PROPOSED
METHOD

3.1 Problem Definition

As mentioned in Section 1, high-quality vein visualization is clin-

ically important for various point-of-care applications. The main

function of veins is to transport oxygen rich (oxyhemoglobin) blood

and carbon dioxide rich (deoxyhemoglobin) blood throughout the

body. Thus, the major component present in veins is hemoglobin.

Hemoglobin absorbs most of the infrared light, distinguishing veins

from the skin.

Hyperspectral cameras can easily show veins using information

in the infrared range. A hyperspectral image acquisition system con-

tains an illumination source which illuminates the target scene. The

light reflected is then captured by the imaging system. The imaging

system digitizes the incoming signal and captures the information

inm bands, throughout the electromagnetic spectrum as shown in

Figure 2. Practical hyperspectral applications utilize only a small

subset of the bands. The bands useful for vein visualization are

illustrated in Figure 2, which are located in the Near-Infrared (NIR)

range. Thus, in this work, we focus on designing an application-

specific RGB to hyperspectral conversion method, in which we

convert an RGB image to a few carefully selected bands that are

the most useful for the considered application.

In particular, our problem is to reconstruct a target n number of

bands from RGB images. The problem can be defined as follows:

IHS = f (IRGB ), (1)

where IHS is the reconstructed hyperspectral image containing n

target bands (b1,b2, ...,bn ) and f is the transformation function

which takes an RGB image, IRGB , as input. The goal is to estimate

the transformation function f as accurately as possible.

Our problem is general and can be customized for various hyper-

spectral applications. The specific bands to be estimated are first

identified based on the application needs. Then, our deep learning

model is fine-tuned to reconstruct these bands.

In the following subsection, we describe the proposed RGB to

hyperspectral conversion method. in Section 3.3, we describe the

customization of our method to human vein visualization.

3.2 RGB to Hyperspectral Conversion

We propose a deep learning approach to reconstruct hyperspectral

image having n bands, b1,b2, . . . ,bn , across the electromagnetic

spectrum from a given RGB image with 3 bands: Red (R), Green (G),

and Blue (B). The deep learning model is configurable based on the

number of bands required for the considered application. Our model

is different from previous ones in the literature: it converts RGB

images to specific n bands instead of trying to estimate the entire

visible spectrum as in [3, 4, 27]. Our approach produces higher

UV Visible NIR SWIR

400 700 1000

RGB  cam er a 

Wavelength (nm )

820 920870

sui table bands for  
vein  v i sual i zat i on

RGB Im age 
(I RGB)

(Par t i al ) Hyper spect r al  
Im age 
(I HS)

f

Figure 2: Hyperspectral cameras operate in a wide range

of the spectrum including ultraviolet (UV), visible, near in-

frared (NIR) and shortwavelength infrared (SWIR). The goal

of this paper is to take RGB signals in the visible range and

convert them to specific NIR bands using a deep learning

model to localize human veins.

accuracy for the considered application as well as make the model

less complex.

Converting RGB images to hyperspectral images introduces chal-

lenges that do not exist in common image-to-image translation

works in the literature. The first challenge is the lack of paired RGB-

hyperspectral datasets. We address this challenge by collecting our

own dataset using a commercial hyperspectral camera and make

the dataset available [10]. Second, a hyperspectral image has many

bands, and since these bands are captured at different wavelengths,

pixels in various bands have significantly different luminance levels,

which could impact the performance of the neural network. Figure 3

shows four different bands produced by our hyperspectral camera

capturing the same scene. Notice the different luminance (darkness)

values of pixels in different bands. We mitigate this problem by

designing a new loss function for the neural network.

The third and more difficult challenge in converting RGB images

to hyperspectral ones is the effect of external illumination. Specifi-

cally, the mapping between an RGB image to hyperspectral bands

depends heavily on the scene illumination. Thus, producing robust

neural network models requires training with huge datasets cover-

ing different illuminations that occur in real scenarios. Capturing

such paired RGB-hyperspectral imaging datasets is not practical,

given the wide variety of illumination scenarios and the high cost

of hyperspectral cameras. We address this challenge by using a

white balancing approach to neutralize the effect of illumination

on the neural network.

We present the details of our approach in the following.

Neural Network Design. The proposed convolutional neural

network model is designed to spectrally upsample the RGB image

to n bands in the specific part of the electromagnetic spectrum. Our

model architecture is depicted in Figure 4, which is based on the

model in [31]. The feature extraction from the three input RGB

bands is done by a convolution layer, followed by 10 residual blocks

[16] for feature mapping along with the global residual learning.
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Figure 3: Luminance levels in different hyperspectral bands at different wavelength. The figure shows grayscale renderings of

four bands at 450nm (first) and 600nm (second) in the visible range, and 750nm (third) and 900nm (last) in the infrared range.

Figure 4: Network architecture of the proposed model. łCž denotes convolution, łRž and "BN" represent the ReLU activation

function and Batch Normalization, respectively. "RB" denotes residual block, which is expanded in the lower part of the figure.

Each residual block is defined as:

y = F (x,Wk ) + x, (2)

where x and y are the input and output of the block,Wk represents

the weight matrix of the kth block, and F (·) denotes the residual

mapping to be learnedwhich consists of two convolutions separated

by one ReLU layer [26]. We add batch normalization [17] after each

convolution layer in the residual block for faster training and better

performance. The addition is element-wise and performed by a

shortcut connection. After feature learning, the reconstruction is

done by one ReLU, followed by one convolution in the end. The

filter size of convolution is uniformly set to 3 × 3 in the entire

architecture.

Loss function. Deep learning methods generally adopt the

mean square error (MSE) as the loss function [11, 19] for image

restoration during training, which has also been used in previous hy-

perspectral reconstruction methods [3, 36]. However, as discussed

above, in case of hyperspectral images, the luminance level varies

significantly across different bands as shown in Figure 3. Thus,

the MSE loss can introduce a bias towards the bands with higher

luminance levels. To address this issue, we use the mean relative

absolute error (MRAE) as the loss function for training our model.

The mean relative absolute error is defined as:

MRAE =
1

N

∑

i ,b

| (IR
i ,b

− IG
i ,b

)/IG
i ,b

|, (3)

where IR
i ,b

and IG
i ,b

denote the ith pixel in band b of the recon-

structed and ground truth hyperspectral images, respectively, and

N is the total number of pixels.

Handling Various Illuminations. The main challenge in spec-

tral reconstruction is encountered when images are captured in

different illuminations, which can be explained as follows. Con-

sider two different spectral reflectances R1(λ) and R2(λ) captured

in two different spectral illuminations L1(λ) and L2(λ), respectively

over a given wavelength λ. Then, it is possible that under a certain

observer ORGB (λ) both reflectances produce the same RGB image,

which can be expressed as:

∫

λ
L1(λ)R1(λ)ORGB (λ) =

∫

λ
L2(λ)R2(λ)ORGB (λ).
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Figure 5: Handling different illumination conditions using

white balancing step in the training process.

We handle different illumination conditions by normalizing the

RGB images using a white-balancing method before they are used

for training the network, as illustrated in Figure 5. For the white-

balancing step, we use the shades of grey (SoG) method. As pro-

posed in [14], the Gray World and the Max-RGB algorithm are

two instances of a more general color constancy algorithm based

on the Minkowski norm. The Minkowski-norm provides the nor-

malized result of the estimated illumination vector. It computes

a weighted average of the pixel values, assigning larger weights

to pixels with larger intensities. The best performance for SoG is

given by Minkowski norm of order 5. We selected SoG due to its

simplicity, low computational requirement and its effectiveness

over various datasets.

The white balanced image I
′

c corresponding to the RGB image

Ic is obtained by using the following expression:

I
′

c = diaд(
1

tr
,

1

tд
,

1

tb
)Ic , (4)

where t = [tr , tд, tb ] is the white balancing vector obtained by the

chosen white balancing algorithm (SoG).

3.3 Customization to Vein Visualization

As mentioned in the previous subsection, the proposed RGB to hy-

perspectral conversion method is general and can work for different

applications. In this subsection, we present a concrete example on

human vein visualization.

Identifying Relevant Hyperspectral Bands. The first step

is to discover the relevant hyperspectral band(s) useful for vein

visualization. To identify these bands, we captured and visually

inspected several hyperspectral images using our hyperspectral

camera which produces 204 bands covering the spectrum between

400 − 1000nm. Our inspection indicates that bands in the spectral

range 820 − 920nm provide the best vein visualization. This is in-

line with the fact that most medical devices for vein visualization

illuminate the target scene with a near infrared light source with

a wavelength of 850nm, because this wavelength penetrates deep

inside the skin [5, 30]. We show in Figure 6 renderings of four

samples at 850nm in the infrared range captured by our hyper-

spectral camera. Veins are clearly visible in the samples. Thus, for

vein visualization, a single band in the spectral range 820 − 920nm

is sufficient. In our design, we use the 850nm band. That is, we

convert RGB images to images in the 850nm band, which is in the

near infrared range. Furthermore, since bands close to the 850nm

provide somewhat similar information, we use these bands as well

in the training of our models. That is, for each sample taken from a

human subject, we pair the RGB image with each band in the spec-

tral range 820 − 920nm and use the resulting pairs in the training.

Our hyperspectral camera produces 34 bands in the 820 − 920nm

range. This simple idea allowed us to generate more data to train

our models and reduce the potential of over fitting.

Enhancing the Produced Images. After reconstructing the

850nm band from RGB, we postprocess the produced image to im-

prove vein visualization. Specifically, we perform image enhance-

ment to produce better contrast between superficial veins and

human skin. We use two types of image enhancement methods

explained as follows:

• Contrast Limited Adaptive HistogramEqualization [6] (CLAHE):

CLAHE is an improvement over the standard Histogram

Equalization (HE) method. CLAHE first partitions the im-

age into a number of non-overlapping contextual regions. A

histogram is calculated and constructed separately accord-

ing to the size of contextual regions. After that, a threshold

value is determined for clipping histograms. The clipped

pixels are then distributed back to the clipped histogram.

Finally, the gray level mappings are combined using bilinear

interpolation in order to produce the final enhanced image.

• Homomorphic Filtering [28](HF): Homomorphic filtering is

generally used to remove multiplicative noise. It enhances

images by increasing the high frequency components and

decreasing the low frequency components. It first applies a

logarithm function on the input image. After that, the low

frequency component is suppressed in the Fourier domain.

Finally, the output image is produced by applying the inverse

logarithm function.

4 EXPERIMENTAL EVALUATION

This section describes the experiments performed to qualitatively

and quantitatively assess the performance of the proposed method

to convert RGB images to hyperspectral ones and its application to

vein visualization for human subjects.

4.1 Experimental Setup

Image Acquisition Setup. The image acquisition setup is shown

in Figure 7. It consists of an experimental table, a hyperspectral

camera mounted on a tripod stand facing towards the experimental

table, 2 halogen lamps illuminating the scene towards the capturing

area, and a chair for the human subject to sit on while extending

his/her hand/arm to the capturing area on the table.

We used the Specim IQ hyperspectral camera, which is a line

scanning camera with a built-in scanner. This camera works in

the 400 − 1000nm spectral range with ∼ 3nm spectral resolution

providing 204 bands. This camera operates by chargeable batteries

and it has a memory card to save the captured data. It also has a mini

display to help in focusing and adjusting the camera lens before

capturing. Captured images are later transferred to a workstation
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Figure 6: Band analysis to identify relevant bands for vein visualization. The figure shows grayscale renderings of four samples

at 850nm in the infrared range.

Figure 7: The experimental setup used to capture hyperspec-

tral images of hands and arms of human subjects.

for processing. The Specim IQ camera comes with a software tool

to visualize hyperspectral images.

Human Subjects and Data Collection. The goal of our exper-

iments is to show the effectiveness of our method in visualizing

veins in human subjects. Since our experiments involve humans,

and despite the minimal risk to them, we had to secure the approval

of the Research Ethics Board at our university, which we did.

We recruited 13 subjects (9 males and 4 females). The subjects

were informed about the purpose of the research and asked for their

permission before conducting experiments, according to the proto-

col approved by the Research Ethics Board. The subjects also agreed

to anonymously share the collected data for research purposes. We

asked the subjects to put their hands (front and back) and forearms

over the experimental table. We captured 16 hyperspectral images

of each subject. Each image has 204 spectral bands, and each band

has a spatial resolution of 512×512. We captured images in different

positions, including front and back of palm, wrist, and upper and

lower arm. RGB renderings of sample images of the captured data

are shown in Figure 8.

In total, we captured 214 hyperspectral images, each with 204

bands. In addition, each hyperspectral image has a corresponding

Figure 8: RGB samples from the collected dataset. Images

shown are the RGB rendering captured by the hyperspectral

sensor containing 3 visible bands.

RGB image, which has three bands (R, G, B) in the visible range of

the spectrum.

After capturing, the data is transferred form the camera to the

workstation for processing and error checking. We used Matlab to

extract all 204 bands from each hyperspectral image. Some error

checks are performed after extracting hyperspectral data, e.g., sen-

sor values should be within the range (0 − 4095). We removed 7

corrupted images.

As mentioned before, the near infrared range 820−920nm can be

used to visualize human veins and differentiate them from regular

skin tissues. Our hyperspectral camera captures 34 bands in this

range. We use all 34 bands in training and testing our deep neural

network model. Therefore, our hyperspectral image dataset for vein

visualization has a total of 34 × 207 = 7, 038 images, in addition

to the corresponding RGB images. We make this dataset public at

[10].

Model Implementation and Training. To train and test our

deep neural network model, we divide the collected data in two

parts: (i) 75% of the data for training and (ii) 25% of the data for

validation and testing. In addition, to stress the robustness of the

model, the data used in validation and testing comes from different

human subjects that were not seen during training. Specifically,

out of the 13 human subjects, we use the data of 10 subjects for

training. The data of the other 3 subjects are used for validation
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and testing. Furthermore, the data for one of these 3 subjects was

captured under a different lighting condition, not present in the

training dataset. Moreover, we use data augmentation techniques,

e.g., rotation and flipping, to increase the training dataset by 8X.

In summary, we created the following datasets:

• TrainingDataset: has a total of 42,976 samples, each sample

contains a pair of RGB image and one of the 34 hyperspectral

bands in the range [820− 920nm]. These samples come from

10 human subjects. After removing corrupted images, we

have 158 hyperspectral images each with 34 bands, which

were augmented 8X. Thus, the number of training samples

is 158 × 8 × 34 = 42, 976.

• Validation Dataset: has a total of 850 samples in the same

format as the Training Dataset, but these samples come from

3 different human subjects. After removing corrupted images,

we have 25 hyperspectral images each with 34 bands. No

data augmentation is used for the Validation Dataset.

• Testing Dataset: has a total of 24 samples having the same

data distribution as the Validation Dataset. These samples

are entirely different from the Validation samples, but come

from the same 3 human subjects as used in Validation. Each

RGB image has 34 bands as ground truth, but we use one

band 850nm for comparison against the predicted band.

After we construct the datasets, we train the model using two

approaches: with and without white balancing. We refer to the first

as HS1, where the subscript indicates that we are reconstructing

one hyperspectral band. We refer to the second model as HS1 −wb,

where ’−’ indicates without white balancing.

The proposed neural network is trained using 50 × 50 image

patches having a stride of 50. The batch size is set to 64 and the

Adam [21] optimizer is used by setting β1 = 0.9, β2 = 0.999, and

ϵ = 10−8. The initial learning rate is 10−4 with the polynomial

function as the decay policy. We have used power = 1.5 empirically

for training efficiently. The model is implemented in PyTorch and

trained on an NVIDIA TITAN RTX GPU with 24 GB memory.

4.2 Performance Metrics

We evaluate the performance of the proposed method using the

following metrics.

• Mean Relative Absolute Error (MRAE): This metric measures

the relative absolute error between the reconstructed and

ground truth hyperspectral images. We measure MRAE to

analyse the quality of reconstruction.

• Relative Root Mean Square Error (RMSE): This metric mea-

sures the second order relative error between the recon-

structed and ground truth hyperspectral images. The RMSE

is defined as:

RMSE =

√

1

N

∑

i ,b

(IR
i ,b

− IG
i ,b

/IG
i ,b

)2, (5)

where IR
i ,b

and IG
i ,b

denote the ith pixel in bandb of the recon-

structed and ground truth hyperspectral image, respectively,

and N is the total number of pixels. We measure RMSE to

get the average relative error estimate of the recontruction.

• Coefficient of Correlation (CoC): This metric provides the

proximity measure between the reconstructed image with

respect to the ground truth image. The Pearson product-

moment correlation coefficient is invariant to linear transfor-

mations and insensitive to uniform variations in brightness

or contrast across an image. The CoC is defined as:

CoC =

∑
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, (6)

where IR
i ,b

and IG
i ,b

denote the ith pixel in bandb of the recon-

structed and ground truth hyperspectral images, respectively,

and I
R
i ,b is the mean of IR

i ,b
. We measure CoC because it is

generally used in vein pattern matching in many authenti-

cation systems.

• Structural Similarity Index (SSIM): This metric measures the

quality of a reconstructed image relative to the ground truth

hyperspectral image. We measure SSIM because it uses per-

ceptual models that simulate the Human Visual System.

4.3 Visual Results

To evaluate the perceptual quality of hyperspectral reconstruction,

we show sample results in Figure 9. The reconstructed results cor-

responding to the models HS1 and HS1 −wb are evaluated on the

same test samples. The intensity values of reconstructed results

are analysed in the reconstructed band compared to the ground

truth. As can be seen, the difference in intensity values recovered

is small compared to the ground truth. The vein structure visible in

the reconstructed result is similar to that present in ground truth.

We further analyse the reconstruction produced by the HS1
model by plotting the absolute error map with respect to the ground

truth. The results are shown in Figure 10. The reconstructed band

and the ground truth band (850nm) have values in the range 0 −

4095. So, we calculate the normalized error difference by using the

formula (GT −HS1)/4095, whereGT is the ground truth andHS1 is

the reconstructed band. The error resulting from the reconstructed

band produced by our model is very small and lies in the range

[0−0.1]. If we were to plot a standard colormap in the range of 0−1,

we would hardly see anything in the error map, as the distribution

of error values will be over a very small color region. Instead, we

focus on the small error range of [0 − 0.1] and plot the error map

in this range. Darker regions (red-black) correspond to relatively

higher errors, whereas lighter regions (white-yellow) correspond to

lower errors, but all are in the small error [0 − 0.1] range. In Figure

10, the black/dark red color is showing high error with respect to

different part of the image, but it is still less than 0.1. The low error

also shows that our model is able to learn the correct positions of

the vein and not trying to produce artificial veins randomly.

For further validation of the accuracy of the produced results,

the recovered intensities corresponding to veins and normal skin

are analysed in the spatial domain. We compare the recovered in-

tensities of the reconstructed band with the ground truth as shown

in Figure 11. The intensities are plotted against a chosen spatial

position marked by the red line in the left image. The intensity

values reconstructed by the HS1 model are compared against the

ground truth (GT). The positions of the localized veins marked

(blue dot) in the left image correspond to the vertical blue dotted

83



MMSys’20, June 8–11, 2020, Istanbul, Turkey Sharma and Hefeeda

Figure 9: Comparing the reconstructed hyperspectral images using our model (rightmost column, denoted by HS1) versus the

ground truth captured by a hyperspectral camera (second column). The first column shows the RGB images, and the third

column shows the reconstructed hyperspectral images produced by our model but without using white balancing (denoted by

HS1 −wb).
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Figure 10: Analysing the accuracy of the reconstructed hyperspectral images (second row) relative to the ground truth images

(first row) using error maps (third row). Notice that the range for the error maps is only [0 − 0.1] instead of the standard range

[0 − 1], since the resulting error of our method is very small and will not be seen on a standard error map. Darker regions

indicate larger errors.

lines in the plot on the right. The curves plotted in the right part

of Figure 11 indicate that the recovered intensities are near to the

ground truth ones, which shows the accuracy of our reconstruction

method for vein localization.

4.4 Quantitative Analysis

We compute all performance metrics described in Section 4.2 using

the Testing Dataset. The performance results are summarized in

Table 1, which shows that the proposed model (HS1) yields low

error rates in terms of the MRAE and RMSE metrics (values close

to 0 are better). The model also produces high accuracy in terms of

the CoC and SSIM metrics (values close to 1.0 are better).

As mentioned earlier, our Testing Dataset consists of images

taken in different illuminations, where some of the images have

similar illumination as in the Training Dataset while others have

illumination that does not exist in the Training Dataset. We evaluate

the impact of white balancing on the performance of our model.

The results are also shown in Table 1, where HS1 −wb refers to

our model without white balancing. The results show that HS1
produces lower error rates in terms of MRAE and RMSE metrics
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Figure 11: Spatial intensities plotted along the red line in the

lower left image. Recovered intensities using reconstruction

model HS1 are compared to the ground truth (GT). The dot-

ted vertical lines in the plot correspond to the specific vein

positions marked with blue in the left image.
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Figure 12: Vein image enhancements. First column shows RGB image, second and third column are the enhanced ground truth

and the enhanced reconstructed band by applying Contrast Limited Adaptive Histogram Equalization (CLAHE). The last two

columns are the enhanced ground truth and the enhanced reconstructed band by applying the homomorphic filtering (HF).

Table 1: The quantitative performance metrics produced by

the proposedmodel with white balancing (HS1) and without

white balancing (HS1 −wb). Bold font indicates the best per-

formance.

Metric HS1 −wb HS1

MRAE 0.2200 0.1541

RMSE 0.2508 0.1770

CoC 0.9448 0.9817

SSIM 0.9127 0.9086

as well as higher accuracy in terms of the CoC metric. The SSIM

metric produced by the HS1 model, however, is slightly lower than

that produced by HS1 −wb model. But it is still fairly high, more

than 0.9, in both cases.

4.5 Enhancements for Vein Visualization

The vein enhancement methods, described in Section 3.3, are im-

plemented in MATLAB. Image enhancements are applied on the

gray scale image having vein information. We enhance the images

by applying these techniques on the reconstructed band. We also

perform the same operations on the ground truth band. Sample

results are shown in Figure 12, where the first column shows the

RGB image used as input to the reconstruction model HS1. The sec-

ond and third columns depict results obtained by applying CLAHE

enhancement on the ground truth and the reconstructed band, re-

spectively. Similarly, the last two columns depict results obtained

by applying the Homomorphic filtering enhancement.

As Figure 12 shows, the image enhancement techniques produce

better contrast and provide clearer visualization of the veins.

5 CONCLUSIONS AND FUTUREWORK

We proposed a data-driven method to reconstruct hyperspectral

images from RGB ones. The method is based on a residual learning

approach that is effective in capturing the structure of the data

manifold, and takes into account the spatial contextual information

present in RGB images for the spectral reconstruction process. The

proposed RGB-to-hyperspectral conversion method handles images

taken in different illuminations, which is an important feature for

practical applications. The proposed method is general and can

support various applications. To show the value of the proposed

conversion method, we designed and evaluated a vein visualization

application. We collected one of the first hyperspectral datasets in
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this domain using a commercial hyperspectral camera; we make

this dataset available for other researchers. We used this dataset to

train our deep learning model and as ground truth for comparisons.

Our experimental results show that the proposed method provides

accurate vein visualization and localization results.

The work in this paper shows the potential of bringing some

of the rich features of hyperspectral imaging to common RGB

cameras, which can potentially enable many new image and video

applications as well as improve the performance of existing ones.

In the future, we plan to explore other applications that can benefit

from hyperspectral imaging.
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